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Abstract. Sign properties of and comparison theorems for Green's functions

of a family of two-point boundary value problems for a general ordinary differ-

ential operator are obtained. The results extend known results for a two-term

ordinary differential operator.

1. Introduction

Let n > 1 be an integer, and let B > 0 be given. Let a.\ e C[0, B],

I - 1, ... , n , and define the linear differential operator L by

(1.1) Ly = yW + a{(x)y(n-^ + ■ ■ ■ + an{x)y,        0<x<B.

Let W denote the set of nonnegative integers, and, for each fc€{l,...,n-l},

let SlH_k c W"-k be defined by

(1.2(fc)) Q„_fc = {a = (ai,... ,a„_fc):0<ai < ••• < an.k < n - 1}.

For each a e Qn-k > b £ (0, B], we shall consider homogeneous, two-point

boundary conditions of the form

„-,. .„ y{l)(0) = 0,        l = 0,...,k-l;

y("(ft) = 0, / = ai, ... , an_k.

We shall denote the boundary conditions (1.3(/c, a, b)) by T(k, a, b)y = 0.
Note that, if a = (0, ... , n — k - 1), then T(k, a, b)y = 0 represents two-

point, (k, n - k) conjugate boundary conditions. If a = (k, ... , n - 1),

then T(k, a, b)y = 0 represents two-point, (k, n - k) right focal boundary

conditions. Thus, the boundary conditions (1.3(fc, a, b)) represent a family of

boundary conditions that are between conjugate and right focal type boundary

conditions. See [7, 8, 11, 12, 19].
Recall [11] that L, defined by (1.1), is right disfocal on [0, B] if the only

solution of Ly = 0 satisfying y^(Xj) = 0, I = 0, ... , n - I, where 0 < Xq <
■■■< xn_\ < B, is y = 0. Throughout §2, we shall assume that L is right

disfocal on [0,5].
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For each k e {1,..., n-1} , a e Q.n-k , b e (0, B], let G(k, a, b;x, s)
denote the Green's function of the boundary value problem (BVP), Ly = 0,

0 < x < b, T(k, q , b)y = 0. Under the assumption that L is right dis-
focal on [0, B], each G(k, a, b; x, s) exists. For each / = 0, ... , n , let

G,{k ,a,b;x,s) = {dl/dxl)G(k ,a,b;x,s).

Define a partial order on Qn-k as follows: for a = (a\, ... , an_k), /? =

(/?!, ... , Bn_k) £ Qn-k , we say that a < /? if and only if a/ < /?/, / =

1,... , n — k. Moreover, a < /? if a < /? and a ^ /?.

The purpose of this paper is to obtain comparison theorems for the family

of Green's functions G{k, a, b; x, s). For example, we shall show that, if

a, /? € Cln_k , a < B , and 0 < b < B, then

(1 4) (-l)"-*G/(fc, 0, 6; x, 5) > (-l)"-*G,(fc, a, 6; x, j)

>0,        (x,s)G(0,b)x(0,b),

1 = 0, ... , ai . Moreover, we shall show that Gi(k, a, b; b, s) ^ 0, 5 €

(0, b), for / G {0, ... , n- \}\{a\, ... , an-k) . and we shall determine its sign.

Inequalities such as (1.4) play an important role in applications of monotone

methods and cone theoretic methods to nonlinear BVP's; information concern-

ing the sign of Gi(k, a, b; b, s) can play a crucial role in the construction of

cones with nonempty interior. See, for example, [6-8].

Sign properties of Green's functions have been of interest to many authors.

See, for example, [1, 3-10, 14-19, 21, 22]. The results of this paper are specif-
ically motivated by the results of Peterson [17, 18], Elias [4], and Peterson and

Ridenhour [19], who all consider the two-term operator Ly = yW + q{x)y.

Peterson [17, 18] considers the cases q(x). < 0 and q(x) > 0 independently

and obtains inequalities similar to (1.4) for / < min{/c - 1, a\). Elias [4],

who points out that this bound on / is best possible, considers only the case
(-\)n~kq{x) < 0 and obtains inequalities similar to (1.4) for / = 0, ... , n - 1

and partial derivatives of G with respect to 5. Peterson and Ridenhour [ 19]

handle the case where q may change sign, and again, the bound on / is best

possible. Thus, the primary contribution of this paper is that inequalities simi-

lar to (1.4), which are already known for the two-term right disfocal differential

operator, are obtained for the general right disfocal operator.

In §2 we shall obtain (1.4) and related inequalities for the family of bound-

ary conditions (1.3(fc, a,b)). The proofs employ the observation that as a

function of x , the difference, G{ki, /?, b2; x, s) - G{k\, a, b\; x, s), is n

times differentiable on [0, min{&i, 62}] and, hence, is a solution of Ly = 0,

0 < x < min{^!, bi) , or that, as a function of x, (d/db)G(k, a, b; x, s) is

n times differentiable on [0, b] and, hence, a solution of Ly = 0, 0 <x < b .

The proofs then employ a double induction on k and (qi -I-h an_k). The

induction on k replaces an adjoint argument employed by Peterson [17, 18]

and Peterson and Ridenhour [19] for the two-term differential operator.

In §3 we shall outline how the results of §2 can be extended to a larger family

of two-point boundary conditions. Note that in (1.3(/c, a, b)) the boundary

conditions are stacked at the left end point, beginning with the functional value,

and the boundary conditions are allowed to fan out at the right end point. In

§3, assuming that L is left disfocal [11], the boundary conditions will first be

stacked at the right end point and allowed to fan out at the left end point;

analogues of the results of §2 will be obtained with a simple change of variable
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argument. Then, assuming that L is disfocal [13], the boundary conditions

will be allowed to fan out at both end points and analogues of the results of §2

will be stated. For example, suppose L is fourth order and disfocal on [0, b].

Let H{x, s) be the Green's function for the BVP, Ly = 0, y{0) = y"(0) = 0,
y(b) = y"(b) = 0, and let G{x, s) be the Green's function for the BVP, Ly =
0, y(0) = y'(0) = 0, y(b) = y'(b) = 0. Then the techniques employed in this
paper can be used to show that H(x, s) > G{x, s) > 0, (x, s) e (0, b) x (0, b).

This information can then be employed when studying the elastic beam problem

[20, pp. 175-179]. For example, the inequalities shown here give that a clamped

beam is stiffer than a simply supported beam.

2. The case L right disfocal

Throughout this section, we shall assume that L, given by (1.1), is right

disfocal on [0, B]. The purpose of this section is to obtain the following two

theorems:

Theorem 2.1. Let k e {I, ... , n - 1}, a, £ e Q„_fc , a < B, and 0 < b <B.
For I = 0, ... , qi ,

(-\)"-kG,(k, fi, b; x, s) >(-l)n-kG,(k, a, b; x, s)

>0,       (x,s)e(0,b)x(0,b),

(2.2)
(-l)n~kGk(k, /?, b; 0, s) > (-l)"-kGk(k,a,b; 0, s) > 0,        se (0, b).

Theorem 2.2. Let fc€{l,...,n-l},a,/?€ Qn-k > and an_k <n-\. Assume

a < fl, 0 < b\ < bi < B, and that one of the inequalities (a < B or b\ < bi)
is strict. Then, for I = 0, ... , a\,

(2 3) {-l)n-kGl{k,f},b2;x,s)>{-\)n-kGl{k,a,bx;x,s)

>0,        (x,s)e(0,bl)x(0,bl),

(2 4) (-l)n-kGk(k,B,b2;0, s) > (-l)»-kGk(k,a, b{; 0,5)

>0,        se(0,Z>0.

Before we prove Theorems 2.1 and 2.2, we shall provide three technical

lemmas. Lemma 2.3 has been obtained by Peterson and Ridenhour [19], and

Lemma 2.5 has essentially been obtained by Eloe and Henderson [8].

Lemma 2.3. Assume that L is right disfocal on [0, B]. Let k e {I, ... , n-l}
and 0 < b < B. Let a\, ..., an_k-\ be integers satisfying 0 < a\ < ■ ■■ <

an-k-\ <n-\. Suppose y(x) is a nontrivial solution of Ly = 0, 0 < x < b,

satisfying the n-l boundary conditions

/)(0) = 0,    / = 0,...,fc-l;       y{l)(b) = 0,    / = o,,..., <*„_*_,.

Set M = max{/: I e {0, ..., n - 1}, yU)(b)^0}. Then M>k,and

(i)   y>(6)^0,  /G{0,...,«-l}\{a,,..., a„_k_y},
(ii)   y{l)(x) ± 0,  0 < x < b and I £ {0, ... , min{k, a{}} .

Further, there is an e > 0 such that

(iii) if I e {0.M - 1}  and y{l\b) = 0,   then y^(x)y^l+l\x) < 0,
b - e < x < b,
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(iv) if I e {0, ... , M - 1}  and y(,\b) ± 0, then y{-'\x)y{-M\x) > 0,
b - e < x < b.

Before we state and prove the next lemma, we introduce further notation.

For a G Q.n-k > let S{a) = a\-\-\-a„-k denote the sum of the components of

a. Then, for all a G a„_k , {n -k)(n -k- l)/2 < 5(a) < (n - k){n + k-l)/2.
Also, for q G Qn-k , i G {0,...,«- 1}, we let «(o;, /) denote the number of

components of a which exceed i. In particular, n(a, i) counts the number

of derivatives of y of higher order than i which the boundary conditions,

T(k, a, b)y = 0, specify to be zero at b .

Lemma 2.4. Let k e {I, ... , n - 1}, a e Qn-k • and 0 < b < B. Assume
i G{0, ... , n- l}\{ai, ... ,a„_k}. Then

(-l)»(°-i)Gj{k,a,b;b,s) > 0,       se (0, b).

Proof. The proof is by induction on k. Let k = 1 . First, consider

G( 1, a, b; x, s), where a = (0, 1,...,«- 2) (the Green's function for the

(1, rc - 1) conjugate problem). By Levin's Theorem on signs of conjugate

point Green's functions (see, e.g., [3] or [10]), G„_i(l,a,b; b,s)>0,se

(0, b); in particular, the lemma holds for k — 1, a = (0, ... , n - 2), since

n(a, n- 1) = 0. Now, let 8 = (plt ... , /?„_,) g £Vi , fi ?a. The com-
ponents of /? exclude precisely one of the integers 0,...,«- 2. We denote

that excluded integer by i. Then «(/?, /) = n - 1 - /. Fix s e (0, b), and
consider g(.x) = G(l, B , b; x, s)- G(\, a, b ; x, s). As noted in [22], g is n

times continuously differentiable and solves Ly = 0 on [0,6]. Furthermore,

g satisfies the boundary conditions

*(0) = 0;        g{«\b) = 0,     qe{0,...,n-2}\{i};

gO-l)(b) = -Gn-l(l,a,b;b,s)<0.

Applying (i), (iii), and (iv) of Lemma 2.3, we see on counting down from the

(n - l)st derivative of g that, in a sufficiently small left neighborhood of b,

there are n-2-i sign changes in the finite sequence, g{n~l\x), g^n~2\x), ... ,

g^(x). Therefore,

{-i)*-*-'gM(b) = {-i)'V-i>Gi(i,fi,b',b,s)>0.

This proves the lemma in the case k — 1.

Next, we suppose Lemma 2.4 holds for k - 1 G {1, ... , n - 2} and es-

tablish the truth for k. The proof here is by induction on S(a). To be-

gin, we establish the lemma when S(a) is minimized over £ln-k; that is,

when a = (0, ... ,n-k- 1) and S{a) = (n - k){n - k - l)/2. By Levin's
Theorem, G„-k{k, a, b;b,s) > 0, 5 G (0, b), establishing the lemma for
i = n - k , since n(a, n - k) = 0. Take any i with n - k < i < n - 1, and let

/? = (0, ... , n - k - 1, /'). Note that'/? G Q„_yt+i and n(fi,n-k) = l. Thus,
by the inductive assumption on k - 1, we know Gn_k(k - I, B, b; b, s)

< 0, s G (0,b). For fixed 5 G (0,6), let g(x) = G(k, a, b; x, s)-
G(k-l, B,b;x,s). Then Lg = 0 on [0, 6] with

gU)(0) = 0,    j = 0,...,k-2;        g{j)(b) = 0,    j = 0,...,n-k-l;

g("~k\b) = Gn_k(k,a,b;b,s) - Gn_k{k - 1, B, b; b, s)>0.
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By Lemma 2.3, g{i)(b) = Gt{k, a,b;b,s)>0, s e (0, b). This establishes
the lemma for all a e £ln-k with S{a) = (n - k)(n - k - l)/2.

Our inductive assumption on S(a) is that Lemma 2.4 holds for all a G

fi„_i with (n - k)(n - k - l)/2 < S(a) < m, where m is an integer with

{n-k)(n-k-l)/2 < m < (n-k){n + k- l)/2. The proof will be complete once
we establish the truth of the lemma for all a G 0.n_k with S(a) = m . Let such

an a be given. Take i e {0, ... , n - l}\{ai, .• • , an_k}. Consider first the

case where i < an_k . Choose the minimum number / 6 {1,..., n — k\ such

that i < aj■. Let /? = (/?i, ... , Pn-k) £ &n-k be such that jip = ap for p ^ j
and Bj = i. Since 5(/3) < S{a) = m , we know the signs of the derivatives of

G(k, B ,b;x,s) at x = b . Note that n(a, i) = n(a, a,) + 1 = «(/?, ay) + 1.
For fixed s e {0, b), let g(x) = G(k, a, b; x, s) - G(k, B, b; x, s). Then
L£ = 0 on [0, b] with

gM(0) = 0,       q = 0,...,k-l;

g{<l)(b)=0, qe{ai,...,an_k}\{aJ};

gM(b) = -Gaj(k,B,b;b,s),

since Gaj(k, a, b; b, s) = 0. By the inductive assumption, the sign of g{aj\b)

is the opposite of the sign of (-l)"(^>a>). We then apply Lemma 2.3 and see

that (-1 )"(/>■ «j)+i£«)(&) > o, since g^(b) ^ 0 for q g {a., ... , a„_*)\{a7}.

Hence, Gt{k, a, b; b, s) = g(,)(6) has the same sign as (-1)"(»''), which is

the desired conclusion.

As a last step, we consider the case i > a„_k . Let B = {a\, ... , an_k, i).

Then /? g Qn-k+\ > an(a the signs of the derivatives at b of G(k-1, B, b; x, s)

are known because of the inductive assumption on k . For fixed 5 G (0, b), let

g(x) = G{k ,a,b;x,s)- G{k - 1, /?, b; x, s). Then Lg = 0 on [0, 6] with

£<«>(0) = 0,     $ = 0,...,*-2;        g{q)(b) = 0,     q = ax,...,an_k;

gM(b) = Gi(k,a,b;b,s).

Since w > (n—k)(n—k-l)/2 , we choose y € {0, ... ,«-/c-l}\{ai, ... ,an_k} .

Since j < an-k , we know from above that the sign of Gj(k, a, b; b, s) agrees

with that of (-1)»(«-J). We also see that the sign of Gj(k -I, 0,b;b,s) is
(_l)*(e»,/)+i since «(^,;') = «(a, ;) + 1 . Then

gV\b) = Gj(k,a,b;b,s) - G}(k -l,0,b;b,s),

so sgn[gW(b)] = {-l)"(a<JK The finite sequence gU)(b), ... , gW{b) has

n(a, j) sign changes by Lemma 2.3. Hence, gil\b) = Gj(k, a, b; b, s) > 0

as desired. This completes the proof of Lemma 2.4.

Let H(k, a, b; x, s) = (d/db)G(k,a,b;x,s). Eloe and Henderson [8]
(or see [1, 6]) have proved the following lemma and corollary which give that,

under the condition that an_k < n - 1, {-l)"~kHai is strictly positive. In

particular, the following lemma gives that (-l)"~kGai is monotone increasing

as a function of b .
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Lemma 2.5. Let k G {1, ... , n - 1}, a G £ln_k , b e (0, B], and s G (0, b).
Then H(k, a, b; x, s), as a function of x, is the unique solution of the BVP,

Ly = 0,    0<x<6;       y«\0) = 0,    / = 0,..., k - 1;

yV\b) = -GM{k, a,b;b,s),        I = ax, ... , an-k.

Corollary 2.6. Let k £ {I, ... , n - 1} and a G £ln-k ■ Assume an_k < n - 1.
For 0 < bi < b2 < B,

(-l)n-kGai(k, a, 62; x, s) > {-\)n~kGai{k, a, b{; x, s),

(x,s)e(0,bl)x(0,bi),

(-\)"-kGk(k,a, b2; 0, s) > (-l)"-kGk(k,a, br,0,s),       SG (0, 6,).

Proof. Since H satisfies the BVP given in Lemma 2.5 and the signs of y(/) are

determined by Lemma 2.4, it follows that (details are provided in [8])

{-l)"-kHai(k, a, b; x, s) > 0,       (x, s) e (0, b) x (0, b),

{-\)n-kHk(k,a,b;0,s)>0,       sg(0,6).

Remark. Without further assumptions on the signs of the coefficients of (1.1),

the condition an_k < n-l cannot be removed. Let a = (k, ... , n-1), so that

(l.3(k, a, b)) represents (k, n - k) right focal boundary conditions. Then

G(k, a, b; x, s), the Green's function for the BVP, yW = 0, 0 < x < b,
T(k, a, b)y = 0, is independent of b (see [4, 14] or apply Lemma 2.5); i.e.,
H = 0.

For another example, consider the Green's function C7(l, a, b; x, s) of the

BVP, y" - y = 0, y(0) = y'(b) = 0. Here, H satisfies the BVP, y" - y =
0, y{0) = 0, y'{b) = -G2(l,a, b; b, s) = -G(l, a, b; b, s) > 0. Thus,
G( 1, a, b; x, s) is increasing as a function of b , whereas Corollary 2.6 gives

that, if a\ < 1, -G( 1, a, b; b, s) is increasing as a function of b. In general,

if a-n-k = n - I , then //„_i(/c, a, 6; 6, 5) — -G„(k, a, b; b, s), and results
concerning the sign of H„_i(k, a, b; b, s) require sign conditions on the co-

efficients a/, / = 1, ... , n , in (1.1). For further discussion along these lines,

refer to Nehari [13, 14] or Elias [4].
We are now in a position to prove Theorems 2.1 and 2.2. We shall first

determine the sign of the Green's functions in Theorem 2.7 and then compare

the Green's functions in Theorem 2.8.

Theorem 2.7. Assume ax < k - 1, and let a = {on , ... , a\ + n - k - 1). Then,

for 0<b<B,

(2.5) (-l)"-kGai(k,a,b;x,s)>0,        (x, s) G (0, b) x (0, b),

(2.6) (-l)"-kGk(k,a,b;0,s)>0,       se(0,b).

Proof. We first argue that Gai(k, a, b; x, s) or Gk(k, a, b; 0, s) do not

change sign in (0,6) x (0, b) or (0,6), respectively. The argument is anal-

ogous to that argument found in Coppel [3, pp. 106, 107]. Suppose that, for

some c G (0, 6), Gai (k, a, 6; c, s) changes sign. Find / G C[0, b] such that

f(x) > 0, 0 < x < 6 , and such that

fb
/   Ga]{k, a, 6; c, s)f(s)ds = 0.

Jo
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Then h(x) - J0 G{k, a, b; x, s)f{s)ds satisfies Ly = 0, 0 < x < 6, and

/j(')(0) = 0, / = Q,...,k- 1, hM{b) = 0, / = ax,...,ai +n-k- 1,
and /j(a,)(c) = 0. Since a\ < k, Muldowney's Mean Value Theorem [12,

Corollary 1, p. 375] applies and Lh changes sign in (0,6). But Lh = f so
<7a, (k, a, 6; c, s) does not change sign.

Now, suppose that, for some 5 G (0, 6), Gai(k, a, 6; x, s) changes sign

for some x G (0, 6). It then follows from the preceding paragraph that there is

c G (0, 6) such that Gai{k, a, b; c, s) = 0, 0 < s < b . Again, Muldowney's
Mean Value Theorem can be applied to obtain a contradiction.

Thus, Gai (k, a, 6; x, s) does not change sign on (0, 6) x (0, 6). A similar

argument gives that Gk{k, a, b;0, s) does not change sign for 0 < s < 6.

Moreover, since a = (on , ... , ai + n - k - 1) and Gai+n-k(k, a, 6; 6, s) > 0

by Lemma 2.4, it follows by Taylor's Theorem that (- l)"~kGai (k, a, 6; x, s)

> 0, (x, s) G (0,6) x (0, 6), and that (-l)"-kGk(k, a, b;0, s) >0,se

(0,6).
Finally, strict inequalities in (2.5) and (2.6) follow immediately from Corol-

lary 2.6. Let (x, s) G (0, 6) x (0, 6). Choose b\ such that max{x, s} < b\ <
b. Then

0<(-l)"-kGai(k,a,bl;x,s)<(-l)n-kGai(k,a,b;x,s),

0 < (-l)n-kGk(k, a, bx; 0, s) < (-\)"-kGk(k,a,b;0,s),

and the proof of Theorem 2.7 is complete.

Remark. An alternative proof of Theorem 2.7 can be constructed by: (i) extend-

ing Gustafson's convergence principle in [9] to cover Green's functions where

the boundary conditions are as given by T(k, a, b)y = 0; (ii) applying Lemma

2.4 to determine signs of appropriate derivatives of G(k, a, 6; x, s) for x just

to the left of 6 (with s fixed); and (iii) applying Corollary 2.6 together with
Rolle's theorem and the convergence principle to show that the sign of Gai for

x near 6 persists for x G (0, 6). The arguments do not require Muldowney's

Mean Value Theorem.

Theorem 2.8. Let k G {1, ... , n - 1} , a, P G £ln-k , a < B , and 0 < 6 < B.
Then, for I = 0, ... , a i,

(2 7) (-l)"-kG,(k, p , b; x, s) > (-ly-'Gtik, a, b; x, s),

(x,5)G(0,6)x(0,6),

(2.8)  (-l)"-kGk(k, 0, b;0, s) > (-l)"-kGk(k, a, b;0, s),       *G(0,6).

Proof. Let a, /? G £ln-k, and first consider the case where there exists j G

{1,...,«- k} such that ap = pp , if p ^ j, and Pj = a,- + 1. Note that ai <
k - 1. Let 5 G (0, 6), and set g{x) = G(k, p, b; x, s) - G(k, a, 6; x, s).
Then Lg = 0 on [0, 6] with

gM(0) = 0,     q = 0,...,k-l;        jr(9)W = 0,     q 6 {pu ■ ■ ■ , Pn-k}\{PjY,

gW(b) = -GPj(k,a,b;b,s).

By Lemma 2.4, {-l)"-k-JglM(b) < 0. By Lemma 2.3, {-l)"-kg^\x) > 0,

0 < x < 6; in particular, (2.7) holds for I = a\. It follows from the boundary
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conditions (1.3(fc, a, 6)) and integration that (2.7) holds for / = 0,..., a\.

The truth of (2.7) for arbitrary a < p follows from this special case.

Finally, g(A:'(0) ̂  0, by right disfocality. By (2.7), the boundary conditions

(1.3(A:, a, 6)), and Taylor's theorem, (-l)n~kg^(0) > 0; thus (2.8) holds,
and the proof of Theorem 2.8 is complete.

Theorems 2.1 and 2.2 now follow from Corollary 2.6 and Theorems 2.7 and

2.8.

3. A BROADER FAMILY OF BOUNDARY CONDITIONS

Define L by

(3.1) Ly = j;(") + ai(x)j;("-1)-r-----r-a„(x)>',        A<x<B,

where ai e C[A, B], / = 1, ... , n . L is left disfocal on [A, B] [11] if the
only solution of Ly = 0 satisfying y(/)(x/) = 0, / = 0,...,« — 1, where

A < x„_i < • • ■ < x0 < i?, is y = 0. For each aeflt given by (1.2(« - k)),
a G [A, B), consider two-point boundary conditions of the form

,-,„ u y{I)(a) = 0,        l = ai,... ,ak;
(3.2(k, a, a))

yW{B) = 0,        l = 0,...,n-k-l.

The results of §2 have analogues for the BVP, Ly = 0, a < x < B,
(3.2(fc, a, a)). The proofs can be obtained directly with analogous arguments,

or the results can be obtained from §2 with the change of variable t = — x,

r ~—s. In particular, if G(k, a, a; x, s) is the Green's function for Ly = 0,

a < x < B, (3.2(k, a, a)), then G(k, a, a; x, s) = (-l)"H(—x, -s), where

H(t, r) is the Green's function for the BVP

Ly = yW - ax(t)y(n~x) + ■■■ + (-l)na„(t)y,        -B<t<-a,

with boundary conditions (l.3(n-k, a, -a)). This statement is readily verified

using the four properties that uniquely characterize the Green's function of a

BVP. See [2, p. 192]. Moreover, L is left disfocal on [A, B] if and only if

L is right disfocal on [-B, -A]. Thus the sign properties of G are obtained

directly from the sign properties of H. We state the analogues of Theorems

2.1 and 2.2.

Theorem 3.1. Let k € {1, ... , n - 1}, a, P G £lk , a < P, and A < a < B.

Then, for I = 0, ... , ot\,

(-l)"-k+lGi(k,p,a;x,s) > (-l)"-k+lG,(k, a, a; x, s)

>0,        (x, s) G (a, B) x [a, B),

Gn_k(k, P, a; B, s) > Gn_k(k, a, a; B, s) >0,        se(a,B).

Theorem 3.2. Let k e {I, ... , n - 1}, a, P G Q.k, and ak < n - 1. Assume
a < P, A < a2 < a\ < B, and that one of the inequalities (a < P or a2 < a\)

is strict. For I = 0, ... , ax,

(_ i )*-k+'G,{k ,p,a2;x,s)>(-\ )n-k+lG,(k , a, a,; x, s)

>0,        (x,s)e{au B)x(ax,B),

Gn_k(k, p,a2;B,s) > G„_k(k, a, aK\ B, s) >0,        5 G (a,, B).
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In closing, assume that L is disfocal [13] on [A, B]. That is, assume there

is no nontrivial solution of Ly = 0 on [A, B] satisfying ,y(/)(x/) = 0, X/ G

[A, B], j = 0,... ,n-l. Let k e {1, ... , n - 1}, and define Q.cQ,kx Q,n_k
by

D. = {(a, a): a G £lk, a e Q,_t, and card{//: a^ < 1} + card{/z: a^ < /} > /,

1 = 0, ... ,n- 1}.

For (a, a), (/?, P) G Q., we say that (a, a) < (/?, P) if d < /? in Qfc and
a < p in Cln-k . Let A < a < b < B, and consider boundary conditions of the

form

exit-        „   h\\ y{1)(a) = 0,        I = d,, ... , ak;(3.3(a,a,a,6))
yl,(6) = 0,        / = ai,...,a„_jt.

Let G(a, a, a, b; x, s) denote the Green's function of the BVP, Ly = 0,

a < x < b, (3.3(d, a, a, 6)). An analogue of Lemma 2.3 can be obtained,

and the inductive techniques employed in §2 can be employed here to obtain

analogues of the results of §2. We close by stating analogues of Theorems 2.1

and 2.2 for the family of BVPs, Ly = 0, a <x < b , (3.3(d, a, a, 6)).

Theorem 3.3. Let (a,a), (^J)efl, (a, a) < (p, P), (a, a) ^ (/3,/?), and
A<a <b <B.

(i) If ai = 0, then, for 1 = 0, ..., an,

(-\)n-kG,('p,p,a, b;x,s) > (-l)"-fcG/(d, a, a, b;x,s)

>0,        (x, s) G (a, 6) x (a, 6).

(ii) //" ai = 0, f/zen, /or / = 0, ... , a\ .

(-l)n-k+lG,(p,0,a,b;x,s) > (-l)"-*+/G/(d, a, a, b;x, s)

> 0,        (x, s) G (a, b) x (a, b).

Theorem 3.4. Assume that (a, a) < (p, /?), max{ak, an_k} < n - 1, and

A < a2 < a\ <b\ <b2< B, and assume one of the inequalities (a, a) < (/?, /?),

a2 < a\, or b\ < b2, is strict.

(i) If di =0, then, for 1 = 0, ... ,a\,

(-\)"-kG,(p,p,a2,b2;x,s)> (-l)"-fcG/(d, a, a,, 6,; x, 5)

>0,        (x,s)e(ai,bi)x(al,bl).

(ii) // ai = 0, then, for I = 0,... , an ,

(-l)»-k+tG,(fi,P,a2,b2;x,s) > (-l)"-*+/G,(d, a, a,, 6!; x, *)

>0,        (x,5) G (ai, 60 x (a,, 6i).

Remark. Theorem 3.3 applies in the discussion, in the last paragraph of the

introduction, of the elastic beam problem.
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