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QUANTITATIVE TRANSCENDENCE RESULTS
FOR NUMBERS ASSOCIATED WITH LIOUVILLE NUMBERS
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(Communicated by William Adams)

Abstract. In 1937, Franklin and Schneider generalized the Gelfond-Schneider

result on the transcendence of a.P . They proved the following theorem: If /?

is an algebraic, irrational number and a is "suitably well-approximated by

algebraic numbers of bounded degree", then aP is transcendental. In 1964,

Feldman established the algebraic independence of a and a.P under similar

conditions. We use results concerning linear forms in logarithms to give quan-

titative versions of the Franklin-Schneider and Feldman results.

Introduction

In 1934, Gelfond and Schneider independently solved Hilbert's seventh prob-

lem. They proved that if a is algebraic with a log a ^ 0 and /? is an algebraic

irrational number, then a& is transcendental. In 1949, Gelfond generalized the

Gelfond-Schneider Theorem to give an algebraic independence result. Tran-

scendence and algebraic independence results have also been given in cases

where a is not necessarily algebraic; here we consider the case where a is

"well-approximated by algebraic numbers of bounded degree".

WELL-APPROXIMATED NUMBERS

Given an algebraic number a, we let 77(a) denote the maximum absolute
value of the coefficients of the minimal polynomial of a over the integers. We

let deg a denote the degree of that polynomial. Given this standard notation,

we can quantify the expression "well-approximated by algebraic numbers of

bounded degree".
Suppose that d0 eN and A : E+ -» K with limsupT-^A(T)/T = oo. We

say that a is (do, A)-approximable if for infinitely many natural numbers T

there exist algebraic numbers ar satisfying

(0) de%aT<d0,   H(aT) < exp(F),   0 < \a - aT\ < exp(-A(F)).

In what follows, we let {a^}^, denote a fixed sequence of algebraic numbers

satisfying these three conditions.
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Variations of this notation have been used by Brownawell and Waldschmidt

[3], Laurent [7], and Tubbs [9]. The conditions given here guarantee that a

is transcendental. In fact, it is fairly straightforward to verify that any such a

belongs to the class of {/-numbers (or C/*-numbers) in the Mahler (respectively,

Koksma) classification of transcendental numbers. For more details about U-

numbers see [1].

Example. We may obtain transcendental numbers which are "well-approxi-

mated by algebraic numbers of arbitrary degree do > 1" by considering ^/d°

where
. oo

£ = |+£io-»!.

Statement of results

Franklin and Schneider gave the first transcendence result for "well approx-

imated" numbers. Their theorem corresponds to the Gelfond-Schneider result;

namely, if a is well approximated by algebraic numbers of bounded degree

and /? is algebraic but irrational, then a^ is transcendental. In [4] Cijsouw
and Waldschmidt gave nice results concerning the simultaneous approximation

(by algebraic numbers) of values associated with the exponential function. Their

Theorem 2, which follows from strengthened versions of Baker's lower bounds

for linear forms in logarithms of algebraic numbers, can be used to produce a

transcendence measure for a^ when a is suitably well approximated and /?

is an irrational algebraic number. Lower bounds for linear forms are the basis

of our results as well. Our first two theorems are quantitative transcendence

results for a? and ea under suitable approximation hypotheses on a.
In stating our results, we let a be a "well-approximated" complex number

with a ^ 0, a ^ 1, and we let {flry}~i denote a fixed sequence of approxi-

mations satisfying inequalities (0) for some natural number do and some ap-
propriate function A. We let log a be a fixed (nonzero) determination of the

logarithm of a, and for any z e C we define az := exp(zloga). We also let

B be an algebraic number of degree d at least two. We consider nonconstant

polynomials P(X) e Z[X] and P(X, Y) € Z[X, Y] of (total) degree DP and
usual height HP . The letters Si, ... , S4 will denote positive constants which

depend only on a, do, A, ft , and the fixed sequence {a^} of approximations

to a.

Theorem 1. Let a, log a, do, B, and P(X) be as above, and suppose M

satisfies
M > DP(ddo)\\ogHP + logDP) min{DP, 77/.}.

Let f : R+ —> R+ be continuous and strictly increasing with liniT'-.oo f(T)/T ^

00, and suppose that a is (do, T(\o%T)f(T))-approximable. Then there exists

a positive constant S\ (depending only on a, f, do, B, {aTj} as mentioned

above) such that if min{DP, HP) > S\ then

log|/V)| > -rMf-l(M)\og(f-[(M))

where

T =  T^tlT        > k = min^' :^7» ^ W-
7ik-i log 7^,
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Theorem 2. Let a, log a, do, and P(X) be as above, and suppose M satisfies

M > DPdl(\ogHP + \ogDP) min{DP, 77/.}.

Let f: R+ —> E+ be continuous and strictly increasing with lim/--^ f(T)/T ^

oo, and suppose that a is (do, T f(T))-approximable. Then there exists a posi-

tive constant S2 such that if mm{DP, HP) > S2 then

log\P(ea)\>-tMf-\M)

where

x = £-,        k = min{j : f(Tj) > M}.
Ik-\

Using lower bounds for linear forms in logarithms, Feldman [5] gave

the first algebraic independence result for (do, A)-approximable numbers.

He showed that there exists a positive constant C\ such that, if a is

(do, Cir2(loglogr)_1)-approximable, then a and a^ are algebraically inde-
pendent over the rational numbers. Our next result gives a measure of this

algebraic independence. Tubbs [9] has given analogous results for the Weier-

strass elliptic function.

Theorem 3. Let a, log a, do, P, and P(X, Y) be as above, and suppose N

satisfies
N > D5Pd0wd4(DP + log77/.) min{DP, HP}.

Let g : R+ -> E+ be continuous and strictly increasing with lim7-_00 g(T)/T ^

00, and suppose that a is (do, T2 (log T)g(T))-approximable. Then there exists
a positive constant S3 such that if min{DP, HP) > S3 then

\og\P(a, q/»)| > -x'N(g-\N))2\og(g-\N))

where

X'= J'nZ? V        k = min{j:g(TJ)>N}.
7^_i(iogrfc_1)

We give a similar theorem for a and ea ; another result of this kind can be

found in [10].

Theorem 4. Let a, log a, do, and P(X, Y) be as above, and suppose N sat-

isfies
N > DPdl(DP + log77,.) min{7J>/>, 77/.}.

Let g : E+ —> E+ be continuous and strictly increasing with lim;r_00 g(T)/T ^

00, and suppose that a is (do, T2g(T))-approximable. Then there exists a

positive constant S4 such that if min{DP, HP} > S4 then

\og\P(a,ea)\>-r'N(g-l(N))2

where

t' = ^-,        k = min{j:g(Tj)>N}.

Auxiliary results

As mentioned previously, the main component of our proofs is a lower bound

for certain linear forms in logarithms of algebraic numbers. The particular

bound which we use here is due to Philippon and Waldschmidt [8].
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To keep the statement of the theorem concise, we introduce some notation

first. Given nonzero algebraic numbers a\, ... , a„ and fio, P\, ■ ■ ■ , Pn , we

consider the linear form

A = 0o + P\ logQi +--- + B„\ogan.

We let D be a positive integer and A\, ... , An, A, B positive real numbers

which satisfy

D>[Q(a{,... ,an,Po,P\,-.- ,Bn):Q],

Aj > max{H(aj), exp(|logo,-|), en} , 1 <j <n,

A = max{Au ... ,An,ee},

and

B = max{H(pj): 0 < ;' < n}.

Proposition 5. If A ^ 0 then

|A| > exp(-28"+5 V"7r+2 log ,4, • • • log^„(log5 + log log ,4)).

Remark. Recently, Waldschmidt [12] has developed techniques which give

stronger lower bounds for these linear forms. These strengthened results may

lead to better quantitative results in our setting. While Waldschmidt's new

techniques do apply to linear forms with algebraic coefficients (like those we

will encounter here), his published results focus on the special case where

A = b\ logQi H-h bn \oga„ and b\, ... , b„ are rational integers. For this

reason, we have chosen to use the older (weaker) results here.

The next three lemmas are used in the proofs of both theorems.

Lemma 6. Suppose Q(X) e 1\X\ is a nonconstant polynomial of degree at most
Dq and height at most Hq , and let © be any complex number. Then there

exists an algebraic number £ of degree, say, D, and a positive integer m such

that
mD<DQ,        H(Q<(HQDQ)llmD,

and

|e - CI'" < 4°e(2Z)Q//G)ZJe|C2(e)|.

Proof. See [13, Lemma 2.3].

Lemma 7. Let v , w be two complex numbers satisfying \w-ev\ < \\ev\. Then

there exists a determination of the logarithm of w such that

3   1
\\ogw -v\ < --—-\w - ev\.

2\ev\

Proof. See [11, Lemma 2.2].

Lemma 8 (Gelfond [6]). Let P\, ... , Pm be polynomials in C[Xi, ... , Xn].
Suppose the product P\ ■ ■■ Pm has degree Dt in the variable Xt for i = \,...,n,

and let D = £"=1 Dt. Then

H(Pl)-H(Pm)<eDH(Pl-Pm).

Proof. See [6, Lemma 2, p. 135].

For the proof of Theorem 3 we need an additional lemma.
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Lemma 9. Suppose P(X) e Z[X] is a polynomial with degree at most DP and

height at most 77/.. If 8, 8 e C satisfy |8 - 8| < 1, then

|P(8) - P(0)\ < (|8| + l)D'-,HPD2P\e - 8|.

Proof. The proof follows if we write the polynomial P(Q) - 7>(8) as a sum of

differences (8 - 8)' and then factor 8-8 from each term in the sum. We

use the inequality |8| < |8| + 1 to estimate the remaining factors.

Proofs of Theorems 1 and 3

First we establish Theorem 1.

Proof of Theorem 1. Given a, loga, do, P, P(X), M, /(r),and {aTj}f=l

as above, we let A(T) = r(logr)/(r) and define k and t as in the statement
of the theorem, taking care to choose Si sufficiently large so that the definition

of k will ensure that k is at least two and, hence, Tk_\ is defined. We suppose

that

(1) |/V)| < exp(-zMf-l(M)log(f-l(M)))

and seek a contradiction.

By Lemma 6 there exists a positive integer m < DP and an algebraic number

C of degree at most DP and height at most HPDP such that

(2) \C - a^\m < 4Dr(2DPHP)Df txp(-xMf-x(M)\og(f-\M))).

Substituting for t and then using the inequality Tk_x < f~x(M) (which follows

from the minimality of k and the invertibility of /) followed by the lower

bound for M, we see that

|C-a'n <exp(-TM/-1(M)log(/-1(M))/2)

provided Si is sufficiently large to ensure that Tk > 3. Taking mth roots and
noting that m < DP , we have

(3) |C-a'| < exp(-TMr1(Ar)log(/-1(M))/27)/.).

For Si sufficiently large, we have \C - a^\ <\a^\/3,  so by Lemma 7 there

exists a determination of the logarithm of C such that

(4) |logC-y91oga|<Ci|C-a^|

where C\ — 3/2|a^|. Choosing a — ajk from the sequence of approximations

{flrj} and noting that \a - a\ < exp(-A(Tk)), we see by Lemma 7 (again) that

there exists a determination of the logarithm of a such that

(5) \loga - loga\<c2\a-a\

where ci = 3/2|a| (provided that Si is chosen sufficiently large to ensure that

exp(-A(r,))<|a|/3).
Now we consider the linear form A = log C - P log a in logarithms of algebraic

numbers. From the triangle inequality, we have

|A| < |logC — jSlogatl + |/?||logoi —loga|.
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Using inequalities (4) and (5) and then inequality (3), and noting that a - ajk

is an approximation to a, we have

\A\<cl\r.-afs\ + c1\P\-\a-a\

<cxzxv(-TMf-\M)\og(f-\M))l2DP) + Cie:xv(-A(Tk)).

Using the definition of t and the inequality Tk_x < f~l(M) to bound the first

term and using the definition of A and our choice of k to bound the second

term, this last inequality may be reduced to

(6) |A|<exp(-J»/r*(log7i)/3Z>p)

provided Si is sufficiently large.

Now we have an upper bound for a linear form in logarithms of algebraic
numbers with algebraic coefficients. Since a ^ 0, a ^ 1, we know that for Si

(and hence Tk ) sufficiently large we have ajk ^ 0 and ajk i^ 1; then a^ is

transcendental by the Gelfond-Schneider Theorem. But £ is algebraic, so the

linear form A is nonvanishing. This allows us to obtain a lower bound as well,

from Proposition 5.
We note that |C| < H(Q + 1 < 277(C) and, by virtue of the choice of the

logarithm in the proof of Lemma 7, we have | log Ct < c4 where C4 depends

only on a, p , and loga . Similarly, |a| < 277(a) and | loga| < C5. Thus we

may choose the parameters in Proposition 5 as follows:

A\ = c6HPDP,        A = A2 = c6eTk,

D = MC,B,a):Q]<DPddo,        B = H(p),

where C(, = max{2e,c", 2eCi, ee] . Then we have (for Si sufficiently large)

|A| > exp(-c7273(7)/.<tao)4(log77p + \ogDP)Tk\ogTk).

Combining this lower bound with our upper bound in (6) yields

M < 3c72nD5P(ddo)A(logHP + logDP).

Our lower bound for M leads us to a contradiction and the theorem is estab-

lished.

The proof of Theorem 2 is similar; the main difference being that the linear

form under consideration is A = log ( - a . We establish Theorem 3 next; we

omit the proof of Theorem 4.

ProofofTheorem 3. Given a, loga, d0, /?, P(X, Y), N, g(r),and {aT]}f=x

as above, we let A(T) = r2(logr)g(r) and define k and t' as in the statement

of the theorem, taking care to choose S3 sufficiently large as in the previous

proof. We let

G(N) = x'N(g-\N))2 (log g~\N))

and suppose that

(7) log|7J(a,a^)|<-G(Af).

If deg^ P = 0, then we obtain an immediate contradiction by taking Q(Y) =

P(X, Y). Supposing the result is false, we have

log\Q(a?)\ < -G(N).
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By applying Theorem 1 with M = N and f(T) = g(T) we have

log|G(a')| > -xNg-\N)log(g-l(N))

which, together with the upper bound for |g(a^)|, leads to Tk < Tk_x , a

contradiction as desired.

If degjf P > 0, we choose a = ajk from a fixed sequence of approximations

to a and let ax = a, a2, ... , a#0 be the conjugates of a over Q. Then

So < do. We also let q e Z be a denominator of a and note that \q\ < eTk.

Then we consider the new polynomial

So

Q(Y) = qs^\{P(ai,Y).
i=\

Since the product on the right-hand side is fixed under a in the Galois group

of Q(a) over Q, we know that nfli P(ai> Y) e Q[^] • Because we multiply
by an appropriate denominator, we then have Q(Y) e Z[Y].

Furthermore,

(8) degQ<DPSo<DPdo

and the height Hq of the polynomial Q satisfies

HQ < \q\^D"Hpmax{l, \ax\, ... , \aSo\}s^(l + 2DPf°

< e^o^T^maxil, \ax\,..., |a*|}*z>'(H-2Z)i.)*

We also know that

max{l,|«i|,..., |fl,50|}< 1+7/(0)= l+7/(arJ<e2:rS

so, for S3 sufficiently large, inequality (9) may be reduced to

(10) HQ < exv(4d0(DP + logHP)Tk).

Eventually, we will estimate |Q(a^)|. First we want to verify that Q is a

nonzero polynomial. To do this, we will establish that 7>(a,, Y) is a nonzero

polynomial for each i = I, ... , Sq.
If P(aj, Y) is identically zero for some / 6 {1, ... , So} , then we see that

the minimal polynomial for a over Z must divide P(X, Y) and Lemma 8

shows that H(a) < eDpHP. Without loss of generality, we may assume that

each approximation a^ satisfies H(ar) > eT>~x . Defining k in terms of this

(possibly new) sequence, we have 77(a) = H(ark) > eTk~x; therefore,

(11) Tk-KDP + logHP.

On the other hand, our choice of Tk shows that for S3 sufficiently large we have

Tk > 2(7)/. + log///.), contradicting the inequality in (11). Hence, for every i

( 1 < i < So), the polynomial P(at, Y) is nonzero, and therefore Q(Y) is

nonzero as well.

To bound \Q(a^)\, we estimate |.P(a,, a^)| for / = 1, ... , S0. For / = 1,
we have (from the triangle inequality)

\P(a, a')| < ^(a,^) - P(a, a')\ + \P(a, cr')|.
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Using Lemma 9 and our assumption (7), we get

\P(a,a^)\ < HP(l + DP)imax{l, jq;^|}^(1 + |a|)^|a - a| + exp(-G(N))

< exp(-A(Tk)/2) + exp(~G(N)).

Using our definitions of A, k , G, and t' (as in the proof of Theorem 1), we

may reduce this last inequality to

|/J(a,a^)|<exp(-yvr,2(logr,)/3).

For i = 2, ... , S0 , we bound term by term to get

(12) \P{aita^)\ <HP(I + DP)2max{l, \ai\}Dp max{l, |a^|}Df.

But |a,| < H(a) + 1 < e2Tk, so (12) becomes

\P(at, afi)\ <HP(l+ DP)2(e2T«)Dp max{l, \ap\}DF

<exp(3(7J>/. + log HP)Tk)

for S3 sufficiently large.

Taking the product over i and multiplying by the denominator qs°Dp, we

have

\Q(a?)\$\q\V)'T[\P(ai,a')\
;=1

< exv(Tkd0DP + 3(S0 - l)(DP + logHP)Tk - NT2(log Tk)/3)

<exp(-NT2(logTk)/4).

For S3 sufficiently large, the new polynomial Q(Y) is nonconstant. For if

it were constant, then Q(a^) e Z - {0} . But for S3 sufficiently large, we also

have |(2(a^)| < 1, which would lead to a contradiction.
This allows us to use Lemma 6 to find a positive integer m < doDP and an

algebraic number £ of degree at most doDp and height at most HQdoDP such

that

(13) |C - a^|w < 4^D^2(2doDPHQ)d°Dp\Q(a^)\.

Using inequality (10) to estimate Hq , we see that

H(C) < HQd0DP < exp(5d0(DP + logHP)Tk)

and inequality (13) reduces to

|C-a^r<exp(-^(logr,)/5).

Taking mth roots, we have

(14) |C-a'| <exp(-iVr2(logrfc)/57)/.a'o).

As in the previous proof, Lemma 7 (applied twice) yields determinations of

log C and log a which satisfy

(15) I logC — j81oga| < c9|C-a^|, |loga - loga| < fi0|a - a|

where C9 and cXo depend only on pioga. Using the triangle inequality, along

with inequalities (14) and (15), the approximation property of a, and our

choice of k , we have (for S3 sufficiently large)

(16) |logC-/?loga| <exp(-Arr2(logrfc)/7DM)).
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As in the proof of Theorem 1, for S3 sufficiently large, this linear form

A = log C - P log a is nonvanishing and we may apply Proposition 5 to obtain a

lower bound. As before, exp(| log CD < C\\ and exp(| loga|) < cX2 and we may

choose the parameters as follows:

A = AX = c,3 exp(5d0(DP + log HP)Tk),        A2 = cxiexp(Tk),

D = [Q(C ,a,p):Q]< DQd0d < DPd^d,        B = H(B).

Then we have

|A| > exp(-cX4213DPd^d\DP + logHP)TilogTk)

for S3 sufficiently large by our choice of Tk .

Combining this lower bound with the upper bound of line (16) gives the

desired contradiction and the result is established.
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