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APPROXIMATION OF FIXED POINTS
OF STRONGLY PSEUDOCONTRACTIVE MAPPINGS
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(Communicated by Palle E. T. Jorgensen)

Abstract. Let £ be a real Banach space with a uniformly convex dual, and let

K be a nonempty closed convex and bounded subset of E . Let T: K —► K be

a continuous strongly pseudocontractive mapping of K into itself. Let {cn}^[

be a real sequence satisfying: (i) 0 < cn < 1 for all n > 1 ; (ii) Y^=\ cn = oo;

and (iii) ]T)J^i cnb(cn) < oo , where b: [0, oo) —» [0, oo) is some continuous

nondecreasing function satisfying b(Q) = 0, b(ct) < cb(t) for all c > 1 . Then

the sequence {*n}^! generated by x\ e K ,

Xn+l = (1 ~Cn)x„ +C„Txn, n>\,

converges strongly to the unique fixed point of T. A related result deals with

the Ishikawa iteration scheme when T is Lipschitzian and strongly pseudocon-

tractive.

1. Introduction

Let E be a normed linear space, K C E. A mapping T: K —► K is called

a strong pseudocontraction if there exists t > 1 such that the inequality

(1) \\x-y\\<\\(l+r)(x-y)-rt(Tx-Ty)\\

holds for all x, y in K and r > 0. If t = 1 then T is called pseudocontractive.
Interest in pseudocontractive mappings stems mainly from their connection
with the important class of nonlinear accretive operators. A mapping U with

domain D(U) and range R(U) in E is called accretive [5] if the inequality

(2) ll*-y||<ll*-;v+*(tf*-tfy)l|
holds for every x, y e D(C7) and for all s >0. The firm connection between

the pseudocontractive and accretive mappings is that a mapping T is pseudo-

contractive if and only if (/- T) is accretive [5, Proposition 1]. Consequently,

the mapping theory for accretive operators is closely related to the fixed point

theory of pseudocontractive mappings.

The accretive operators were introduced independently in 1967 by Browder

[5] and Kato [15]. An early fundamental result in the theory of accretive oper-

ators, due to Browder, states that the initial value problem

du
-j- + Tu = 0,        u(0) = Un
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is solvable if T is locally Lipschitzian and accretive in E—a result which was

subsequently generalized by Martin [20] to the continuous accretive operators.

For more on the applications of accretive operators the reader may consult [4,

5].
Pseudocontractive operators have been studied by various authors (see, e.g.,

[2, 6-8, 10, 12, 13, 16, 17, 21, 22]). In [2] Bogin studied the connection between
strong pseudocontraction mappings and strongly accretive mappings (defined

below). He proved that U is a strong pseudocontraction if and only if (/ - U)

is a strong accretive operator. Furthermore, he proved a fixed point theorem in

Banach spaces for Lipschitz strong pseudocontractions and, as a consequence,

obtained a mapping theorem of Browder for this class of operators.

In [7] the author studied iterative methods for approximating fixed points of

Lipschitz strongly pseudocontractive operators and proved that, if E = Lp (or

lp), P > 2, K C E, and T: K —* K is a Lipschitz strongly pseudocontractive

map with a nonempty fixed point set, an iteration method of the type introduced

by Mann [19] converges strongly to a fixed point of T. The method of [7]

also gives that such a fixed point is necessarily unique. However, the method

could not be adapted either to prove the above results when E — Lp (or lp),

1 < P < 2, or to establish whether or not another well-known fixed point

iteration method, the Ishikawa iteration method (see, e.g., [13]) converges to

the fixed point of T.
It is our purpose in this paper to resolve these questions by proving the

following much more general result: If E is any real Banach space with a

uniformly convex dual space E*, K C E, and T: K —> K is any strongly

pseudocontractive map with a nonempty fixed point set, then both the Mann

iteration method and the Ishikawa iteration method converge strongly to the
unique fixed point of T. In particular, our Theorem 1 extends the result of [7]
to the larger class of continuous strongly pseudocontractive maps and from Lp

spaces (p > 2) to the more general Banach spaces considered here. (See also

our comments following the proof of Theorem 2.) Furthermore, explicit error

estimates are also given.

Remark 1. The Ishikawa iteration method was introduced in [13] to approxi-

mate a fixed point of any Lipschitz pseudocontractive map U in a Hilbert space

when the domain of the map is also assumed to be convex and compact. It is

still an open question whether or not the Mann iteration process converges to a

fixed point of U (see, e.g., [12, p. 504]).

2. Preliminaries

We start by defining the two fixed point iteration methods which will be

needed in the sequel.

A. The Ishikawa Iteration Method (see, e.g., [13, 28]). If K is a convex subset
of a real Banach space E and T is a mapping of K into itself, the sequence

{x„}£t0 in K is defined by

xo G K,

(3) xn+i = (1 -X„)x„ +XnTy„,

(A) yn = (\-l]n)Xn + PnTXn, /! > 0,
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where {A„}~0, {)W=o satisfV 0 < A„ < y?„ < 1 for all n; lim,^ fin = 0,

and Y^LnhPn = °°-

B. The Mann Iteration Method (see, e.g., [19, 28]). With E, K, and x0 as in
A, the sequence {x„}~0 in K is defined by

(5) X„+i = (1 -Cn)xn+C„Txn, «>0,

where {c„}^L0 is a real sequence satisfying Co = 1, 0 < cn < 1 for all n > 1,

and Yln^o cn = oo. The condition E^loc" = °° is> m some applications,

replaced by J27=oc„(l - c„) = 00.
The iteration methods A and B have successfully been employed by various

authors to approximate solutions of nonlinear operators in Banach spaces (see,

e.g., [6-8, 11-14, 18, 19, 22-28]). For a detailed comparison of the two methods
for various classes of nonlinear operators the reader may consult [28].

For a Banach space E we shall denote by J the duality map from E to

2E' defined by

7x = {/*GP*:||/*||2 = ||x||2 = (x,/*)},

where E* denotes the dual space of E and (• , •) denotes the generalized

duality pairing. It is known that, if E* is uniformly convex, then / is single-

valued. In the sequel we shall denote the single-valued normalized duality map

by j. Thus, by a single-valued normalized duality map, we shall mean a map

j: E —> E* such that, for each u e E, j(u) is an element of E* which satisfies

the conditions

(u,j(u)) = \\u\\-\\j(u)\\,     IL/(")I! = NI.
We remark immediately that the accretive condition (2) can be expressed in

terms of the duality map as follows (see, e.g., [15]): For each x, y e D(U),

there exists some <y G J(x - y) such that

Re(Ux-Uy,co) >0.

Now let K C E. A mapping A: K -* K is called strongly accretive if for each
x, y e K there exists co e J(x - y) such that

(Ax - Ay, a>) > k\\x - y\\2

for some constant k > 0. Without loss of generality we shall assume that

ke(0, 1).
In the sequel we shall also need the following remarks.

Remark 2. In [24, p. 89] Reich proved that if E* is uniformly convex then

there exists a continuous nondecreasing function b: [0, 00) —> [0, 00) such

that b(0) = 0, b(ct) < cb(t) for all c > 1, and

(6) \\x + y\\2 < \\x\\2 + 2(y,j(x)) + max{||x||, 1}||>#(IMI)

for all x, y e E .

Remark 3. Nevanlinna and Reich [23] showed that, for any given continuous

nondecreasing function b(t) with b(0) = 0, sequences {An}^0 alwaYs exist

satisfying:

(i) 0 < Xn < 1 for all n > 0,

(ii) E^oA« = 00, and

(iii) YZo*nb(Xn)<oo.
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For E = Lp , 1 < p < oc , we can choose any sequence {A„}^0 in P/71 with

s = p if \ < p <2 and s = 2 if p >2 .
In the remainder of this paper, the Lipschitz constant of T will be denoted

by L  (>1).

3. Main results

We prove the following theorems.

Theorem 1. Let E be a real Banach space with a uniformly convex dual, E*, and

let K be a nonempty closed convex and bounded subset of E. Let T: K —» K be

a continuous strongly pseudocontractive mapping of K into itself. Let {c„}^,

be a real sequence satisfying:

(i) 0 < c„ < 1 for all n>\,
(ii) E Ji cH = co, and

(i»)  E^ic«Mc«) < co.

Then the sequence {x„}^j generated by Xi e K,

(1) x„+\ = (1 - c„)x„ + c„Tx„,        n>\,

converges strongly to the unique fixed point of T.

Proof. The existence of a fixed point follows from Deimling [9]. Let x* denote

a fixed point of T. Since T is strongly pseudocontractive, (/ - T) is strongly

accretive and, for each x, y e K,

(8) ((/ - T)x -(I- T)y, j(x - y)) > k\\x - y\\2,

where k = (t - l)t~l  (see, e.g., [2, 7]). Using (6)-(8) we have

||x„+1 - x*||2 = ||(1 - c„)(x„ -x*) + c„(Txn - Tx*)\\2

< (1 - c„)2||x„ - x*||2 + 2c,(1 - cn)(Tx„ - Tx*, j(xn - x*))

+ max{(l - c„)||x„ - x*||, l}c„||Px„ - Tx*\\b(cn\\Txn - Tx*\\)

< (1 - C„)2||X„ - X*||2 + 2(1 - k)Cn(\ ~ Cn)\\x„ - X*\\2

+ max{(\-Cn)\\xn-x*\\,l}cn\\Txn - Px*||max{||Px„ - Tx*\\, l}b(c„)

< [(1 - Cn)2 + 2(1 - k)Cn(\ ~ Cn) + (1 - A:)2C2]||x„ - X*||2 + Mcnb(Cn) ,

for some constant M > 0, since K is bounded. Thus,

||xn+1 - xl2 < (1 - rcc„)||x„ - xl2 + Mcn6(c„).

Set pn = \\x„ -x*||2, yn = kc„, and 82 = Mcnb(cn) to obtain pn+i <

(1 - yn)pn+82, which is inequality (10) of [7] with 82 = c^d2 . The rest of the
argument now follows as in [7] to give that {x„}£L0 converges strongly to the

unique fixed point of T.

Remark A. As was mentioned in the introduction, Theorem 1 extends the The-

orem of [7] to the much larger class of continuous strongly pseudocontractive

mappings and from Lp spaces (p > 2) to the more general Banach spaces E

considered here.

If E = Lp , 1 < p < oo , Theorem 1 can be stated more simply as follows:
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Corollary 1. Let E = Lp (or lp), 1 < p < 2, and K and T be as in Theorem
1. Let {c„}™=l be a real sequence satisfying:

(i) 0 < c„ < 1 for all n>\,
(ii) 2Z7=\cn = co, and

(iii) ZZlcPn<™-

Then the sequence {x„}£L, generated by Xi e K,

xn+\ = (1 _ cn)xn + cnTx„,        n > 1,

converges strongly to the unique fixed point of T.

Proof. Remark 3 and conditions (i) and (iii) imply E^Locn^(c") < °°- The

result then follows from Theorem 1.

Corollary 2. Let E = Lp (or lp), 2 < p < oo, and let K and T be as in
Theorem 1. Let {c„}™=l be a real sequence satisfying:

(i) 0 < c„ < 1 for all n>\,
(ii) E£Lic« = co, and

(iii) £~i^<°°-

Then the sequence {x„}~, generated by xi e K,

xn+i = (\-c„)xn + cnTx„,        n>\,

converges strongly to the unique fixed point in T.

Proof. Follows as in the proof of Corollary 1.

Error estimates. Following the method of [8] and setting c„ = s(n + 1)_1 we

obtain that the error estimate in Theorem 1 is given by

\\xn -x*\\ = 0(n^s~1^2).

If E = Lp (or lp) then

\\xn-x*\\ = 0(n-{p-l)'2)   if 1 < p < 2

and

\\xn-x*\\ = 0(n-i'2)   ifp>2.

Theorem 2. Let E be a real Banach space with a uniformly convex dual space,

E*, and let K be a nonempty closed convex and bounded subset of E. Let

T: K —> K be a Lipschitz strongly pseudocontractive mapping of K into itself

Let {an}^Lx and {Pn}^ be real sequences satisfying:

(i) 0 < an < pn < 1 for all n>\,

(ii) E^li an = co,
(iii) lim„ fin = 0, and
(iv)  E^Li anb(an) < oo.

For arbitrary xi e K, define the sequence {x„}£ij in K by

(9) x„+1 = (1 - a„)x„ + anTy„ ,

(10) y„ = (l-Pn)x„ + pnTxn,       n>\.

Then {x„}~ , converges strongly to the unique fixed point of T.
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Proof. The existence of a fixed point follows from Deimling [9]. Let x* denote

a fixed point of T. Using (6) and (8)—(10) we obtain

\\xn+l-X*\\2 = \\(l-an)(xn-x*) + an(Ty„-Tx*)\\2

< (1 - a„)2||(x„ - x*||2 + 2an(\ - an)(Tyn - Tx*, j(xn - x*))

+ max{(l -a„)||x„-x*||, 1}

■an\\Tyn - Tx*\\max{\\Tyn - Tx*\\, \}b(a„),

and, using triangle inequality and (8),

(Tyn-Tx*,j(xn-x*))

= (Tyn - Txn , j(xn - x*)) + (Tx„ - Tx*, j(x„ - x*))

<L\\yn-xn\\-\\xn-x*\\ + (\-k)\\Xn-x*\\2

<{L(\+L)p„ + (l-k)}\\xn-x*\\2.

For sufficiently large n , condition (iii) implies L(l + L)fi„ < k2. Hence,

(Ty„ - Tx*, j(x„ - x*)) < [1 - k(l - k)]\\xn - x*\\2

so that

\\X„+1 - x'||2 < [(1 - a„)2 + 2a„(l - a„)[l - k( 1 - k)]]\\xn - x*\\2 + Manb(an),

for some constant M > 0, since K is bounded. Adding [1 - k(\ - k)]2 •

\\x„ - x*||2o:2 to the right side of the last inequality we obtain

||xn+1 - x'||2 < {(1 - a„) + a„[l - k(\ - k)]}2\\xn - x*||2 + Ma„b(an)

so that ||x„+i -x*|| < (1 - k(\ -rc)a„)||x„ -x*||2 + Manb(a„). The rest of the

argument now follows as in the proof of Theorem 1.

Remark 5. The error estimate for Theorem 2 is of the same order as that ob-

tained in Theorem 1. It follows from Theorems 1 and 2 that if AT is a nonempty

closed convex and bounded subset of a real Banach space with a uniformly con-

vex dual and T: K —► K is a Lipschitz strongly pseudocontractive map of

K into itself then either the Mann iteration method of the Ishikawa iteration

method can be used to approximate the fixed point of T. However, since the er-

ror estimate with the two methods are of the same order, Mann process may be

preferred due to its simplicity. Furthermore, the Mann process can be applied

when T is continuous and strongly pseudocontractive. It is not known whether

or not the Ishikawa iteration method converges for this class of nonlinear maps.
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