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Abstract. Let K be a CM-field that is a quadratic extension of a totally real

number field k . Under a technical assumption, we show that the relative class

number of K is large compared with the absolute value of the discriminant

of K, provided that the Dedekind zeta function of k has a real zero 5 such

that 0 < s < 1 . This result will enable us to get sharp upper bounds on

conductors of totally imaginary abelian number fields with class number one or

with prescribed ideal class groups.

Let K be a CM-field that is a quadratic extension of a totally real number

field k.
If the Dedekind zeta function of K is nonpositive at some so that belongs to

the interval ]0, 1 [, then it is well known that we can get good lower bounds for

the residue at 5 = 1 of this zeta function and for the relative class number of

K. In Proposition A, we give explicit forms of such a result. They will enable us

to consider in Corollary c the class number one problem for cyclotomic fields

in a more efficient way than those one can find in the literature (see [7, 12]).

Now, if the Dedekind zeta function of k has a zero in ]0, 1 [, then in The-

orem 1 we give lower bounds for the relative class number of K. Our proof

assumes the technical assumption d(K) > 4Nd(k)2 where N is the degree of
k and where <7(k) and d(K) are the absolute values of the discriminants of k

and K.
Let us stress that, under this previous technical assumption, one remarkable

consequence of Theorem 1 is that the zeta function of k has no real zeros in the

open interval ]0, 1 [ provided that the relative class number of K is less than

or equal to 2 (or provided that this relative class number is not "too large").

If we can deduce from this that the zeta function of K is nonpositive on this

interval, then from our previous lower bounds for the relative class numbers

we may get very good upper bounds on the discriminants of K, provided that

the relative class number of K is less than or equal to 2 (or provided that this

relative class number if not "too large").

Our main application of these techniques is the proof in Corollary b that

the zeta function of the real quadratic subfield k of a totally imaginary cyclic
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quartic number field K with ideal class group of exponent < 2 and discriminant

d(K) has no real zero in the interval 1 - 2/Log(d(K)) < s < 1. This is the

result we needed in [5] in order to prove that there are exactly 33 such quartic

number fields.
Let k be an algebraic number field with class number h(k) and regulator

Reg(k). Let d(k) be the absolute value of the discriminant of k. Set

[k: Q] = rx + 2r2,        A = 2-r'd(k)x'27t^r'+2r^2,

X(k) =-^77T——   where w(k) is the number of roots of unity of k,
w(k)

F]i(s) = AsY^)r'Y(sY>C.*(s),

so that Fk(s) has a simple pole at 5 = 1 with residue equal to A(k).
Whenever y £ (R;)r'+r2, we set

\\y\W = lVi.yr,)(>V1+i.yri+n)2, so that ||Ay||k = XN\\y\\, X > 0;

Trk(y) = yi + • • • + yr, + 2(yri+x +■■■+ yrx+fl), so that Trk(Xy) = Xy.

It is well known (see [4]) that we have the integral representation

with

(1)

h(s) = W        exp(-nd(k)-x^Nk/Q(B)2'NTrk(y))[\\y\\sk/2 + IMI^''2]^ ,

where the sum is taken over all integral ideals B ^ 0 of k.

From now on, we assume that 5 is a real number such that j < s < 1 .

For y = (yx,..., yN) £ (R*+)N we set Tr(y) = yx + • • • + yN and ||y|| =

y\.YN.
If K is a totally imaginary number field of degree 2N that is a quadratic

extension of a totally real number field k of degree N, then 7K(s) and 7k(5)

are integrals in (R* )N and we have:

TrK(y) = 2Tr(y) and ||y||K = ||y||2, so that ||y||K > 1 if and only if ||y|| > 1;

Trk(y) = Tr(y) and ||y||k = ||y||, so that ||y||k > 1 if and only if ||y|| > 1.

Moreover, we have the natural injection map /K/k from the group of frac-

tional ideals of k in the group of fractional ideals of K that satisfies

AW'K/k(B))2/2;V = *WB)2^

whenever B is an integral ideal of k. We thus get

(2)  Ik(s) > W       exp(-2nd(K)-x'2NNkfQ(B)2lNTr(y))[\\y\\s + \\y\\1-*] ̂f

and

(3)

Ms) = Y,[       exp(-^(k)-1/w7Yk/Q(B)2^rrk(y))[||y|r/2 + Hyll*1-^2]^ ,
* J\\y\\>i y
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where the sums are taken over all integral ideals B ^ 0 of k.

Hence, if we assume that we have d(K) > 4Nd(k)2, noticing that we have

IMI2 > ILvll whenever ||y|| > 1, then (2) and (3) provide us with

(a) IK(s) > h(s).

Moreover, from (2) we have

(4) h(s) > W       exp(-2nd(K)-x<2NNk/Q(B)2/NTr(y))\\y\\^
B J\\y\\>x y

and from (3) we have

(5) h(s) < 2 W       exp(-nd(k)-i'NNk/Q(B)2'NTr(y))\\y\\s/2^-,

where the sums are taken over all integral ideals B ^ 0 of k.

We change variables in (4), making the multiplicative translation y —

d(K)xl2NY/2d(k)x'N. We note that, under the hypothesis d(K) > 4Nd(k)2,

the domain ||F|| > 1 is included in the domain ||F|| > 2Nd(k)/^/d(K). Using

\\Y\\S > \\Y\\S/2 whenever ||y|| > 1, we get

*G)>(*f*G)-
(c)        «s)>K4^)"2/'w'   5<I<L

Now, as K is a CM-field of degree 27V that is a quadratic extension of a

totally real number field k of degree N, it is well known that we have

X(K) _   h*(K)

X(k) " Qw(K) '

where h*(K) is the relative class number of K and where Q= 1 or 2 (see [12,

Theorem 4.12]). Moreover, if \ < so < 1 is a real zero of Ck, then we have

Ck(so) = 0 since K/k is normal, so that T^sn) = Fk(s0) = 0, so that

A(K) = Ik(sq)

X(k)      Ik(s0)'

Hence, we get the following theorem whose assertion (b) is much more

precise than the one given in [6] (note that as soon as the totally real number

field k is fixed, then there are only finitely many totally imaginary number fields

K that are quadratic extensions of k and such that d(K) < 4Nd(k)2):

Theorem 1. Let K be a CM-field of degree 2N that is a quadratic extension

of a totally real number field k of degree N. Let us suppose that we have
d(K)>4Nd(k)2.

If the Dedekind zeta function of k has a real zero so such that j < So < 1,

then we have the three following lower bounds for the relative class number h*(K)
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ofK:

(a)   h*(K)>Qw(K)>2,

(c)   h'(K) > ie»(K) (J^y'2   ifj<*<l.

Hence, the zeta function of k has no real zero in the interval 1 - 2/ Log(tf (K)) <

5 < 1 provided that we have h*(K) < ^d(KJ/e2Nd(k).

Remark. Theorem 1 does not apply to the class number one problem for cyclo-

tomic fields, for d(K) - d(k)2 whenever K = Q(C«) with n not a prime power,

and d(K) — pd(k)2 whenever K = Q(CP"), with p an odd prime. Nevertheless,

in Corollary c, we will manage to consider the class number one problem for

cyclotomic fields (with prime powers conductors). Theorem 1 does not apply to

the class number one problem for totally imaginary biquadratic abelian number

fields with group (Z/2Z)2, for d(K) = <i(k)2 whenever K = Q(V/=P, V^Q),
p and q prime and congruent to 3 mod 4.

In fact, Theorem 1 applies nicely to class numbers problems for totally imag-

inary cyclic number fields with bounded degrees.

Theorem 2. Let K be a CM-field of degree 27V that is a quadratic extension of
a totally real number field k of degree N. Let Resi(Ck) be the residue at s = 1

of the Dedekind zeta function (k of k. Let us suppose that the Dedekind zeta

function s •-> Ck(s) satisfies

U(l-2/Log(d(K)))<0.

Then, we have the following lower bounds for the relative class number of K:

h*(K)>f(N   K)       l       2QW{K) ̂d{Vld{V

with the two possible choices:

2nNex/N

^ /(7V'K) = 1-c7(K)W

or

(b) f(N, K) = jexp (-^,/2/v) '    whenever N>2.

Proof. We get the desired result from Proposition A thanks to

Res,(cK)_n,N fmx(K) _    Nh*(K) lm_
Res,(CO     [    '  yd(K)X(k)     [Zn>   Qw(K)\jd(KY

Proposition A. Let K be a totally imaginary number field of degree 27V. If its

Dedekind zeta function s i-+ Ck(s) is such that Ck(^o) < 0 for some So real in

[j, 1[, then we have the following effective lower bounds for the residue at s = 1

of this zeta function:

(a) ReSl(CK) > (1 -sQ)d(K)l*>-w{l - ^jm} !

(b) Res,(CK) > §(1 -s0)d(K)^-^2txp (-d^y/2N) >    whenever N>2.
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Proof. From (1) where we use only the term of the sum corresponding to the

ideal B equal to the ring of algebraic integers of K, and where we disregard

the term with ||y||K1_'5)/2, we get

i?V' *»'«'> = -iSL- > f       exp(-2nd(Krxl2»Tr(y))\\y\\s°d-l.
(2x)N s0(I-s0)     s0(l - so) - JM>X    PV Ky,m"   y

Setting y = d(K)x'2NY , we get

,«     ^^>^(l-So)d(K)^'2 f t*rt-2xTr(Y))\\Y\\»%-
(6) {l7lY J\\Y\\>d(*.)-^ *

= (l-so)d(Kf°-x»2{f(s0)-Mso)}

with

^5) = 4t^1       and   Ms) = s[ exp(-2^rr(y))||r||^.
Sl%) J J||r||<</(K)-'/2 Y

Since {Y; \\Y\\ < d(K)~x'2} is included in {Y;3i £ {1, ... , N}/Yt <
d(K)~x/2N}, we have (using e~2ny < 1, y > 0)

Ms)<Ns  I& / e-2»V^f < JV/(5)^-rf(k)-^.

Hence,

5g^ > (1 - 5o)^(K)^-')/2/(,0) {1 - N^^d(K)-^ .

Since s >-> f(s) decreases on ]0, 1[, we have f(so) > f(l) = (l/2n)N . Since
5 h-> (27r)-s/5r(5) increases on ]0, 1[, we get the desired first result. In order

to get the second desired result, we start from (6) and use the third point of

the following lemma with x = d(K)~x/2N (so that from the Minkowski's lower

bound d(K)x'2N > nN2/((2N)\)xlN we have x < \ , 27V > 4):

Lemma. Set PN(t) = J^1 '7"! ■ Then<

(i)

/ exp(-Tr(Y))dY = PN(t)e~',        N>1.
JTr(Y)>t

(ii)

/ exp(-Tr(Y))dY=l-PN(t)e-',        N>1.
JTr{Y)<t

(iii)

r p—2nNx

/ exp(-27r7>(y)) dy = ^-^-(1 - PN(2nN(l - x))e~2^1-^).

(iv) xx = 1 - PN(nN)e~nN is an increasing sequence that converges towards

1, so that xN > |, TV > 2.

Proof. Part (iii) is proved from (ii) using the fact that the domain {y; y £

(R%)N, y, > x and N > Tr(y)} is included in the domain {y;y£ (R%)N and
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1 > ||y|| > xN} and changing variables making the translation y,- = x + Yj/2n.

Part (iv) follows from the inequality PN+l((N + l)n) < enPn(Nn). Indeed, we

have

<<?(l+*)fiv(M0.   D

Remark. Theorems 1 and 2 apply nicely to the determination of CM-fields K

with "small" class numbers, provided that the fields K are CM-fields that are

quadratic extensions of totally real number fields k such that Cit/Ck is non-

negative on ]0, 1[. Indeed, Theorem 1 then implies that the zeta functions £k

have no real zero in the interval 1 - 2/Log(ri(K)) < s < 1. Hence, Ck(sn) < 0

and Ck(so) < 0 with So = 1 - 2/Log(<i(K)), so that Theorem 2 provides us
with good lower bounds for h*(K). Since we seek "small" class numbers, this

will provide us with upper bounds on d(K).

Let us point out that these assumptions " Cx/Ck are nonnegative on ]0, 1["

are satisfied as soon as the number fields K are totally imaginary and cyclic
over Q and such that 4 divides [K: Q] = 2N, for Cx/Ck is then a product of

L-functions that come in conjugate pairs.

For example, we first give the following corollary, which greatly improves

upon the upper bounds given in [1] or [10]:

Corollary a. Let K be a cyclic quartic totally imaginary number field with con-

ductor f and class number h(K). If h(K) = 1 then f < 4500. If h(K) = 2
then f< 10000.

Let K be a cyclic octic totally imaginary number field with conductor f and

class number h(K). If h(K) — 1 then / = 32 or f is prime and f < 3000.

Proof. We only prove the first point. Let k be the real quadratic subfield of K,

let fk be the conductor of k, and let L(s, x/J be the L-function of k. First,

fk divides /, so that we have fk< f. Moreover, d(k) = fk and d(K) = fkf2 .
Hence, <i(K)/42c7(k)2 = f2/l6fk is greater than or equal to 1 as soon as we

have / > 16. Hence, from Theorem 1(a) we deduce that the Dedekind zeta

function of k has no zero on the interval [^, 1[ as soon as h*(K) = 1 or 2,

provided that we have / > 16. Since the Dedekind zeta function of K can be

written Ck(s) = Ck(s)\L(s, Xf)\2, s €]0, 1[, we can apply Theorem 2. Since

Res,(Ck) = L(l, Xfv) < \ Log(A) + 1 < \ Log(/) + 1 (see [8, Lemma 8.4]) and
since 5/2 < d(K) < p , Theorem 2 provides us with the following lower bound

from which we get the desired results:

,(K)>,-(K)>^(,-^i)(Ug(/)/2)Loe(/).    □

Corollary b. Let K be a cyclic quartic totally imaginary number field with con-

ductor f. Then the Dedekind zeta function of the real quadratic subfield k of

K has no zero in the interval [1 - 2/ Log(d(K)), 1[ provided that the ideal class

group of K is of exponent < 2.
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Proof. If the ideal class group of K is of exponent < 2, then k is principal and

fk = 8 or fk is prime and such that fk = 1 (mod 4). Conversely, if fk = 1
(mod 4) is prime, if k is principal, and if we define ft by means of / = fkf2,
then the ideal class group of K has 2-rank t -1 where t is the number of prime

ideals that ramify in the quadratic extension K/k. Hence, t< l+2a>(f2) where

co(f2) is the number of prime divisors of fi (the proofs of these assertions can

be found in [5]). Let us suppose that the Dedekind zeta function of k had a real

zero so such that 1 - 2/Log(d(K)) < s0 < 1. Then, as d(K) = fkf2 = fk3f22

and d(k) = fk, Theorem 1 would imply 4(0^) > h(K) > h*(K) > ^fkf1/4e.

Now, fk > 211 implies y/]k/4e > 4/3, so that we would have 40>^l) >

4/2/3. Since 4 divides fi as soon as fi is even, this inequality is never satisfied.

On the other hand, if 5 < fk < 211, then 5 i-» L(s, XfJ has no zero on ]0, 1[
(see [9]). Thus, we get the desired result.   □

Lower bounds for the relative class numbers of cyclotomic fields. Now, we would

like to show that Theorem 2 applies to CM-fields with unbounded degrees. For

example, we show that Theorem 2(b) enables us to get good upper bounds on

the conductors of the cyclotomic fields (with prime-power conductors) with

relative class numbers equal to 1. We first give a less tedious proof and more

precise form of Lemma 11.5 of Washington [12]; i.e., we give an upper bound

on Resi(k) with k being the maximal totally real subfield of a cyclotomic field

with prime power conductor.

We define g(b) = b - 1 + H(b, 1), where

„,   tl    r/     1 1     \ JRe(5)>0,

Whenever j;:NhC is a complex-valued function which is periodic mod

m , such that xim) = 0 and Y^I\ Xia) = 0, we have

n>\ a=l

Consequently, whenever Xm is a nontrivial (not necessarily primitive) even

Dirichlet character mod m we have Y^IX aXm(a) = 0 and

.   m—1

m *-*' \m/
0=1

Lemma (i).  g(b)>0 and g(b)2 + g(b)g(l - b) < l/b2, 0<b<l.

Proof. Follows from the following two inequalities:

**) = *-,+ '     ,+W    '     -     '    )>i+'_ 2=<i^>0,
6V ; b £->\n + b     n+lj-       b b

n>\

g(b) = b-i + \-Y     b     <b-i + \-Y  /=l-i.  n
6V ' b     *-^n(n + b) b     ^>n(n + l)     b

n>\     x ' n>\     v '

Lemma (ii). | Y[Xm even, x^\ L^ ' ^\ - (^2/6)(<?i('")"2)/4, where the product is

over the (not necessarily primitive) even Dirichlet characters mod m .
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Proof.

{4>(m)/2-l    ifa = ±b(modm)

andGCD(a,m)=l,

0 or - 1        otherwise.

Hence, by the arithmetic-geometric mean inequality,

/ v   2/(0(m)-2)

II    Wl.«m)P
Xn, even

\  W> J

* ^yT2 E E * © * {-)      £  Xm(a)xm(b)
rv     ; a=\  6=1 v      '      Xm even

\ Wl /

,        m—\ j m — \       .

^ E *(£) ^(IX1-^ E JI
a=l a=l

(a,m)=l (a,m)=l

* E ^ = T n O-^J-t- D
a=\ p prime

(a. "0=1 p divides m

Now, in order to apply Theorem 2 to the cyclotomic case, and thanks to the

fact that the Dedekind zeta function of a CM cyclic number field factorises on

]0, 1[ into a product of L-functions that come in conjugate pairs, apart from
the two L-functions associated to the principal character and to some quadratic

character, we must find an explicit zero-free region for an L-function associated

to a quadratic character.

Lemma (iii). Let x be a quadratic nonprincipal character mod/. Set N =

\(p(f). Then, for o > l/Log(3) we have

i^)z)i<EL^^^+2)1-CTE^-
n=2 n=2

Proof. We have

k>0  \ n=kf+3 /

Now, n i-» Log(n)/na decreases for n > 3 provided that we have a >

l/Log(3). Moreover, in each set of / consecutive integers there are N of

them such that x(n) = -1 and TV of them such that x(n) = +1. Hence, for
each k > 0 we have

(k+\)f+2 T       .   .
^ .Log/?)
E    X(n)——  <uk-vk,

n=kf+3
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with
kf+N+2 T       .   . (k+i)f+2
^    Log(«) ^        Log(n)

uk=   zZ  —^r-  and  v«=      E      -^r--
n=kf+3 n={k+l)f+i-N

Since («fc)/t>o and (Wjt)/t>o are decreasing sequences converging towards 0, and

since Mjt+i < u*: > fc > 0, we get

|L'(ct , x)\ < -^-^ + "o - («o - "l) - (fi - w2) + • • •

Log(2) ^2 Log(n)
^^r- + M° = E-^- D

n=2

Theorem 3 (see [12, Lemma 11.10]). Let x be a primitive quadratic character

of conductor f. Then

L(a,x)>0   fori ^&(f)
v   ,ai- \a>oo = l- -r2jL^r-   i/*(-l) =-1.

I     - VfhoSHf)    J AK    '

Hence, L(a, x) > 0 for a >ox = 1 - 2/(/ - 2) Log(/).

Proof. Since a •-> L(cr, ^) has no real zero in the open interval ]0, 1[ for

/ < 24 (see [9]), we may assume that we have / > 24. Let us first assume

that x is even, and let k2 be the real quadratic field with conductor /. Then

L(l, x) = 2/jLog(e0)/V7 > Log(/- 4)/Jf where e0 > (77^+ v7)/2 >
\Jf - 4 is the fundamental unit of k2 and where h > 1 is the class number

of k2. Let cr be such that oq < a < 1. Then L(a, x) > 0 • Indeed, if we had
L(a, x) < 0, then from Lemma (iii) above and since we have TV < (/ - l)/2,

we would get a contradiction from

L°g^~4) <L(l,x)<L(l,x)-L(o,x)

<(\ - a) max L'(fj, x)

<(l-oo)exp(2Lo^f+^2A      V      ^
-' {       Vf**(f)       )2<n^+m       n

< (1 -«r0)iLog(/-4)Log(/) = L°g^"4)

where the last inequality is valid for / > 24.

In the same way, we get the desired result if x is odd using L( 1, x) > n/\[J,

f>5.
The third result follows from the first and second ones.   □

Corollary c (see [12, Corollary 11.17]). Let p be an odd prime. Then we have

the following lower bound for the relative class number h*(K) of the cyclotomic

field K = Q(ZPa), a > 1, of degree 27V = [K: Q] = <f>(pa):

1   {N\N/2       1
^^70(39)      L^2A0'
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so that 27V = <t>(pa) > 100 implies h*(K) > 1.   Moreover, p > 89 implies

h*(K) > 1.

Proof. Set h(p) = (1 - l/p)pxl^-x), so that we have h(5) > h(p) > 1. We note

that

d(K) = (2N/h(p))2N < (2N)2N,        w(K) = 2pa > 2/V,

d(K)/d(k) = ]/pd(K) = Jp(2N/h(p))N,

Resi(Ck) < (7T2/6)^-1)^2   [thanks to Lemma (ii)].

Noticing that we have d(K) > pp~2 , then thanks to Theorem 3 we may apply

Theorem 2(b), so that we get the following lower bound from which we get the

desired results:

1   '-   \5eP Wh(p)J      Log(27V)'
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