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A NOTE ON LIFTINGS OF LINEAR CONTINUOUS FUNCTIONALS

HORST OSSWALD

(Communicated by Andreas R. Blass)

Abstract. We show that for each bounded Loeb space (A, Lv(%), v) a func-

tional <p € Loo (A)' has a lifting if and only if <p G Li(A). If p 6 [1, oo[,

then every cp G LP(A)' has a lifting.

1. Introduction

In the work of Anderson [2], Hoover and Perkins [4], Keisler [6], Lindstrom

[7], Loeb [8], and others there exists a quite long series of so-called lifting theo-

rems, which provide a powerful tool in nonstandard analysis. Roughly speaking,

they describe close connections between external and internal identities. Typi-
cal and fundamental are the following lifting theorems (1) and (2) due to Loeb

[8] and Anderson [2].

Let (A, L„(2l), i>) be the Loeb space over an internal finitely additive measure

space (Q, 21, v), where the measure v. 21 -♦ *[0, oo[ is standardly bounded.

(1) A function /: A —> K (then f is external in general) is Lv (^-measurable

if and only if there exists an internal ^.-measurable function F: A -> *K with

* finitely many values such that F and f coincide up to a nullset and an in-

finitesimal error, i.e.,

P({f(a))#F(oj)} = 0.

This internal function F is then called a v -lifting of f.

(2) A function /:A-»R is v-integrable if and only if f has a v-lifting F,
which is Sv-integrable, i.e., for all H e *N \ N,

/ \F\dvzsO.
J{\f\>h}   ■

If F is an Su-integrable v-lifting of f, then EF w E/, where E on the left-
hand side denotes the expected value of F with respect to v and E on the

right-hand side denotes the expected value of f with respect to v .

With all these lifting results in mind, perhaps one may believe that in con-

nection with Loeb spaces liftings of separable valued functions always exist.

In this note we want to characterize the nonempty class of linear continuous

functionals on L^A, L„(2l), v) for which liftings do not exist. This result is

Received by the editors May 8, 1992.
1991 Mathematics Subject Classification. Primary 46B25.

© 1994 American Mathematical Society

0002-9939/94 $1.00+ $.25 per page

453



454 HORST OSSWALD

quite isolated; we do not have any applications, because the result is basically

negative. In general, liftings of linear continuous functionals could be used,

for example, to construct vector-valued Loeb measures and in connection with

distributions.
In [10] there exist examples for linear continuous functions on nonstandard

hulls of Banach spaces, which do not have liftings.

2. Linear continuous functionals on Lp(A, L„(2l), 0)

We work in a countably saturated nonstandard model of a standard super-

structure, which contains at least the real numbers as urelements. For undefined

notion and notation consult [1] or [5].

Following Loeb's work [9], the measure space (A, L„(2l), 0) over (A, 21, v)

in the introduction could be constructed as follows. A subset N c A (N may

be external) is called a v-nullset if inf{*v(A)\N c A G 21} = 0. Fix A G 21 and
B c A (B may be external). Then A is called a v-approximation of B if the

symmetric difference A/S.B of A and B is a ^-nullset. Then it is easy to see

that
L„(2l) := {B c A\B has a v -approximation} is a a -algebra,

and that 0 is well defined and er-additive if 0(B) := °v(A) for all B c A and
^-approximations A G 21 of B.

Now let p: 21 -> *E be an internal-signed finitely additive measure on 21. By

p±_ we denote the total variation of p, i.e., for all A e 21,

/>_l(/1) := sup{/>(B)|5 c ^ and B G 21} - inf{p(B)\B C ^ and B e 21}.

Assume that /? is standardly bounded. Then p± is also a standardly bounded

finitely additive measure on 21. Define p(B) := °p(A) for all 5 G £^(21) and
/?_i_-approximations A G 21 of B. Then (A, LPx(2l), p) is a signed standard

measure space.

Let L be the (internal) set of all internal 2l-measurable functions F: A —»*E

with *finite range. Define for all p e [0, oo[

5LP := {F G L| \F\" is S„ -integrable}.

Then the standard part °F exists P-a.s. for each T7 G SLP . Moreover, define

Lp := {/: A - R| \f\p is £ -integrable},

SLoo := {F G L\ \F\ is standardly bounded},

-£-oo := {/: A -> R\f is essentially bounded with respect to 0}.

As is the custom, two functions /, g G Lp are identified, if {a>\f((o) ^

g((o)} is a i>-nullset. If B is a Banach space, by B' we denote the topological

dual of B.
Fix p G [1, oc]. An internal linear function +(p: L —► *R is called a lifting of

? G L; , if p(°F) « >(F) for each F eSLp.

Theorem. (1) // 1 < p < oo, then each <p G L'p has a lifting.

(2) tp G L^ /?a5 a lifting if and only if <p G Lx. (Here we identify <p G L\
with its canonical image in L'[ = L'^ .)

Proof. (1) Let q be dual to p, where q = oo, if p = 1 . Fix (p e L'p . There

exists gy G L^ such that for each / g Lp

<p(f) = Eg9-f.
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By (1) and (2), g9 has a ^-lifting G9 G SLq . Define for all F G L

+<p(F) ■= VGy-F.

Fix F G SLP . By Holder's inequality, Gv ■ F is an SV-integrable ^-lifting of
g9 - f. By theorem (2) we obtain

°(+<p(F)) = Eg9-°F = <p(°F).

Thus, +<p is a lifting of <p .
(2) Fix tp G L'qq . It is well known that there exists a finitely additive measure

t: L„(2l) -► R such that

t{B) = 0,      if 0(B) = 0

and

¥»(/) = J fdx    for all/G Loo

(see Hewitt-Stromberg [3]). Suppose that +<p is a lifting of tp , i.e.,

+tp(G) « p(°<7)     for all G G SLoo .

Define an internal finite content p: 21 -> *TR by setting />(/4) := +p(l^). Fix

B G L„(2l). Then there exists a v-approximation A G 21 of B. Since "ty is a

lifting of ^ , we obtain

p(A) = +tp(U)K<p{U) = x(B)-

So if i/(y4) « 0, then p±(A) « 0. Hence, by saturation,

lim   >x(^) = 0.
°i/(^)-»0

It follows that each i/-nullset is also a /?x-nullset; thus, for each B e L„(%),
p(B) — -r(B). Since p is absolutely continuous w.r.t. 0, by the Radon-

Nikodym theorem there exists a g G L\ such that for each / G Loo

j fdp = j f-gdu.

Therefore, for each / G Loo ,

<p(f) = J fdx = J fdp = Ef-g.

It follows that g and <p and be identified; thus, <p G L\ .
Fix g e L\ . Then g has a i^-lifting G e SLx . Define for all F G L

>G(/;'):=EJF.G.

It follows that for each F G SXoo , by the identification of g with the functional

(Pg-.Lco^R, f^Ef-g,

+<pG(F)*E°F-g = (pg(°F).

This shows that +<pc is a lifting of (Pg = g .   □
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