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Abstract. We prove that a series derived using Euler's transformation provides

the analytic continuation of ((s) for all complex s ^ 1 . At negative integers

the series becomes a finite sum whose value is given by an explicit formula for

Bernoulli numbers.

1. Introduction

Euler computed the values of the zeta function at the negative integers us-

ing both Abel summation (75 years before Abel) and the Euler-Maclaurin sum

formula. (Comparison of these values with those he found at the positive even

integers led him to conjecture the functional equation 100 years before Rie-

mann!) Euler also used a third method, his transformation of series or (E)

summation (see §2), to calculate £(-«), but only for n = 0, 1,2, and 4. (See

[1; 4, §1.5; 5, volume 14, pp. 442-443, 594-595; volume 15, pp. 70-90; 7; 9,
§§1.3, 1.6, 2.2, 2.3; 10; 14, Chapter III, §§XVII-XX].)

We observe in §4 that this last method in fact yields

Z(-n) = (-l)nBn+x/(n + l)   forall«>0,

but we require an explicit formula for Bernoulli numbers that was discovered a

century after Euler. In §3 we justify the method by proving that a series used

in §4 gives the analytic continuation of C(s) for all 5 ^ 1 . Similar results

for approximations to Euler's transformation are obtained in §5, as well as an

evaluation of C'(0)/C(0) = log2?t.
In a paper in preparation, the author will apply the method to other zeta

functions and to Dirichlet L-series.

2. Euler's transformation of series

Any convergent series of complex numbers, written with alternating signs as

A = ax - a2 + a-i-,
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can also be written in the form

A = {ax + ±[(ax-a2)-(a2-a3)+ ■■■].

Repeating the process on the series in brackets, we have

A = \ax + \(ax - a2) + \[(ax - 2a2 + a3) - (a2 - 2a3 + a4) + ■ ■ ■ ]

and in general

oo k— 1   . ; oo .k

1 0 n=l

where A°a„ = an and

Akan = Ak~xan - Ak~xan+X = ^(-lrPW*
m=0 ^     '

for k > 1.   It is proved in [11, §33B] that the sum of the last series in (1)
approaches 0 as k -» oo, so that

oo OO      . j

1 0

which is Euler's transformation of series. (See [5, volume 10, pp. 222-227; 9,

§4.6; 11,§§35B, 59, 63].)

3. Analytic continuation of £(s)

Instead of working directly with £(s), which for a = Re(s) > 1 is given by
C(s) = l~s + 2~s + 3~s + ■ ■ ■ , let us consider the alternating series

(3) {(s) - 2 • 2~sC(s) = \~s - 2~s + 3"J - • • • ,

which converges for a > 0 (see §5).  Applying the Euler transformation, we

have, for a > 1,

°° AJ1_i

(1-21-)CW=E^7TT

(4) °
~  l-({)2-'+(^3-'---- + (-lV(j)(7 + ir

~ Z^ 2J+X

o

Theorem. The analytic continuation of ((s) for all complex s ^ 1  is given by

the product

(5) c(.) = (i-2'-T'f;^
0

in which the series converges absolutely and uniformly on compact sets to an

entire function.

Proof. Fix k > 0. Evidently

Akn~s = (s)k /   •■• / (n + xx-\-vxk)~s~kdxx ■■■dxk
Jo       Jo
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for k = 1,2,..., where (s)k denotes the product s(s + 1) • • • (s + k - 1).
Hence,

(6) \Akn~s\ < \(s)k\/na+k   whenever a + k > 0,

fe = 0,l,2,..., where (5)0 = 1. Now let S be a compact set in the half

plane a > 1 —k , and let Mn denote the maximum of \(s)k\/na+k on S. Then

(6) implies that \^Mn dominates the series

00

(7) 53(-l)"-1A*«-*
n=\

on S. It follows, using the triangle inequality, that the Euler transform of

Y,Mn dominates the Euler transform of (7), which, since A7'A* = Aj+k , is

™AJAkl~s _y, AJj-s

Is    ij+\     ~ Is 2i+x~k'
7=0 /=*

Multiplying this by \/2k and adding 2^0"' A7l~'s/2-'+1 produces the series in

(4), which, since k is arbitrary, therefore converges absolutely and uniformly

on compact sets to an entire function. Since the series in (3) has zeros at the

(simple) poles of (1 - 21-5)-1 except at s = 1 (for a direct proof see [12]), the

theorem follows.

4. Evaluation of ((-m)

Let m be a positive integer or 0. Note that (-m)j■■ = 0 and, hence, AJlm =

0 for j > m. Thus when s = -m the series in (5) becomes a finite sum. Its

value is given by a formula for Bernoulli numbers that Carlitz [2] attributes to
Worpitzky [15] (see also [3]), namely, the second equality in the following.

Corollary. For m = 0, 1,2,...,

n-m) =_l_T ^— = (-l)mBm+1

Alternatively, one can view C(-m) = (-l)mBm+x/(m + 1) as known, which

gives a proof of Worpitzky's formula (compare [6]).

5. Approximations to Euler's transformation

Note that (1), (3), and (6) imply (without using (2)) that for k > 1 the
product

(k~x \j\-s      1   °° \

(8)       as) = (i - 2'-t' E itVt + n E^1)"-1^""
V  0 n=l /

provides the analytic continuation of C(s) on the punctured half plane 0 > 1 - k,
s ^ 1 where the infinite series converges absolutely and uniformly on compact

sets to a holomorphic function. Moreover, except that the convergence will not be

absolute in the strip -k <o < 1 - k, this remains true for k > 0 and o > -k,
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5^1. (Proof Grouping terms in pairs in the even partial sums of the second

summation, we have

2N N

Y/(-l)"-]Akn-s = ^(A*(2rt-1)-S-Afc(2rt)-*)

n=l n=\

N

= ^A*+1(2«- l)~s.

n=\

Then it follows from (6) that both even and odd partial sums converge as re-

quired.) Since we can use (8) with k > m + 1 to evaluate C(-m), the approx-

imations (1) to Euler's transformation yield everything it does except formula

(5).
As an example, take k = 1 in (8):

C(s) = (1 - 2>-T' U + \ f^-ir1^ - (n + 1)-*)J

for o > -1, s ^ 1. (This formula appears in Hardy's proof of the functional

equation [8; 13, §2.2] and gave the idea for the present note.) Thus £(0) = -1/2

and, using Wallis's product for n/2,

C'(0)     „    n    ,     2244M = 21og2 + logm-... = log2;r,

which figures in the Hadamard product representation of the zeta function.
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