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Abstract. For each manifold class &" it is given a functor 6^ satisfying the

Eilenberg and Steenrod axioms except the excision axiom. It provides a nice

unification of geometric treatments of homology and homotopy theories.

Introduction

The geometric treatments of homology and homotopy are very different. Nev-

ertheless, from the axiomatic viewpoint, both give functors satisfying the first

six axioms of Eilenberg and Steenrod (E.S.).

Their different behaviour under an excision is essentially the chief distin-

guishing feature of homology and homotopy.

The present note exhibits a nice interpretation of this formal resemblance by

constructing a geometric theory which, generalizing the objects and the relations,

allows for the unification of the treatments and also provides for make new

functors.
The unifying notion is that of ^"-singular sphere for the objects, while it is

that of ^-cobordism for the relations. By fF we mean a manifold class, whose

definition is reproduced in § 1.

For each manifold class SF, we construct a functor O^ , from the category of

pointed pairs of topological spaces to the category of graded groups, sastisfying

the first six axioms of E.S. Q? agrees with the homology functor H if S*

is the class 9^ of the geometric cycles without boundary, and it agrees with

the homotopy functor n if y is the class &S? of the standard PL-spheres.

Moreover, if/'c/, there is a homomorphism

^,^:e^'(X,A,x0)^e9'(X,A,xo),

and it is shown that VP^^  and ^V^  give a factorization of Hurewicz

homomorphism for each manifold class ZF.
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1. Preliminaries

Let F = {Fn }„>o , where each Fn is a class of compact «-polyhedra (closed

under PL-isomorphisms) satisfying:

(a) S°eFo;
(b) VI e Fn and Vx e Z, LA:(x ,1)^.,;
(c) VIe^andvre^ra,I*re^+m+i;

(d) VZ e Fn and Vx e I, Z - sf (x ,1) £ 5^,.

The set F is called a manifold class. The elements Z of Fn are called

^-spheres. The cone c * Z on an <9£_i-sphere Z is called an ^-disc, and a
o

polyhedron of the form Z - st(x, Z), I. e Fn and x e Z, is called an Fn-

pseudodisc. Note that an ^j-disc is an ^-pseudodisc and that the suspension

of an ^-pseudodisc is an i^+i-pseudodisc.

An ^"-manifold of dimension n is a polyhedron M" such that each link

is either an J?^_i-sphere or an ^_i-pseudodisc. The boundary of M, dM,

consists of points whose links are ^_i-pseudodiscs. The polyhedron M-dM
o

will be denoted by M.
As an immediate consequence of the definition we observe that the boundary

of an ^-manifold of dimension n is itself an ^-manifold of dimension n - 1

without boundary.
A manifold class F is said to be connected if, for each pair Px, P2 of

J^-pseudodiscs with dPx^fdP2, Px\JfP2eFn.
If F is connected, the cylinder and the cone on an ^-pseudodisc are Fn+i-

pseudodiscs (see [4]). Moreover, it is easy to prove that, if Pi, P2 are Fn-

pseudodiscs and xx e dPi, x2 e dP2 such that st(xi, dPi) &g st(x2, dP2),
then the polyhedron Pi Ug P2 is an ^-pseudodisc. Details about manifold

classes can be found in [1, 4].

From now on we will sometimes omit the prefix F, if no ambiguity arises,

and all the manifold classes are assumed to be connected and such that 3% =

m.
The hypothesis Fq = {S°} implies that any ^-manifold M of dimension

n is a geometric «-cycle, so it makes sense to define M to be orientable if M

is orientable as geometric cycle.

The following manifold classes satisfy the above conditions:

^5" = {standard PL-spheres} ,
%? = {homology spheres} ,

h = {homotopy spheres} ,

^ = {%}, where Wq = {S0} and Wn = {compact geometric n -cycles

without boundary} if n > 0.

A J^-manifold is simply a PL-manifold; an ^"-manifold is usually called a

homology manifold; an /z-manifold is a homotopy manifold; and a ^-manifold

is a geometric cycle.
Evidently for each manifold class F we have F>2' c F c ^.

Observe that a closed ^-manifold of dimension n > 0 is a ^-sphere. This

property characterizes the manifold class W according to

Theorem 1.1. Let F be a manifold class such that each closed F~n-manifold,

n > 0, is an F~-sphere. Then F — ̂ .
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Proof. Since Ft] = {S0}, we can proceed by induction. Suppose that F„_i =

%?n-\ ■ Then, by the previous observations, it suffices to prove that §J, c Fn .

Let X be a compact geometric «-cycle without boundary. Since Lk(x, X) e

^,_i = Fn-X , for each x e X, X is an ^"-manifold without boundary and

hence an ^"-sphere.   D

2. The functor &^

From now on all ^"-manifolds are assumed to be orientable. If M denotes

an oriented ^"-manifold, —M will denote the same manifold with the opposite

orientation.

Definition 2.1. An ^"-cobordism between two oriented ^"-spheres Zi and Z2

is an oriented ^"-manifold W such that:

(a) d W is the disjoint union of Z! and -Z2, and
(b) W u cx * Zi u c2 * Z2 is an ^"-sphere.

An ^"-cobordism between two oriented pseudodiscs Pi, P2 is an oriented F-

manifold W such that:

(a')   dW = Px u -P2 U W0, where  W0 is a cobordism between dPx and

dP2; and

(b')    W u cx * Px U c2 * P2 is an ^"-pseudodisc.

Observe that if X in an oriented ^"-sphere or an oriented ^"-pseudodisc,

X x / realizes a corbordism between X and X. If W is a cobordism between

Xi and X2, and W' is a cobordism between X2 and ^3 (AT,-, f = 1, 2, 3 ,
is an oriented ^"-sphere or an oriented ^-pseudodisc), then it is a little trou-

blesome to prove that W Ux2 W is a cobordism between Xx and Xt, . Fur-

thermore, a cobordism between pseudodiscs is itself a pseudodisc. This follows

using essentially the property of F to be connected and the fact that the cone
on a pseudodisc in a pseudodisc (see [4]).

Remark 2.2. If F = W, (b) follows from (a) and (b') follows from (a').

Remark 2.3. If F = IFF?, a cobordism between spheres is a cylinder and a

cobordism between pseudodiscs is a PL-disc.

Definition 2.4. Let (X, xq) be a pointed topological space. A singular F-

sphere of (X, xq) is a triple (Z, D, f), where Z is an oriented ^"-sphere,

D c Z is a top-dimensional simplex, and /: (Z, D) —> (X, xq) is a continu-

ous map. Two singular ^"-spheres (Zi, Dx, f), (Z2, D2, f2) of (X, xq) are
J?"-cobordant if there exists a triple (W, W', g), called ^"-cobordism, where

W is an ^"-cobordism between Zi and Z2, W' c W is a J^-cobordism

between Di and D2, and g: (W, W') -> (X, Xo) is a continuous map, so that

the following conditions hold:

(1) wndW = DluD2;

(2) g/li = fi, 1=1,2.

From the previous observation it follows that the ^"-cobordism relation be-

tween singular ^"-spheres is an equivalence relation.
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Theorem 2.5. Let (Z, Di, f), (Z, D2, f) be singular spheres of (X, xq) . If
there exists a connected PL-manifold M c Z, containing Dx and D2, such that

f(M) — xo, then (L, Dx, f) and (Z, D2, f) are cobordant.

Proof. Without loss of generality, we can suppose that Z is triangulated so that

Dj = Vj*dDj, i = 1, 2. Choose a simplicial path s in M x I, without loops,
from vi x {0} to v2 x {1}, such that s(I) n M x {0} and s(I) n M x {1}

are singletons. Let U be a regular neighborhood (nbd) of s(I) in M x I.

Then the triple (Z x /, U, f x id) is a cobordism between (L, D\, f) and

P,D2,f).    □

Given a singular sphere (Z, D, f), Theorem 2.5 allows us to assume, up
o

to a cobordism, that dD has a collar C in Z - D and / is constant on C.

One can see that such singular spheres are cobordant iff there is a cobordism

(W, W', g) between them such that W' has a regular nbd N which is a PL-

manifold and g/N is constant.

Let Q^(X,xo) denote the set of ^"-cobordism classes of singular Fn-

spheres of (X, xq) . In order to define an addition in Q%(X, Xo), n > 1,

it is convenient to consider only singular spheres and cobordisms satisfying the

above conditions.

Now given two singular w-spheres (Zi, Dx, fi), (L2, D2, f2), n > 1, let

(li , Di, f) + CL2, D2, f2) = (1, D, f),
o o

where Z is the oriented sphere obtained by gluing Z( - Z>i and Z2 - D2,

/ = /iU/2, and D is a top-dimensional simplex chosen in an open bicollar N

on dDi « 8D2 in Z, on which / is constant. Being n > 1, TV is a connected

J^-manifold; so by Theorem 2.5, the cobordism class of (L, D, f) does not
depend on the choice of D in TV.

Theorem 2.6. The cobordism class of (Zi, Di, f) + (Z2, D2, f2) depends only
on the classes of (Zi, D{, f) and (Z2, D2, f2).

Proof. The statement follows on observing that we can add the cobordisms,

likewise the spheres. The J^-cobordism contained in a cobordism plays the

role of the simplex contained in a sphere.    D

The previous theorem allows an addition in Q^(X, Xo), « > 1 , by taking

[(Z, ,Di,f)} + [(In, D2, f2)] = [(Zi ,Di,f) + (Z2,D2,f2)].

We shall say that a singular «-sphere (Z, D, f) is cobordant to zero (0-

cobordant) if there is a triple (P, A, g), where P is an oriented (n + 1)-

pseudodisc, A c P is a top-dimensional simplex, and g: (P, A) —► (X, xo) is

a continuous map such that dP = 1, AnZ-D, and gfL = /. The triple

(P, A, g) is called a cobordism to zero of (Z, D, f).

All the spheres (Z, D, f) are cobordant to zero provided / is constant.

Let Do denote a PL n-disc contained in the standard oriented n -sphere Sn .

Then we have

Lemma 2.7. A singular n-sphere is cobordant to zero iff it is cobordant to

(Sn, Do, fo), where /o is constant.

Proof. Assume (Z, D, f) is cobordant to (Sn , Do, fo), and let (W, W', G)

be a cobordism between them. According to the definition of cobordism, WQ =
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W Lie * S" is a pseudodisc and d W0 = Z. An extension G' of G to W0 can

be defined by G'/c * S" = constant map. Let D' = W' U c * Dq ; the triple
(W0, D', G') is the required cobordism to zero.

Conversely, assume (P, A, g) is a cobordism to zero of (Z, D, f).   Let
0

D'cA be a PL (n + l)-disc, and let D" c 3D' be a PL «-disc; it is easily
o

checked that the polyhedron P-D' determines a cobordism between (Z, D, f)

and (3D', D", fo). If dD' coincides with S" , up to orientation-preserving
o

PL-homeomorphisms, the statement is proved. Otherwise, gluing P-D' and

Sn xi by an orientation-reversing PL-homeomorphism between dD' and S" x

{0}, we have a polyhedron which determines a cobordism between (Z, D, f)

and (Sn,D0,fo).   D    '

By the above lemma, the 0-cobordant singular spheres belong to the same

cobordism class. Such a class is the zero element of &^(X, xo) ■ Moreover,
o

for each (Z, D, /), the pseudodisc (Z - D) x I determines, in a natural way,

a cobordism to zero of (Z, D, f) + (-Z, D, f). Hence, each element of

&n*(X, Xo) has an inverse.

Finally one can see that the addition in Q^(X, xo) is associative and com-

mutative, so we have

Theorem 2.8.  0^(X, Xq) is an abelian group for each n > 1.

The graded group {&^(X, xo)}n>\ will be denoted by &^(X,Xo).

Like the homotopy groups, &^(X, xo) does not depend on the choice of xo

in X, provided that X is path-connected.

Theorem 2.9. Let F' c F be manifold classes. Then there exists a canonical

homomorphism "¥?< t?: &f'(X, Xo) -» Q„(X, xo), for each n > 1.

Proof. Since an ^"'-sphere (cobordism) is also an ^"-sphere (cobordism), it

makes sense to define

Vr.,9-: V£,D,f)lr, e Of (X, x0) - [(Z, D, f)W e ©f (X, x0).
Obviously 4V' ,& is a homomorphism.   □

Let (X, A) be a pair of topological spaces and Xo is a point of A. By

relative ^-sphere of (X, A, xo) we mean a triple (P, A, f), where P is an

oriented J^j-pseudodisc, Ac P is a top-dimensional simplex meeting dP in a

top-dimensional simplex, and /: (P, A) -* (X, Xo) is a map which carries dP

to A.
Given a relative ^-sphere (P,A, f) of (X, A, x0), (8P,AndP,f/) is

a singular ^_i-sphere of (A, xo) which will be denoted by d(P, A, /).

Two relative ^"-spheres (P,■, A,■, gt), i = 1, 2, of (X, A, xq) are called

^"-cobordant if there exists a triple (V, V, G) where V is an ^"-cobordism

between Pi and P2, V c V is a J^-cobordism between A] and A2, and

G: (V, V) -» (X, Xo) is a continuous map, such that the following conditions

hold:

(1) V'HPi = Ai, '=1,2.

(2) Let W = dV-(Pil)P2) and W' = WnV. Then (W, W', G/) is an
^-cobordism between d(Pi, Aj, gi) and d(P2, A2, g2) with G(W) c

A.
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The ^"-cobordism between relative spheres is an equivalence relation. Imi-

tating the techniques of Theorem 2.5, it is easily seen that the following holds.

Theorem 2.10. Let   (P,Ax,f)   and   (P,A2,f)   be relative  F-spheres of
(X, A, xq) . If there exists a connected 3P3'-manifold M c P containing Ax

and A2 such that M ndP is a connected FISf-manifold and f(M) - xq , then
(P,Ax,f) and (P, A2, f) are F-cobordant.

Given a relative ^"-sphere (P, A, f), the previous theorem allows us to

assume, up to a cobordism, that the frontier of A in P has a collar C in

P - int(A) and / is constant on C. Let Of(X, A, xq) denote the set of the

^"-cobordism classes of relative ^-spheres of (X, A, xq) . We can introduce

in Of"(X, A, xq)   (n > 2) an addition by setting:

[(Pi, A,, /,)] + [(P2, A2, f2)\ = [(P, A, /)]

where P is the oriented ^-pseudodisc obtained by gluing Pi and P2 by a

PL-homeomorphism g: Axf\dPi —► A2 n c*P2 , f = fli f2, and A is a top-
dimensional simplex chosen in an open bicollar N on Ai n dPi « A2 n dP2 in

P on which / is constant. As for the singular ^"-spheres, one can see that the

above operation is well defined if n > 2, and it induces in Of (X, A, xo) an

abelian group structure. The zero element is the class of the triple (A" , A , fo),

where A" is the standard ^-simplex, A is an w-simplex of the first barycentric

subdivision of A" , and fo is the constant map to Xq .

Remark 2.11. A relative ^-sphere (P,A,f) is cobordant to (A", A , fo),

that is, it determines the zero element of 9%(X, A, xq) , if and only if there

exists a triple (Q, D, F) where Q is an Fn+X-pseudodisc, D is an (n + 1)-

simplex of Q, and F: (Q, D) -> (X, Xq) is a continuous map such that:

(a) PcdQ, DnP = A;

(b) F(0Q - P) c A ; and

(c) (8Q-P,Dn(dQ-P), F) is a cobordism to zero of d(P, A, f).

This follows by using Lemma 2.7 and reasoning as in itself.

From the definition of ^"-cobordism between relative ^-spheres it fol-

lows that a cobordism between (Pi, Ax, f) and (P2, A2, f2) determines a

cobordism between the singular Fn-X -spheres <3(Pi, Ax, fx) and <3(P2, A2, f2)

of (A, xq) . This implies that one can define a map d: Of (X, A,xq) -»

ef_,(,4,xo) by setting d([(P, A, /)]) = [d(P, A, /)].
It is easy to prove the following.

Theorem 2.12. d is a homomorphism.

The groups Of (X, x0) (n > 2) appear as special case of Of (X, A, x0),
with A = {xq} . More precisely, we have

Theorem   2.13. There  exists  a  canonical  isomorphism   <j>: Of(X,Xo)    —>

e*-(X,{xo},xo).

Proof. Let (Z, D, f) be a singular ^-sphere of (X, Xo).  We consider the
o

relative ^-sphere (Z - D, D', j'/), where D' is an M-simplex of the collar
o

C on dD in Z - D on which / is constant. If (Z, D, f) is cobordant to
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(Z, D, f) and (W, W', F'/) is a cobordism between them, then W - int W'

realizes trivially a cobordism between (Z-VTD, D', f/) and (Z-D, D , f/). So

it makes sense to define a map <f>: &f(X, xq) -» Of (X, {xq} , Xo), by setting

ri([(Z, D,f)]) = [(!-£>, D',f/)].
An observation is necessary here, in order to simplify the proof. Let

(P,A,f) be a relative ^-sphere of (X, {xq} , Xq) . Being f(dP) = Xq , by
Lemma 2.7 there exists an ^"-cobordism (W, W', g) between d(P,A,f)

and (S"~x, D0, fo). Then the triple (W udP P, D'0, g U ■/), where D'Q is an

^-simplex such that D'0 n Sn~x = D0 and g(D'0) = xq , is a relative ^-sphere

cobordant to (P, A, f). Then for any element of Of (X, {xo}, Xo), we can

take a representative triple (P, A, f) such that dP — Sn~x. It follows that

it makes sense to define a map ¥: Of (X, {xq} , xq) —► Of (^, Xo), by setting

¥([(P,A,/)]) = ([(Puc*.3P,A,/)]), where 3P = Sn~x and / is the ex-
tension of / by the constant map to Xo. It is readily verified that *F is the

inverse map of <p. So </> is a bijection.

We only need to prove that cp is a homomorphism. Let (Z,, Di, f), i —

1, 2, be singular ^-spheres of (X, xq) , and let (Z, D, /) be a representative

element of [(I,, Dx, fx)] + [(Z2,D2,f2)]. It is easy to see that <£([(Z, D, f)])
o o

is represented by the triple (P, D, f), where P = (Zi - Dx) u (Z2 - D2) is
o

obtained by identifying a top-dimensional simplex of <9(Zi -Di) with a simplex
o

of <3(Z2 - D2), D is an appropriate n-simplex of P, and / = f U f2 . On the
other hand, (P, D, f) is also a representative element of </>[(Zi, Dx, f)] +

</>[(Z2, D2, f2)]. The proof of theorem is now complete.   □

Given a continuous map /: (X, A, xq) -> (Y, B, y0), we can define, for

each n > 2, a homomorphism 0^(/): Of(X, ^,x0) -> ©f^(T, 5,yo) by
setting

0^(/)([(P,A,g)]) = [(P,A,/os)].

Thus the process above described allows us to build a covariant functor O^

from the category of the pointed pairs of topological spaces to the category of

graded groups.

Theorem 2.14. The functor O^ satisfies the following:

(1) Homotopy axiom. If f , f2: (X, A, x0) -> (T, 5, y0) are homotopic,

thene^(f) = e^(f2).
(2) Dimension axiom, ©^({xo} , Xo) = 0.

(3) Exactness axiom. For any pointed pair (X, A,xq), there is an exact

sequence

■■■ -+ Of+,(X, A, x0) £ Of (A, xo) ± Of (X, xo) - ©f (X, A, x0) - •••
where, for simplicity, the letter i denotes the inclusion map (A, xo) c (X, xo)

and at the same time the induced map O^(Z) and j denotes the map obtained

by composing <p with the inclusion (X, {xo}, xo) c (X, A, xo).

Proof. (1) Homotopy axiom. Let F: (X x I, A x I, {xo} x /) —> (Y, B, yo)

be a homotopy between f and f2, and let (P, A, f) be a relative ^-sphere

of (X, A, xo). Then the triple (P x I, Ax I, (Fo f) x id) is a ^-cobordism

between (P,A,fxof) and (P, A, f2 of). So 0^(/,) = 0^(/2).
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(2) Dimension axiom. It follows immediately from the fact that a singular

^-sphere (Z, D, f) is cobordant to zero provided that / is constant.

(3) Exactness axiom, iod = 0. This follows readily by observing that a rela-

tive sphere (P, A, f) of (X, A, Xo) is a cobordism to zero of iod(P, A, /).

Ken c Im<9 . Let (P, A, g) be a cobordism to zero of i(L, D, f), then

we have (Z, D, f) = d(P, A, g).
j o i = 0. Let [(Z, D, f)] be an element of Of (A, xq) . Then

.     joi([(L, D, f)]) = [(1-b, D',f/)] e e^(X,A,xQ).
o o

Since /(Z - D) c A, the relative sphere (Z - D, D', //) is cobordant to zero.

Iter; c Im/. Let [(Z, D, /)] be an element of Kerj, and let (Q, A, f)
o

be a 0-cobordism of (Z - D, D', f/) = j(Z, D, f).   There exists an Fn-
o

pseudodisc P such that dQ — PuZ-Z) and F(P) c A . So the singular sphere

i(Pllc*dP,AnP, F/) is cobordant to (L,D,f).
d o j = 0.  Let (Z, D, f) be a singular ^-sphere of (X, xo). Then we

have doj([(l,D,f)]) = d([(L-b,D',f/)]) = [(dD,D'nD,f/)]. Since /
is constant on D, the last class is zero.

Kerd c Im;'. Let (P,A,f) be a relative sphere of (X,A,xo) such

that d(P, A, f) is cobordant to zero, and let (P, A, g) be a 0-cobordism

of d(P,A,f). The triple (Pl)P,A,fUg) is a singular sphere of (X, x0)

such that j([(PuP,A,fUg)]) = [(P,A,f)].   D

3. The functors ©^ and ©^

We now show that the groups ©f (X, A, xo)  are actually the homology
groups if F = W , while they coincide with homotopy groups if F = IFF? .

For the sake of simplicity, we will prove it only in the case of pointed spaces.

Theorem 3.1.  Of (X, xq) is isomorphic to H„(X, xo) for each n > 1.

Proof. Denote by 'Fj: ©f (X, Xo) -> Hn(X, xo) the map described as follows.

Let a be any element of ©f (X, Xo). Choose a representative triple (Z, D, f)
o

of a, and consider the singular cycle (Z - D, f) of (X, Xo) and its homol-

ogy class a'. If (Z, D, f) is cobordant to (Z', D', f) and (W,W',F)
is a cobordism between them, it is easy to see that the singular cycle (W -

o o

int W', F /) is a homology between (Z - D, /) and (Z' - D', f). Hence, we

may define *¥x by taking x¥x(a) = a'.

*¥x is onto. Let (Z , g) be a singular cycle of (X, Xo) and a' its homology

class. The polyhedron Z = ZUc*<9Z is a geometric cycle without boundary,

that is, a ^-sphere. Denote by g' the extension of g to Z by the constant

map and fix a top-dimensional simplex D in dZ . If a is the cobordism class

of (Z, c*D, g') we have xVx(a) = a'; that is, (l-(c*D)°, g'/) is homologous

to (Z , g). Let A = dZ - D and W = Z x / UAxI c * (A x I). Then we have

that W is a geometric cycle with boundary

W = Zx{0}UZx{l}Uflx/Uc*^x/)

= [Zx{0}Uc*(,4x {0})]U(Z x{l})

D[DxI\Jc*(Ax {l})Uc*(dDxI)].
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Define 6 on W to be g x id on Z x / and the constant map elsewhere. Thus

(W, G) realizes the required homology.

*Fi is a homomorphism. Let a, be an element of &f(X, Xq) , I = 1,2, and

(Z,, Di, f) a representative element of a,. Given an orientation-preserving

PL-homeomorphism h between two top-dimensional simplexes D\  and D'2
o o

of dDx and dD2 respectively, we let C = (Zi - Dx) Uh (Z2 - D2). So we

have that (C, gi/ U g2/) is a representative element of the homology class

4*1 (ai -l- a2).   Now consider the geometric cycle  W obtained by gluing the

cylinders (Z, - D,) x [0, 1] along dD\ x [i/2, 1]. The relative cycle (W, G),
where G = (gx/ x id) U (g2/ x id), realizes a homology between (C, gx/ U g2/)

o o

and the disjoint union of (Zi - Dx, gx/) and (Z2 - D2, g2/).
o

4*1 is injective. Let (Z, D, g) be a singular sphere such that (Z - D, g/)
o

bounds a geometric cycle (P, G), that is, dP = (L-D)UZ , where Z is a cycle

with boundary dD, and G/Z is constant. If F denotes the extension of G to

P' — P U c * Z by the constant map, it is easy to take a top-dimensional simplex

A in c*Z such that (P', A, F) realizes a cobordism to zero of (Z, D, g).   D

Theorem 3.2.  ©f^X, xo) is isomorphic to Tln(X, xq) for each n > 1.

Proof. Denote by y¥2: Tl„(X, xo) -» ©f5'(X, Xo) the map described as fol-
lows. Let /? be any element of Tln(X, xo). Choose a representative triple

(Sn , N, f) of B , where N is the north pole of S" . Without loss of generality,

we can suppose that / is constant on a top-dimensional simplex D0 containing

N. Having chosen an orientation of Sn , the triple (S" , Do, f) is a singular

sphere of (X, xo) and hence determines an element B' of &^^(X, xo). Ob-

serving that a homotopy between (Sn , D'0f) and (S" , D0, g) is itself a FfF-

cobordism between the same elements taken as singular spheres, we conclude

that B' does not depend on the choice of the representative element of B . It

follows that we can define *F2 by setting *F2(/?) = /?'.
*F2 is onto. Let (Z, D, f) be a singular sphere of (X, Xo) and cp: S" —>

Z an orientation-preserving PL-homeomorphism such that <p(D0) = D. In

order to show that the singular spheres (S" , Do, f ° cp) and (Z, D, f) are
cobordant, we consider a PL-homeomorphism h: (Sn xi, S"x {0}, S" x {1}) —»

(Cy, Sn , Z) (C9 is the simplicial mapping cylinder of cp) such that h/S*x{0} =

id and /t/^X{i} = <P ■ This PL-homeomorphism exists (see [2]). The map

g = [(f ° <p) x id] o h~x: C9 -> X agrees with fo cp and / respectively. Since

Cp is a ^S^-manifold with boundary S" UZ, let C = h(D0xI); then we have
that (C,,, C, g) is a ^S^-cobordism between (Sn , D0, focp) and (L,D, f).

4*2 is a homomorphism. To show this it suffices to observe that the sum

of the homotopy classes of (Sn , Z)0, /) and (S", Do, g) coincides with the
o o

homotopy class of (Sn - D0 UdDo Sn - D0, D, // U g/), provided we regard

(Sn - D0 U S" - D0, D) as (S", D0) up to PL-homeomorphisms.

*F2 is injective. Let [(S", Do, /)] be an element of Ker^, that is,

(Sn, Do, f )^S?-cobordant to zero. Then, using Lemma 2.7, we can extend

the map / to a PL-disc. Hence / is homotopic to zero.    □

By Theorems 3.1 and 3.2, we can affirm that the homomorphism *Y&>& & of
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Theorem 2.9 is the Hurewicz homomorphism. Then for any manifold class F

we have a factorization of the Hurewicz homomorphism. For, since F5C c

F c f , the following diagram is commutative:

e**(x,xo)       -       ef(x,x0)
(*)

©f(A\x0)

4. The groups ©f (AT, A, x0) and Of (AT, x0)

In this section we wish to give a group structure even in &[(X, A, Xo)

and ©f (AT, xo) so that the resulting groups enjoy the same properties that we

have already established for ©f (X ,A,x0) and ©f (X, x0). Let [(Z,, D,, J})]

(i= 1,2) be elements of ©f(A\x0). We may define Z = (Zi-l)i)u(Z2-Z)2)
and / = fXj U f2f: Z -> X as in the case n > 1.

The difficulty lies in the choice of D in the regular nbd of dDi in Z on

which / is constant.
Because dDi is not connected, neither are its regular nbds; therefore, the class

of (Z, D, f) generally depends on D and there are essentially two possible

choices of D. Then we need a rule to determine D.

Observe that, being Fo - S°, each ^-sphere is a finite disjoint union

of standard 1-spheres.   Let 5,  be the component of Z,  containing Z),  and
o

gi: [0, 1] —> Sj - Di be an orientation-preserving PL-homeomorphism. Then

we define [(Z, ,Duf)] + [(L2,D2,f2)] = [(I,D,f)], where D is chosen
containing gi (0).

It is easily checked that ©f (X, xq) is a group under the operation defined

above. It need not be abelian, because the choice of D depends on the order

of the addenda.
To give a group structure in ©f^Af, A, xq) , the trouble is again the choice

of the simplex A and it can be removed reasoning as in Qf(X, x0).

Thus we can define a new functor ©^ by setting QF(X, A, xq) =

{©f(X,^,x0)}„>i (S^(X,A,x0) = Qf(X,xo) if A = {x0}; it is sim-
ply a set otherwise). It satisfies the same properties of the previous one, but the

graded group &^(X, A, x0) need not be abelian.

In particular, ©^ is in fact the homology functor H if F = W, and it is

the homotopy functor n if F = FS? .

5. Functors ©^ different from H and n

An example of functor ©^ different from H and n can be obtained by tak-
ing F such that Fi = {Sx} and F2 is generated by a given orientable surface
of genus g > 1 and the standard 2-sphere under the property to be connected.

For, in this case, it is not too hard to show that Qf(X, xq) is abelian, so

©^ is not n. Moreover, if X is not connected, &f(X, xo) coincides with

Qf(K, xo) where K is the path-component of X containing xo. It follows

that ©f is not H.
The following example proves that there exist manifold classes F such that
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the groups ©f (X, Xo) are different from homology and homotopy groups even

if X is a connected topological space.
For each positive integer m , let F'(m) be a manifold class such that:

' Z = Sn if n < m;

.  _ Z is a finite disjoint union
LeF'(m)n&{ J     ,

of standard m-spheres      if n = m;

. Z = S°*Z',Z' eF'(m)m    if n = m +I.

Now we denote by F(m) the manifold class generated by F'(m) under the

property to be connected. An ^(ra)-sphere Z of dimension m + 1 satisfies

the following properties:

(1) Z is a connected polyhedron.

(2) If Z is not Sm+X , Z has at least two singular points.

(3) Z is a finite union of standard (m+1)-spheres such that the intersection

of any two of them is either the empty set or a finite set.

It is easy to prove the above properties by observing that:

(a) they trivially hold for the spheres of F'(m) of dimension m + 1.

(b) if Pi and P2 are F (m)-pseudodiscs of dimension m + 1, such that the

spheres P, u c * SP, (j = 1, 2) satisfy (1), (2), and (3), and dPx txf dP2, then
the sphere Pi U/P2 satisfies (1), (2), and (3).

We now show that if AT is a topological space such that nm(AT, Xo) ^ 0,

then the map *¥g>&,9-{my ®m2'(Ar, xo) —* ®m(m\X, *o) is not surjective.

Let q ^ 0 be any element of Q^(X, xo), choose a representative triple
(Sm, D, f) of a, and consider the singular F(m)-sphere (Z, D, g), where

Z = Sx0S2 (S,! w Sm, i = 1, 2) and g = fuf. The class [(Z, D, g)] does
not lie in Im^^ jjr(m). For, if (Z, D, g) is cobordant to (Sm, D', h) and

(W, W', F) is a cobordism between them, then Z' = WUc*ZUc' *Sm is an

(m + 1)-dimensional ^(m)-sphere, which contains, by (3), a PL-disc A such

that d A coincides with a path-component of Z and c, c' do not belong to
A. Then we can suppose A c W, and hence F/A is an extension of / to a

PL-disc. This contradicts the hypothesis on f.

The last assertion shows that the functor QF(m) is different from the func-

tors H and n. For, let X be an (m - l)-connected topological space (m >

1) such that Tlm(X, xo) is a finite group. By the Hurewicz theorem and

the commutativity of the diagram (*), the map ^^ t&(my &%^(X, Xq) —>

0m(m)(X, xo) is a monomorphism and it is not onto by the previous argu-

ments. Then, nTO(AT,xo) being a finite group, ©^(m)(Ar,xo) is isomorphic

neither to nm(AT,Xo) nor to Hm(X, x0).

We close this section observing that there is not an analogue of the Hurewicz

theorem for any two functors ©^, ©^ with F' c F.

From the above observation it follows that there is not a generalization of

the Hurewicz theorem to the functors ©^ , Q^W . This also does not occur
for the functors ©jr(m), ©^ . For, let X be an (m - l)-connected topological

space (m > 1) such that Tlm(X, Xo) # 0. As an immediate consequence of

the definition of F(m), we have ©p^AT, x0) « ©f(m)(X, x0) for any X

and for any h < m - 1, and it is not difficult to see that this relation holds

even if h = m - 1. Then, by hypothesis on X, &^{m)(X, x0) = 0 for any
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h < m - 1. Since ^Y&g ,<&: ©fp'(X, xo) —> @„\(X, xo) is an isomorphism and

*¥&2',&'{m)'- ®^(X, xo) -* ©m(m)(AT, Xo) is not surjective, the commutativity

of the diagram (*) assures that 4V(m),w' &m{m)(X, x0) -» Q%\(X, x0) is not

an isomorphism.
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