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COMPACT SUBGROUPS OF LIE GROUPS
AND LOCALLY COMPACT GROUPS

KARL H. HOFMANN AND CHRISTIAN TERP

(Communicated by Roe Goodman)

Abstract. We show that the set of compact subgroups in a connected Lie group

is inductive. In fact, a locally compact group G has the inductivity property for

compact subgroups if and only if the factor group G/Gq modulo the identity

component has it.

1. The basic ideas

For a topological group G let ffG denote the set of compact subgroups of

G partially ordered by inclusion C . In the structure theory of Lie groups the

following facts are frequently used: Suppose that G is a Lie group with finitely

many components.

Theorem A. Every member of WG is contained in a maximal member of ^G.

Theorem B. Two maximal members of WG are conjugate.

Theorem C. For any maximal member K e WG, there is a submanifold E

diffeomorphic to R" for some n = 0, 1,2,... such that (k, e) i-> ke: K x E -»

G is a diffeomorphism.

Theorems A and B constitute analogs of Sylow 's Theorems for compact sub-
groups. Textbooks tend to shun these theorems because of their difficulty—one

presumes. Not even Bourbaki [2] presents them in his first nine chapters. A

canonical source is the book by Hochschild [7].

Let Go denote the identity component of a topological group G. The theo-

rems above generalize at once to locally compact groups G with compact factor

group G/Go as soon as one accepts the fact that these groups are projective lim-

its of Lie groups [11, p. 175; 4]. This generalisation is much easier than the

proof of any of Theorems A, B, and C. All the information accumulated on Lie

groups has not helped to provide any shortcuts. A fresh look may be useful.

Clearly, via Zorn's Lemma, Theorem A is a direct consequence of
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Theorem 1.1. In a Lie group G with finitely many components, the partially

ordered set %?G is inductive.

This means, we recall, that for any tower J7~ C &G the subgroup IJJ7" is

compact.

Typical examples of Lie groups G in which i^ fails to be inductive are the

discrete groups

(i)  A! = ^Lz/Z where ^-Z = {m/pn :m, n e 1}.

(ii)   A2 = (Z/pZ)(N), the countably infinite vector space over GF(p).

(iii)   A3 = ®„eN 1/PnT- for a countable family of pairwise different primes

Pn-

Using Theorem 1.1, the second author shows elsewhere [13] thatjor a Lie

group G the set %?G is inductive if and only if G does not contain a discrete

subgroup isomorphic to one of Ai, A2, or A3. An illuminating example of

a nondiscrete locally compact group G for which WG is not inductive is the

additive group Qp of p-adic integers.

Actually, Theorem 1.1 is better than Theorem A. To see this let us consider

the two properties of a topological group G:

(MG) Every element of ffG is contained in a maximal one.

(lG)  WG is inductive.

By Zorn's Lemma, (1^) implies (MG). If H is any closed subgroup of G,

then (IG) implies (I#). But (Mc) does not imply either (IG) or (MH). In §4

we shall prove

Example 1.2. There is a countable (discrete) group G = A4 with a subgroup H

such that the following conditions are satisfied:

(i)   H S Z(2°°). In particular, (IG) and (M#) fail.
(ii) Every finite subgroup is cyclic and is contained in a maximal finite

subgroup, i.e., (MG) holds.

There is no a priori reason why a connected Lie group, say, could not con-

tain a discrete subgroup isomorphic to A„ . After all, PS1(2, R) contains the

discrete subgroup PS1(2, Z), a complicated group which is isomorphic to the

free product Z(2) * Z(3) of cyclic groups of order 2 and 3 (see [12, p. 187])

whose commutator group is free [12, p. 201] and, thus, also contains a free

group of countably many generators. But Theorem 1.1 prevents the occurrence

of a discrete subgroup isomorphic to A„ for n = 1, 2, 3, 4 in a connected Lie

group.

We shall provide in this note a proof of Theorem 1.1. This will also provide

a new proof of Theorem A. Special cases of Theorem B shall come out in the

wash. We shall not offer a new proof of Theorem B in its full generality nor of

Theorem C. In fact, for a proof of a more comprehensive result in the direction

of Theorem 1.1 we shall use Theorems A, B, and C. Nevertheless, one might

compare our basic line of reasoning with the rather hard textbook passages of

pp. 172-186 in Hochschild's book [7].
In any event, one needs a fixed point theorem of sorts, and we shall use one

for a proof of Theorem 1.1. The difference is that here we use the idea of

automorphism groups of convex cones in a vector space. Convex cones and

compact groups go well together. (This was in fact used by the first author in a

proof of the Theorem of Peter and Weyl [8].)
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Indeed, let E denote a finite-dimensional real vector space and C a closed

convex pointed cone with E = C - C. A linear automorphism g of E with

gC = C is called an automorphism of C. If v is any vector in the interior

of C and G C Aut is is any group of automorphisms then the orbit Gv is

contained in the interior. If G is compact then normalized Haar measure on

G allows us to find the barycenter b = JGgvdg of Gv and its invariance

shows that Gb = {b} . Thus one has the elementary observation:

Lemma 1.3(a). Every compact group of automorphisms of a closed convex pointed

cone in a finite-dimensional vector space has a fixed point in the interior of the

cone.

However, the following converse holds, too (see [6]):

Lemma 1.3(b). If v is a point in the interior of a closed convex pointed cone C

in a finite-dimensional vector space E— C-C, then the isotropy group (AutC)v

of all automorphisms of C fixing v is compact.

Proof. The outline of a proof is readily understood: Let E — C - C and let

C* = [co e E* : Civ e V) (co, v) > 0} be the dual cone which has interior and

is pointed. The group AutC acts by adjoint action on E* via (g • co, v) =

(co, g~xv), and (AutC)„ leaves the hyperplane H = {co e E* : (co, v) = 1}

invariant as a whole. Then it leaves the closed convex hull of (// n C) U

-(/7 n C) invariant, which is—as is readily checked from the fact that C*

has interior points and that H n C* is compact—a compact neighborhood of

0 in E*. Thus (Aut C)v, a closed subgroup of Aut E, acts faithfully and

equicontinuously on E* and is, therefore, compact.   □

Lemma 1.4. If G denotes the automorphism group of a closed convex pointed
cone C in a finite-dimensional vector space E = C - C, then every maximal

compact subgroup K of G is an isotropy group of G at a vector v in the interior

ofC.
Proof. If AT is a maximal compact subgroup of G, then it has a fixed point

v in the interior of C by Lemma 1.3(a). The isotropy group Gv is compact

by Lemma 1.3(b), and it contains K. The maximality of AT then shows AT =

Gv.   a

Notice that we are not claiming that every isotropy group Gv is a maximal

compact subgroup of C. In fact, only the next lemma, which is now easily

proved, establishes, via the Lemma of Zorn, the existence of maximal compact

subgroups. This is the main lemma which is at the core of our argument.

Lemma 1.5 (Main Lemma). Let G denote a topological group acting linearly

and continuously on a finite-dimensional real vector space E, leaving a closed

convex pointed cone C with E = C - C invariant.

(i) If 3 denotes any upwards directed subset of WG then there is a vector v
in the interior of C such that the isotropy group Gv at v contains all members

of 2.
(ii) If G = Aut C (acting by the natural action) then WG is inductive.

Proof, (i) For each AT e WG the set of fixed points under AT, say Fix(AT), is a

vector subspace of E, meeting the interior of C in E by Lemma 1.3(a). If
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ATi C AT2 then Fix(AT2) C Fix(ATi). If 21 C ^G is an upwards directed set then
Fix(^) = {Fix(AT) : AT e 2} is a filterbasis of finite-dimensional nonzero vector

spaces. For reasons of dimension every such filter basis contains a smallest

element Fix(AT), AT e 2. Find v 6 Fix(AT) in the interior of C in view of

Lemma 1.3(a). Then, since Fix(AT) C Fix(H) for all H e 2, the isotropy
group Gv of v contains each H e 2 .

(ii) In this case Gv is compact by Lemma 1.3(b) and, thus, is an upper bound

of 2 in % .   a

Definition 1.6. We shall call a topological group G an ICG-group if the partially

ordered set WG of compact subsets is inductive.

The following remarks are rather obvious.

Lemma 1.7. (i) If G is an ICG-group then every closed subgroup is an ICG-group.

(ii) If N is a compact normal subgroup of G then G/N is an ICG-group if

and only if G itself is an ICG-group.

2. Linear Lie groups

A first typical application turns to case of the vector space Hom(^, %?) of

all endomorphisms of the real or complex ^-dimensional Hilbert space. We

organize our thoughts by generalizing slightly.

Recall that a real or complex C* -algebra is an involutive Banach algebra

satisfying \x*x\ = \\x\\2 for all x. The set HomfZ,^) is a prototypical

C* -algebra.
Let A denote a finite-dimensional real or complex C* -algebra with identity

and G its group of units. The group U = {g e G : g~l = g*} of unitary

elements is contained in the unit ball of the finite-dimensional real vector space
Hom(A, A) since for a unitary element g we have ||g||2 = ||g*g|| = 1 . Since

U is defined by the equation g*g = 1 , it is closed in Hom(^4, A) and, thus,

is a compact subgroup of G. The set Ah — {a e A : a* — a] of all hermitean

elements is a vector subspace of A, and the group G acts on it linearly via

g•a = gag* .

An element x e A is called positive if it can be written x = a*a (which

is tantamount to saying that its spectrum is contained in the nonnegative real

axis). The set of all positive elements is a closed convex pointed cone C in Ah

such that An = C - C and that G • C = C.
Given that every positive element x in a C* -algebra has a positive square

root y , and given the viewpoint of § 1, the following is now elementary:

Lemma 2.1. (i) If x is any positive element and y a positive square root, then

y~xGxy c U. In particular, Gx is compact.

(ii) Every compact subgroup of G is conjugate to a subgroup of U.

(iii) U is a maximal compact subgroup of G and all maximal subgroups of

G are conjugate.

Proof, (i) An element k is in Gx iff kxk* = k • x = x . This is equivalent to

x~lk~lx = k*. In view of x = y2 this means y2k*y2 = k~x , and because of

y = y* this implies

(y-'ky)-1 = y-lk~ly = yk*y'x = ((y-x)*ky*)' = (y~xky)*.

Thus y~xky e U.
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(ii) Suppose that AT is a compact subgroup of G. By Lemma 1.2 there is a

vector v eintC fixed by AT. By (i) there is a w e C such that w~lGvw C U.
Hence w~lKw C w~lGvw C U.

(iii) If t/ C AT with AT as in the proof of (ii), then U C AT C wUvj-{ . Since
(7 is a Lie group, equality follows and we have U = K. Thus U is maximal

compact. The remainder then follows from (ii).   □

Proposition 2.2. Let A denote a finite-dimensional real or complex C*-algebra

with identity and G its group of units. Then G is an ICG-group.

Proof. Every tower 2 in WG is bounded by an isotropy group Gv for a v e

intC by Lemma 1.5(i). But Gv is compact by Lemma 1.8(i).   □

A topological group G is called a linear Lie group if it is isomorphic (alge-

braically and topologically) to a closed subgroup of some group Gl(«, R) or

G1(«,C).

Corollary 2.3. Every linear Lie group is an ICG-group.

Proof. By Lemma 1.7(i) it suffices to note that all full real or complex linear

groups are ICG-groups. But that follows at once from Proposition 1.9 with the

C* -algebra A of all n x n real or complex matrices.   □

As mentioned above, not all Lie groups are ICG-groups, but we shall show

that all those with finitely many components are.

We note that the basic facts on C*-algebras used above are elementary linear

algebra in the case of full matrix algebras.

3. Lie groups and locally compact groups

In this section we return to some traditional methods in the structure theory

of locally compact groups and, combining these with the results obtained so far,

arrive at the main results.

Lemma 3.1. Let G be a topological group containing a normal, open subgroup

TV such that TV and G/N are ICG-groups. Then G is an ICG-group.

Proof. Since TV is open, it is also closed. Moreover, G/N is a discrete group.

Let n:G -* G/N denote the quotient map of G onto G/N, and let 2 be a

tower of compact subgroups of G. Since N is an ICG-group, [JK€& K n TV is

compact. Now, TV is open and closed. Hence, setting C = (J 2, we have

(J AT n TV = ((J^) n TV = C n TV

This shows that C n TV is a compact, open, and normal subgroup of C. Now,

G/N is an ICG-group. Thus \J{n(K): K e 2} = n([J2) is compact. Since

G/N is discrete, this set is finite and equals n(C). In view of C/(C n TV) =

CN/N = n(C), we conclude that C/(C n TV) is finite, too. Since we have

already seen that C n TV is compact, we finally infer that C is compact.   □

Note that the converse fails: Take the discrete groups G = Q, TV = Z.
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We will now take a closer look at Z-groups, i.e., locally compact groups which

are compact modulo their center. The following result, which is due to Grosser

and Moskowitz, is crucial for the study of Z-groups. For a proof see [5, Corollary

2 of Theorem 4.4].

Lemma 3.2. Let G be a locally compact group, and let Z denote the center of

G. Assume that G/Z is compact. Then there exist closed normal subgroups

V = Rn and H and TV of G such that G = V x H, TV is compact and open
in H, and H/N is abelian.   □

Lemma 3.3. Let G be a Z-group, and let Z denote the center of G. Then G

is an ICG-group if and only if Z is an ICG-group.

Proof. If G is an ICG-group then Z is also an ICG-group (Lemma 1.7.i).

Conversely, assume that Z is an ICG-group. By Lemma 3.2, there exist closed

normal subgroups V, TV, and H as in Lemma 3.2. Since every compact

subgroup of G is contained in H, it follows that G is an ICG-group if and

only if H is an ICG-group. We have Z = V x Z(H), whence Z(H) is an

ICG-group since Z is an ICG-group. Moreover, G/Z = H/Z(H), and thus

H/Z(H) is compact. We have Z (H) j(TV n Z (H)) = (N-Z(H))jN. Since

Z(H) is an ICG-group and NnZ(H) is compact, Z(H)/(N n Z(H)) and

thus (N-Z(H))/N is an ICG-group by Lemma 1.7(h). Hence, N • Z(H) is

an ICG-group by Lemma 1.7(H) again. Now H/ (TV • Z(H)) is compact, and

TV • Z(H) is an open normal subgroup of H. Then H is an ICG-group by

Lemma 3.1.   □

Lemma 3.4. Let G be a topological group containing a closed, normal subgroup

TV such that G/N is an ICG-group. Assume that every closed subgroup H of G
which contains TV and has compact factor group H/N is an ICG-group. Then

G is an ICG-group.

Proof. Let n:G —> G/N denote the quotient map, and let 2 be a tower of

compact subgroups of G. Then n(2) is a tower of compact subgroups of

C7/TV. Since G/N is an ICG-group, there exists a compact subgroup AT of

G/N such that \Jn(2) C AT. Now n~l(K)/N is isomorphic to K and, thus,
is compact. By hypothesis, n~x(K) is an ICG-group. Since 2 is a tower in

n~l(AT), we conclude that \J2 has compact closure in n~l(K) and, therefore,

in G.   U

Proposition 3.5. Let G be a locally compact group, and let Z denote the center

of G. If Z and G/Z are ICG-groups then G is an ICG-group.

Proof. This is immediate from Lemmas 3.3 and 3.4.   0

Lemma 3.6. Every connected semisimple Lie group G is an ICG-group.

Proof. Let q denote the Lie algebra of G and Ad: G —> Aut(g) the adjoint
representation of G. Then Aut(g) is a closed subgroup of Gl(g) whose identity

component is Ad(G), since G is semisimple. Hence, Ad(C7) is a linear Lie

group and, therefore, an ICG-group by Corollary 2.3. The kernel of Ad is the

center Z of G. Hence, G/Z = Ad(Cr) is an ICG-group. But Z is a discrete

finitely generated abelian group and, thus, is clearly an ICG-group. Hence, by

Proposition 3.5, G is an ICG group.   □
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We now deal with the radical.

Lemma 3.7. Suppose that TV is a normal subgroup of a locally compact group G

such that G/N is compact and TV is a vector group. Then G is an ICG-group.

Proof. We know (e.g., from [3, Chapter VII, §3, no. 2, Proposition 3, p. 30], or

from [9, p. 30]) that G is isomorphic to a semidirect product R" x AT with a

compact group AT. Since G has a compact normal subgroup modulo which it

is a Lie group, it is no loss of generality to assume that G, hence AT, is a Lie

group. The kernel of the action of AT on R" is normal in G and compact; we

may again assume that it is trivial. Then we may identify AT with a subgroup

of O(n), and by Lemma 1.7(i) we may assume that G — R" x O(n). However,

this group is isomorphic to a closed subgroup of Gl(« + 1, R); for we have

G-{(o    l) Ae0(n)andv^R"} .

where we identified R" with the vector space of (rtxl)-matrices. Thus Corollary

2.3 implies the assertion.   □

Now we are ready to deal with connected Lie groups.

Theorem 3.8. Every connected Lie group is an ICG-group.

Proof. We consider the radical R of G and prove the assertion by induction

with respect to the dimension of R. If dim R = 0, that is, R = {1}, then

the assertion is true by Lemma 3.6. Now suppose that the assertion has been

proved for radicals with dimension < n and that dim R = n . If o is the last

term of the commutator series of r, then o is a characteristic ideal of r and

thus is an abelian ideal of q . Then expo is a closed connected normal abelian

subgroup. Let A denote a connected closed nonzero abelian normal subgroup

A of G of minimal positive dimension. By induction hypothesis, G/A is an

ICG-group. If A contains a nonzero torus subgroup, then, since this subgroup
is characteristic in A , by the minimality of A , the group A itself is a torus

and is therefore central in G. In this case G is an ICG-group by Lemma

1.7(h). Now assume that A has no torus subgroup. Then A is a vector group.

Let 2 be an up-directed family of compact subgroups. Now \JCeSl CA/A is

a compact group K/A. Then AT is a subgroup of the type discussed in the

preceding Lemma 3.7 and, thus, is an ICG-group. Hence, the union of 2 is

contained in a compact group, and thus G is an ICG-group. The induction is
complete.   □

Corollary 3.9. If G is a locally compact group such that G/Go is compact then
G is an ICG-gorup.

Proof. Since G contains a compact normal subgroup modulo which it is a Lie

group, in view of Lemma 1.7(h) we may assume that G is a Lie group. Now

Go is an ICG-group by the preceding proposition. Now Lemma 3.1 proves the
rest.   □

In particular, Corollary 3.9 proves Theorem 1.1 of the introductory section.

For our final result we shall use nontrivial facts in the following lemma. The

background for these results is dispersed in the literature.   For Theorems B
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and C we refer to Hochschild's book [7, 180ff]. The referee points out that

a forerunner is contained in [10]. After the paper was written it came to our

attention that Bagley, Wu, and Yang had independently proved part of a slightly

more general version of part (iv) in [1, Lemma 1.8].

Lemma 3.10. Suppose that G is a locally compact group such that G/G0 is

compact. Then the following conclusions hold:

(i) Every compact subgroup of G is contained in a maximal compact sub-

group K, and every such satisfies G = GqK = AT Go ■

(ii) If K is maximal compact in G then ATo = AT n Go and this group is

maximal compact in Gq .
(iii) If K is a compact subgroup satisfying G = GoAT such that Kq is maxi-

mal compact in Go then K is maximal compact in G.

(iv) If H is a closed subgroup of G containing Go and K is maximal

compact in G then H n AT is maximal compact in H.

Proof. The group G contains a compact subgroup TV such that G/N is a Lie

group. Theorems A, B, and C generalize quickly to our present case. We shall

notably use Theorem C and conclude that for a maximal compact subgroup AT

of G there is a subspace E C G homeomorphic to R" such that (k, e) i->
ke: K x E —> G is a homeomorphism. Every element g e G, therefore, has a

unique decomposition g = kgeg with kg e K and eg e E.

(i) is a ready consequence of these observations.

(ii) Clearly, by the preceding remarks, Go = K0E. If k e K n Go then
k = koe for Icq e Ko and e e E, and thus 1 = (k~ikr))e proving k~lk0 = 1,
i.e., k e K0 . Since trivially AT0 C AT n Go, we have Ao = AT n Go .

Now Go/A'o ~ E is homeomorphic to a euclidean space. We shall show that

ATo is maximal compact in Go: Let C denote a maximal compact subgroup

of Go containing ATo; then Go = CE (topologically direct), and thus Go/ATo

is homeomorphic to C/Kq x E which is homeomorphic to a euclidean space

only if C = AT0 .
(iii) Suppose that AT C C C G with a compact group C. Then C =

AT(C n E). Thus c e C can be written c = ke with e e Go. Now e =

k~lc e C n G0 . But AT0 C C n G0 and C n G0 is compact. But AT0 is maximal

compact by hypothesis. Hence, C n G0 = AT0 . Thus e e Kq Q K, and therefore

c — ke e K . We have shown that AT is maximal compact in G.

(iv) Since G0 C H, we have H = (AT n H)E. (Indeed the right side is in the

left, and if h = kheh is in H then kh = he^x e HG0 = H, i.e., kh e K n H.)
Thus H = (AT n H)H0 and AT0 = AT n H0 is maximal compact in H0 by (ii).

Hence AT n H is maximal compact in H by (iii).   □

Our conclusive result, reducing the classification of locally compact ICG-

groups to that of zero-dimensional locally compact ICG-groups, is the following:

Theorem 3.11. For a locally compact group G the following conditions are equiv-

alent :

(1) G/G0 is an ICG-group.
(2) G is an ICG-group.

Proof. (1) implies (2). Suppose that 2 is a directed set of compact sub-

groups. Then \JD€& DG0/G0 is a compact group, say H/G0 , since G/G0 is an



COMPACT SUBGROUPS OF LIE GROUPS 631

ICG-group. Then H is an ICG-group by Corollary 3.9. It follows that \J2 is
contained in a compact group. Hence, G is an ICG-group.

(2) implies (1). Let 2 be a tower of compact subgroups of G/Gq , and let

n: G —> G/Go denote the quotient map. We want to show that the closure of

\J2 is compact.
Now, n~l(K)/Go is compact for every AT e2 . Hence, by Lemma 3.10(i),

there exists a maximal compact subgroup M of 7t_1(AT).

If we set Mc := n~l(C) n M for C e 2 with C C AT then
(*)      Mc is maximal compact in n~x(C) by Lemma 3.10(iv) and

the function C •-► MG is order preserving.

It is our next aim to construct an order-preserving function AT h-> MK:2 —►

9g such that Mk is maximal compact in 7r~'(AT) for every K e 2. We will

do this with the help of Zorn's Lemma.
Let J denote the set of all order-preserving functions AT >-* MK:2' -* %?G for

some initial section 2' of 2 such that Mk is maximal compact in ft-1 (AT)

for all AT e 2'. Remark (* ) shows that J is not empty. The set J is partially

ordered by restriction, i.e., a function cj> precedes a function ip if it is a re-

striction of \p . With this order, J is inductive and, thus, contains a maximal

element, say C i-» C'K:2' -* &G . We claim that 2' = 2 . By way of con-
tradiction assume that 2' ± 2. There is at least one element L e 2 \2'.

Since 2' is an initial section, we have C C L for all C e 2' and, thus,

M = Uce^' Mc' Q n~l(L). Since G is an ICG-group, M is compact. By
Lemma 3.10(i), there exists a maximal compact subgroup Ml of L which sat-

isfies both n(ML) = L and M C ML. Set 2" = {C e 2 : C£ L} and

Mc = n~l(C)C\ML for all C e 2" . By Remark ( * )jhe group Mc is max-

imal compact in n~l(C) for all C € 2" , and C i-> Mg is order preserving.

Moreover, for all C e 2' we have Mc Q M C A/j, and, thus, AfC' Q ^c •

The maximality of Mc then shows equality. Hence, C i-» Mc:2" -» ffG is
a proper extension of C »-*■ Mc : 2' —► ^c. This is a contradiction to the

maximality of the latter function.

Thus, there exists an order-preserving function AT >-> Mk'.2 —► ^ which

assigns to each AT e 2 a maximal compact subgroup Mk of 7r_,(AT). Since

G is an ICG-group, U/re^ Mk has compact closure M in G. Now, 7r(Af) is

compact, and \J2 is contained in 7r(M) since n(MK) - K for AT e 2 by

Lemma 3.10(i). This proves that 'ic/Go is inductive.   □

4. An example

We set N0 = {0, 1,2,...} and let X denote an alphabet {xx, x2, ...} of

distinct letters. Now we define G to be the group

(xx, ... ; xx = 1, xn+x = xn , n = 1, 1, ...)

generated by the Xj subject to the relations stated. We shall also use an addi-

tional letter xo by setting x0 = x\. We let H denote the subgroup generated
by all x2, n = 1,2,.... Writing temporarily y„ = x2 we obtain different

generators of H subject to the relations y2 = 1 and y2+x - y„. This remark

shows that H is isomorphic to Z(2°°). The partially ordered set WG of finite
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subgroups of G, due to the presence of H, is not inductive, and in H there are

no maximal elements of WG whatsoever. However, we shall prove the following

proposition.

Proposition 4.1. (i) Every finite subgroup of G is conjugate to a subgroup of

some (x„), n e N.

(ii) Each (x„) and every one of its conjugates is maximal in ffG .

In particular, every element of §g is contained in a maximal element of 3^.

The group G, therefore, is an example of a group labelled A4 in Example 1.2.

We shall now prove Proposition 4.1 in several steps.

Proof. We set S = HOX.
(a) Since x2m e H and x2m+x = xnu = ux„ for all n e N0, m e I and

some u e H, every element g e G can be written in the form

g = ux--un,        Uj eS,    j = 1, ... , n.

If x =e X and h e H then xh = hx if and only if h e (x)
Let #M denote the number of elements in a finite set M. We shall associate

with each 1 ̂  g e G two natural numbers:

n(g) = min{« e N : (3ux, ... , u„ e S)g = ux---u„},

(.(g) = min {( e N : (3w. ,...,«„ e 5")g = U\ ■■ -u„,

audi = #{; = 1, ... , n: uj eX}}.

We note that ((g) < n(g) < 2((g) + 1 and write n(l) = ((I) = 0.
(b) We shall call an element g e G reduced if it cannot be written in the

form g = ag'arx with a, g' e G and n(g') < n(g). Every element is the

conjugate of a reduced element. We will deal mostly with reduced elements.

(c) Claim: If g = U\ ■ • ■ un(g) is reduced then the configuration

"((g) >\,uxeH, and un(g) e H"

is not possible.   Proof:  Assume we had this configuration.   Set a — u~xg),

^i = un(g)ux e H c S, and Vj■ = Uj e S for j = 2, ... , n(g) - 1.   Note

g — a(vx ■ ■ ■ vn(g)_x)a~x. Then g would not be reduced. Contradiction.

(d) Claim: If g = ux ■ ■ ■ u„(g) is reduced, ((g) > 2, «i e H, u„(g) e X then
u2 e X, and if also ux e (un^) then u2 ^ u„^g). (A dual assertion holds for

Ui e X and un(g) e H.) Proof: If ux e H then u2 ̂  H by the definition of

n(g). Assume u2 = un^g] e X and ui e (u2) = (un(g)). Then set a = u~,x,,

Vi = UiU2 e H c S, Vj = Uj+i e S for j = 2, ... , n(g) - 2, and note

a(vx ■ ■ ■ vn{g)_2)a-x = u~xg)u2uxu3 ■ ■ ■ un(g)_xun(g) = g.

Thus g would not be reduced. Contradiction.

(e) Claim: If g = ux---u„(g) is reduced, ((g) > 2, ux, un(g) e X then

"i 7^ un(g) ■ Proof: Assume that ux = u„^g) = a e X. Set Vj = Uj+X e S for

j = 1, ... , n(g) - 2, vn(g)_x = u2n(g) e H c S. Then g = avx ■ ■ ■ vn(g)_xa~x

and this element would not be reduced. Contradiction.

(f) Claim: If g — ux ■ ■■ un(g) is reduced and the order o(g) of g is finite,

then g e (x„) for some n e TV. Proof: The assertion is clear for g e H. Thus
suppose ((g) > 1. By (c) we have the following cases:
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Case 1.  ux e H, un(g) e X .

Case 2. ux e X, un(g^ e H.

Case 3. ux, un^g) e X.
Case 2 is analogous to Case 1. In Case 1 there are subcases:

Case 1(a). ux $. (un^g)). Then for all natural numbers p we have

gP - UX ■ ■ ■ Un(g)Ux ■ ■ ■ Un(g)UX.Un(g)

and ((gp) — p((g), since ux and u„(g) do not commute and no reduction of

the overall number of letters from X is possible. This event is ruled out by

O(g) < oc.

Case 1(b). ux e (un(g)). We now assume ((g) > 2. Then by (d) we have

u2 - x ^ y = w„(g) with x, y e X. Now

gP = UX ■ ■ ■ Un(g)UX ■ ■ ■ Un(g)UX.Un{g)

= ui---un(g)-iUiyxuz---un(g)-iU\yxui.y,

whence ((gp) = p((g) since x and y do not commute and no reduction of

the overall number of letters from X is possible. This is inconsistent with

o(g) <co.

Case 3. By Claim (e) we know ui ^ un(g), whence ((gp) — p((g) follows

as in the previous cases. Thus we are left with Case 1(b) and ((g) = 1. This

means g = hxn with h e (x„) and, thus, g e (xn). This completes the proof

of Claim (f).
(g) Claim: The only element of order 2 in G is Xo- x2 , and this element is

central. Proof: Since x0 commutes with all xn , it is central in G. Let 1 ̂  g e

F, g2 = 1. By (f) there is an n eN and a e G such that aga~l e (xn). The

only element of order 2 in (xn) is x0 . Hence, aga'x = xo , i.e., g = a~lx0a .

Thus g = Xo ■
(h) Claim: Let E be a finite subgroup of G. Then E is cyclic. Proof: By

induction on \E\. So assume that E is a noncyclic subgroup of minimal order.
By (f) the group £ is a 2-group, and by (g) and our assumption it properly

contains {1, Xq] ■ Define a surjective morphism n:G -* (z) * G onto the free

product of a group of order 2 and G by setting n(xo) = 1, n(xi) = z, and

n(xn+i) — xn for n = 1,2,.... We observe that n is well defined and has

{1, Xo} as kernel. Since x0 € E, we record that |7t(is)| = \E\/2 < \E\. As a
finite subgroup of (z) * G the group n(E) is contained either in a conjugate

of (z) or in a conjugate of G. In the first case, n(E) has order 2 and so E

has order 4 and is cyclic by (g). This contradicts our assumption that E is

not cyclic. Thus w.l.g. we assume n(E) C G. Because of \n(E)\ < \E\ and

the minimality assumption on the order of E, we conclude that n(E) is cyclic.

Thus E = (g, xo) for some g e G. By (f) the group (g) is a cyclic 2-group.
Then by (g) some power of g equals xo . Hence E = (g), a contradiction to

our assumption on E. This proves Claim (h).

With the proof of this claim we are done with part (i) of Proposition 4.1.

The next claim will complete its proof.

(i) Claim: The groups (x„) are maximally finite. Proof: Suppose that (x„) C

F where F is a finite subgroup of G. By (h) there is an a e G and a p e N

such that F c (axpa~x), and for order reasons we have n < p . We must show

n = p, because then for order reasons (x„) C F C (axpa~l).  Thus assume
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n < p . Then a~lx„a is contained in a proper subgroup of (xp). The largest

proper subgroup is generated by x2. But then a~xxna e (x2) C H. Now let

P - *m=i(zm) denote the free product of cyclic groups of order 2. There is a

surjective homomorphism </>:G —► P defined by 4>(Xm) = 1 for m e No and

<p(xm) = zm for meN. Now z„ = <j>(xn) e <p(aHa~{) = 4>(a)<p(H)<j>(a)~x =

<j)(a){l}4>(a)~[ = {1}, and this is a contradiction.   □

References

1. R. W. Bagley, T. S. Wu, and J. S. Yang, Inverse limits and dense immersions of locally

compact groups, Bull. Inst. Math. Acad. Sinica 19 (1991), 97-124.

2. N. Bourbaki, Groupes et algebres de Lie, Chapitres 1-9, Hermann (1-8), Masson (9), Paris,

1964-1982.

3. _, Integration, Chapters 7 et 8, Hermann, Paris, 1963.

4. V. M. Glushkov, Structure of locally bicompact groups and Hilbert's fifth problem, Uspekhi

Mat. Nauk (N.S.) 12 (1957), no. 2(74), 3-41; English transl., Amer. Math. Soc. Transl. Ser.
2 15 (1960), 55-93.

5. S. Grosser and M. Moskowitz, On central topologcial groups, Trans. Amer. Math. Soc. 27

(1967), 317-340.

6. J. Hilgert, K. H. Hofmann, and J. D. Lawson, Lie groups, convex cones, and semigroups,

Oxford Univ. Press, London, 1989.

7. G. Hochschild, Theory of Lie groups, Holden-Day, San Francisco, 1965.

8. K. H. Hofmann, Finite dimensional submodules of G-modules for a compact group, Proc.

Cambridge Philos. Soc. 69 (1969), 47-52.

9. K. H. Hofmann and P. S. Mostert, Splitting in topological groups, Mem. Amer. Math. Soc,

No. 63, Amer. Math. Soc, Providence, RI, 1963.

10. D. Montgomery, Simply connected homogeneous spaces, Proc. Amer. Math. Soc. 1 (1950),

467-469.

11. D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York,

1955.

12. W. Specht, Gruppentheorie, Springer-Verlag, Berlin, 1956.

13. C. Terp, Lie groups whose set of compact subgroups is inductive, Dissertation, Technische

Hochschule, Darmstadt, 1991.

14. _, On locally compact groups whose set of compact subgroups is inductive, Sem. Sophus

Liel (1991), 73-80.

Fachbereich Mathematik, Technische Hochschule Darmstadt, Schlossgartenstr. 7,

D-64380 Darmstadt, Germany
E-mail address: hofmannQmathematik.th-danastadt.de


