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Abstract. We construct a new kind of spectral sequence which is in some ways

analogous to the unstable Adams spectral sequence. This new spectral sequence

converts primary information about the homotopy groups of two spaces K and

L into information about the homotopy groups of the function space of maps

from K to L .

1. Introduction

1.1. The main result. Given a map f:K—*L of pointed CW complexes,

let homf(K , L) denote the pointed space of pointed maps K —> L, with / as

the base point. Recall that a U-algebra is a (> l)-graded group with an action

of the primary homotopy operations (e.g., for any pointed topological space M

there is a homotopy n-algebra n.M = {^,Af}Jf,). Given a map t: X —► Y
of n-algebras, let hom,(Ar, Y) denote the "function n-algebra" defined in 3.4.

Then (3.5) there is a natural map b: n.homf(K, L) -+ homKm f(n.K, n.L) of

El-algebras, which (3.6) is an isomorphism whenever K has the homotopy type

of a wedge of spheres of dimensions > 1. Our main result is a generalization

of this fact. Let homff'(- , Y) (p > 0) denote the pth right derived functor,

in the sense of Quillen [3], of the above functor hom_(-, Y) from 'Tl-algebras

over 7" to "n-algebras".

1.2. Theorem. Let f:K—>L be a map of pointed connected CW complexes.

Then
(1) There exists a natural second quadrant spectral sequence {EP'q} which is

closely related (in the sense of [I, IX, §5]) to n. hom f(K, L). The E2-term of

this spectral sequence is given by

E2'q = hom^f(n.K, n.L)q = homn^f(n.K, n.L)q,        <7 > 1,

Ep'q = hom^f(n.K, n.L)q , q>P>U

and the edge homomorphism

n.homf(K,L) - E0^* -» £2°'* = homn,f(n,K, n.L)
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coincides with the above-mentioned map b.

(2) In view of 4.3, this spectral sequence converges strongly to n. hon\f(K, L)

if L has only a finite number of nontrivial homotopy groups or if the Yl-algebra

n.K has finite cohomological dimension in the sense ofAA

Examples of pointed connected CW complexes with a homotopy n-algebra

of finite cohomological dimension are ([2] and 4.4) wedges of spheres (of di-

mensions > 1) and finite-dimensional CWcomplexes with the homotopy type of

a K(n, 1). From these one can construct other such spaces using the following

lemma, which is an immediate consequence of [2, 7.5] and 4.4.

1.3. Lemma. //*—>W/—> X -* T —> * is a short exact sequence of U-algebras

and W and Y have finite cohomological dimension, then so does X.

For example, if K is a finite product of spheres or a fibration over a circle

with a finite product of spheres as the fibre, then n.K has finite cohomological

dimension.

1.4. Organization of the paper. We first (in §2) prove 1.2(1) only for the case

in which the map f:K^L is trivial (i.e., maps all of K to the base point of

L). In §3 we indicate what changes have to be made in order to remove this

restriction.
In the last section (§4) we observe that the abelian group horn, (X, Y)q can

be interpreted as the pth Quillen cohomology of X with local coefficients in

the "tf-fold loops on Y". This immediately implies 1.2(2).
We would like to thank the referee for his or her comments.

2. Proof of 1.2(1) (special case)

In this section we prove 1.2(1) for the case that the map f:K^>L is trivial,

i.e., / maps all of K to the base point * e L.
We start with a brief review of the notion of a n-algebra, which involves a

"category n of homotopy operations" which is slightly different from, although

equivalent to, the one of [4].

2.1. The category n of homotopy operations. This will be the category which

has as objects the pointed CW complexes with the homotopy type of a finite

wedge of spheres of dimensions > 1 and which has as maps the homotopy

classes of (pointed) maps between them. Note that

(1) the category n is pointed and has finite coproducts (i.e., finite wedges)

but not products, and
(2) the category n comes with a smash functor i: H x n —► n which sends

an object (U, V) ellxYl to the object

U A V = (U x V)/((U x *) V (* x V)) e n

and which preserves coproducts in each-variable, i.e., the functors (UA-): n —>
n and (- A V): n -» n send coproducts to coproducts.

Using the category n we now define

2.2. n-algebras. Let Sets* denote the category of pointed sets. A n-algebra

then can be defined as a contravariant functor n —> Sets* which sends coprod-

ucts to products and as a map of n-algebras as a natural transformation between

two such functors. The resulting category of n-algebras will be denoted n-al.
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This definition implies that, for every object X e U-al:

(1) X* = * , where * denotes the point in both categories n and Sets,;
(2) the values of X on the objects of n are, up to isomorphism, determined

by the values of X on the spheres S" (n > 1). These values will be denoted

by Xn.
In view of Hilton's analysis of the homotopy groups of wedges of spheres [5,

XI] one can thus consider a n-algebra X as a (> l)-graded group {Xn}^L, ,

with X„ abelian for n > 1, together with Whitehead product homomorphisms

[-, -]: Xp®Xq -^ Xp+q_x (p,q> 1) and composition functors (-)-a: Xp ->

Xr (a e nrSp , 1 < p < r) which satisfy all the identities that hold for the

Whitehead product and composition operations on the higher homotopy groups

of pointed topological spaces and a left action of Xi on X„ (n > 1) which

commutes with these operations. (To see that the action of Xi on the Xn (n >

1) commutes with the other operations, suppose that K is a pointed connected

CW complex, for example, a wedge of circles and higher-dimensional spheres,

and that K is the universal cover of K. The n-algebra n.K can be defined
in a base point-free way. The action of n{K by covering transformations

on K then induces an action of nxK on the n-algebra n.K, in particular,

an action commuting with all Whitehead product and composition operations.

The desired result follows from the fact that this action agrees with the natural

action of niK on the higher-dimensional homotopy groups of AT.)

An obvious example of a n-algebra is thus provided by

2.3. The homotopy n-algebra of a pointed topological space. Given a pointed

topological space M, the functor n -> Sets, which sends an object U e U to
the set of homotopy classes of (pointed) maps U —> M is easily seen to be a n-
algebra. Since (2.2), this n-algebra is completely determined by the homotopy
groups nnM (n > 1) and the action of the (primary) homotopy operations on

them, we often denote this n-algebra by n.M.

Next we define

2.4. Abelian n-algebras. A n-algebra X will be called abelian if there exists
a "multiplication map" X x X —► X e n-al which turns X into an abelian

group object in n-al. For every integer n > 1, the restriction (X x X)n =

Xn x Xn -> Xn then is the multiplication map for Xn and hence (2.2) the

original multiplication map on X, if it exists at all, is unique. A straightforward

calculation now yields that a n-algebra X is abelian iff

(1) Xi is abelian and acts trivially on the Xn   (n>\),

(2) all Whitehead products in X are trivial, and

(3) all composition functions in X axe homomorphisms.

Observe that by [5, p. 534] condition (3) above is redundant.

An abelian n-algebra will be called strongly abelian if all composition func-

tions are trivial, i.e., if it is just a (> l)-graded abelian group.

2.5. Example. Given objects Y e n-al and U e TI, let Yu: U -+ Sets, be
the functor given by YUV = Y(V A U) for all V eYl. Then it is not difficult
to see that Yu is an abelian n-algebra.

Using these abelian Il-algebras Yu we can now construct
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2.6. Function n-algebras.   For two objects X, Y e n-al, let hom,(.Y, Y):

n —> Sets, [4, A.3] be the functor which sends an object U e U to the set of
maps X -» Yu e n-al. Then again it is not difficult to verify that hom,(X, Y)
is an abelian n-algebra.

If the variables in hom»(-, -) are homotopy n-algebras of pointed CW

complexes (2.3) then these function n-algebras are closely related to

2.7. Homotopy n-algebras of function spaces. Suppose that K and L are

pointed CW complexes. If horn,(AT, L) denotes the pointed space of pointed

maps K -> L (with the trivial map as the base point), one can construct a

natural map

h: n. hom,(AT, L) -» hom,(7r, AT, n.L) e n-al

by sending (the homotopy class of) a map U —> horn,(AT, L) to (the ho-

motopy class of) the corresponding map AT -» hom.(U, L) and then com-
posing the resulting map n.K ^ n. hom.(U, L) e n-al with the isomor-

phism n. hom.(U, L) 3! (n,L)u which sends (the homotopy class of) a map

V —> hom,(C/, L) to (the homotopy class of) its adjoint V AU —> L.
A straightforward calculation now yields

2.8. Proposition. The natural map (2.7) h: n. hom(AT, L) —► hom,(7r,AT, n.L)
e n-al is an isomorphism whenever K has the homotopy type of a (not neces-

sarily finite) wedge of spheres of dimensions > 1.

Finally, we are ready for a

2.9. Proof of 1.2(1) for f:K->L the trivial map. Let V.K be the simpli-
cial resolution of AT by wedges of spheres of dimensions > 1 described in

[4, §2]. The desired second quadrant spectral sequence then will be the [1,
X, §6] homotopy spectral sequence {EP'q} of the cosimplicial pointed space

hom,(F.AT, L). If AV.K denotes the realization of V.K [4, §3], then [4, §3]
the canonical map AV.K —> K is a homotopy equivalence and [1, p. 335]

Tot(hom,(F.AT, L)) = hom.(AV.K, L). Consequently, the spectral sequence

is closely related [1, IX, §5] to n. horn,(AT, L).

That EP'" = hom[p)(n.K, n.L)q for q > p > 0 and q > 1 follows readily
from 2.8, [3; 1, X, §7], and the fact [4,§2] that n. V.K is a free (and hence
cofibrant) simplicial n-algebra and its projection n. V.K —> 7t,AT onto 7t»AT is

a weak equivalence of simplicial n-algebras.

Finally, a direct calculation shows that hom^\n.K,n,L) = hom.(n.K,n.L)

and that the edge homomorphism in the spectral sequence coincides with the

map b of 2.1.

3. Proof of 1.2(1) (general case)

We now prove 1.2(1) without any restriction by generalizing the arguments

of §2. We start with reminding the reader of the existence of

3.1. A half smash functor in n. The category n (2.1) comes with a half

smash functor n x n —► n which sends an object (U, V) e TI x n to the

object (UxV)/(*xV) which also can be written as UAV+, where V+ denotes

the pointed CW complex obtained from V by adding a disjoint basepoint. It

clearly has the following properties:
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(1) Behavior in the first variable. For every object V e U, the restricted

functor (- A V+): TI —► n sends coproducts to coproducts.

(2) Behavior in the second variable. This is more complicated. For U, V e

n, there are natural maps

U= U A(*)+^ UAV+-^UAV
i

in n such that qj = id and pj = * . There is also a map k: UA V -+ UA V+ e
n, which is not natural, such that pk = id and such that the resulting map

jwk: U\/(UAV)-+ U AV+ eU.

is an isomorphism.

Next we generalize abelian n-algebras (2.4) to

3.2. n-algebras with an action of a n-algebra. By an action of a n-algebra
Y on an abelian n-algebra A we mean a diagram in n-al of the form

*^ A-+Bt± y -»*
c        e

in which

(1) the right pointing arrows form an exact sequence, and

(2) de = id:Y->Y.

One readily verifies that, under these conditions, the multiplication map of A

(2.4) turns the map d: B -> Y into an abelian group object in the over category

n-al/ Y (which has as objects the maps X ^> Y e n-al and as maps the obvious
commutative triangles).

3.3. Examples. Given objects Y e n-al and U eTi, there is a natural action
of Y on the abelian (2.4) n-algebra Yu given by the diagram

* _ yu £ Yu+ £ Y - *

Q*

in which p ,q , and j are as in 3.1 and Yu+ denotes the n-algebra such that

YU+(V) = Y(VAU+) for all V eTi.

Using this natural action we now construct

3.4. Function n-algebras. For a map t: X -> Y e n-al let horn,(A', Y): TI -*

Sets, be the functor which sends an object U e TI to the set of the maps

X -> Yu+ e n-al (3.3) whose composition with j* is t, pointed by the map
q*t. Then it is not difficult to verify that hom,(X, Y) is an abelian n-algebra.

If t is the trivial map, this construction clearly reduces to the one of 2.6.

As before (2.7) these function n-algebras are related to

3.5. Homotopy n-algebras of function spaces. If /: AT —► L is a map of

pointed CW complexes and horn f(K, L) denotes the pointed space of pointed

maps AT -» L, with the map /: AT —► L as base point, one can construct a

natural map

b: n. hom/(AT, L) -> homKt f(n»K, n.L) e n-al
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by sending (the homotopy class of) a map U —► homy(AT, L) to (the ho-

motopy class of) the corresponding map AT —> hom.(U+, L) and then com-

posing the resulting map 7i,AT —> n. hom,(C/+, L) e n-al with the isomor-

phism n. hom,(U+, L) = (n.L)u+ which sends (the homotopy class of) a map

V —► hom,([/+ , L) to (the homotopy class of) its adjoint V A U+ —> L.

Again a straightforward calculation yields

3.6. Proposition. The natural map (3.5) b: n.hon\f(K, L) -+ hom^^AT, L)
e n-al « arc isomorphism whenever K has the homotopy type of a (not neces-

sarily finite) wedge of spheres of dimensions > 1.

And we conclude this section with a

3.7. Proof of 1.2(1) (general case). If, in the notation of 2.9, f: V.K -> L
denotes the composition of / with the projection V.K —> K, then the desired

spectral sequence is the homotopy spectral sequence of the cosimplicial pointed

space homyv(V.AT, L) (this is the same cosimplicial space as in 2.9 but with a

different base point). The rest of the proof now proceeds just as in 2.9, except

that one has to use 3.6 instead of 2.8.

4.  QUILLEN COHOMOLOGY OF H-ALGEBRAS

In this last section we observe that the function n-algebras of 3.4 are closely

related to the

4.1. Quillen cohomology of n-algebras. Given a map g: W —> X e Tl-al and

an abelian n-algebra A with X-action

d
*-» A-* Bz± X -> *,

let HQ(g, A) denote the associated abelian group of "derivations from W

to A", i.e., of maps h: W —> B e n-al such that dh = g. For every integer

p > 0, the pth Quillen cohomology group HPq(X; A) of X with local coefficients

in A then is the abelian group obtained by applying to the identity map of

X the pth right derived functor (in the sense of Quillen [3]) of the functor

Hq(-\ A): Tl-al/X —> Abelian groups. Here as in 3.2 the category Tl-al/X is
the category of n-algebras over X. We will say that X has finite cohomological

dimension if there is an integer k > 0 such that Hi(X; A) - 0 for all q > k

and every abelian n-algebra A with an X-action.

As usual this definition of cohomology implies

4.2. Proposition. Let X e Tl-al, and let * —► A' —> A —> A" —► * be a short
exact sequence of abelian Tl-algebras with an X-action. Then there is a natural

long exact sequence

0 -+ H%(X; A') -> ■■■ ^ H%(X; A')

- HpQ(X;A) - HpQ(X;A") -» HPQ+X(X; A')

Another easy consequence of 4.1 is the following proposition, which imme-

diately implies 1.2(2).
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4.3. Proposition. Let t: X —» Ye Tl-al. Then there is, for every p > 0 and

q > 1, a natural isomorphism horn, (X, Y)q = HPq(X, Ys"), where the X-

action on Ys" is the one induced by t from the natural Y-action on Ys" (3.3).

We end with remarking that the notion of finite cohomological dimension

of a n-algebra can be reduced to the same such notion for a simplicial ring.

This follows readily from the next proposition and the fact that [2, §8], at

least in positive dimensions, the Quillen cohomology of a n-algebra X with

local coefficients in a strongly (2.4) abelian n-algebra is, apart from a shift in
dimension, just ordinary cohomology of the simplicial ring EF.X obtained by

applying the enveloping ring functor E [2, §3] to the standard free simplicial

resolution [2, §2] F.X of X.

4.4. Proposition. Let X e Tl-al and k > 0 be such that H^(X; A') = 0 for

all q > k and every strongly abelian Tl-algebra A' with an X-action. Then

H%(X; A) = 0 for all q > k + 1 and every abelian Tl-algebra A with an
X-action.

Proof. Let A be an abelian n-algebra with an X-action and, for each s > 0,

let A^ c A denote the sub-n-algebra with an X-action such that A$ = 0

for n < s and A^ = An for n > s. As each quotient A^/A^+^ (s > 0)

is a strongly abelian n-algebra with an X-action, 4.2 implies inductively that

HqQ(X;A^) = 0 for all s > 0 and q > k. Furthermore, A = limA^ and,

hence, A fits into a short exact sequence of abelian n-algebras with an X-action

s s

The desired result now follows by applying 4.2 once again and noting that

Quillen cohomology commutes with products.
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