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Abstract. We   characterize   the   classical   type   orthogonal   polynomials

{Pnix)}^ satisfying a fourth-order differential equation of type

4

J2(My{i)(x) = Xny(x)
i=0

where lj(x) are polynomials of degree < i and Xn  is a constant. They are

only the orthogonal polynomials satisfying an orthogonality of the form

(Tj , W) + (t, , P'mP'n) + (T0 , PmP„) = 0      for m * R

where to , X\ , and tj are moment functionals.

1. Introduction

In 1929, Bochner [1] classified all orthogonal polynomial solutions to a

second-order Sturm-Liouville differential equation of the form

(1.1) i2(x)y"(x) + ll(x)y'(x) + £o(x)y(x)=Xy(x).

They are, up to a complex linear change of variable, the classical orthogonal
polynomials of Jacobi, Bessel, Laguerre, and Hermite.

Bochner's result naturally leads to a question of classifying all orthogonal

polynomial solutions to higher-order differential equations of the form

(1.2) f>(x)y(<>(x)=Aj;(x).
i=0

In order for equation (1.2) to have polynomial solutions of degree 0,1, ... , N,

it must have the form

N     i

(i.3) tE^°Ws^w
i=0 ;=0
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where

(1.4) Xn = ioQ + ntn + n(n - l)£22 +■ ■ ■ + n(n - l)---(n-N + l)£NN.

In 1938, H. L. Krall [6] found a necessary and sufficient condition for the

differential equation (1.3) to have orthogonal polynomial solutions.

Theorem (H. L. Krall [6]). Let {P„(x)}g° be an orthogonal polynomial set. Then

P„(x) satisfies the differential equation (1.3) for each n = 0, 1, 2,... if and

only if the moments {ovjg0 of {Pn(x)}0x' satisfy

(1.5) Sk(m)=   J2  YJ(l~kk~X)p(m-2k-\,i-2k-\)li>i-jom-J = 0,
i=2k+\ j=0 ^ '

1 < 2k+ I < N,  m = 2k + 1, 2/c + 2, ... , where P(n, k) = n(n - 1) • ••
(n - k + 1). Furthermore, N is necessarily even.

When N = 2r, r > 1, we call the r equations in (1.5) the moment equations

for {P„(x)}g°. Further, in 1940, H. L. Krall [7] classified all fourth-order
differential equations of the form (1.3) having orthogonal polynomial solutions.

Up to a linear change of variable there are seven such equations, among which

four are the iterations of the second-order differential equations satisfied by

the four classical orthogonal polynomials and the other three have nonclassical

orthogonal polynomial solutions. These polynomials were studied in detail by

A. M. Krall [3] who named them the Jacobi type, Legendre type, and Laguerre

type polynomials.
On the other hand, the four classical orthogonal polynomials are character-

ized as the only orthogonal polynomials whose derivatives also form orthogonal

polynomials. It was first proved by Hahn [2] (see also H. L. Krall [5, 8] and
Webster [13]).

In this work, we extend Hahn's theorem to include also the three classical

type orthogonal polynomials satisfying fourth-order differential equations. This

is the complete answer to the question in [12] (also raised by Professor W. N.

Everitt at the 7th Symposium on Orthogonal Polynomials and Applications,

Granada, Spain, 1991).

2. Main theorem

In this work, all polynomials are assumed to be real polynomials in one

variable. We use deg</> for the degree of a polynomial <p(x) and take degO to

be -1. We call any linear functional on the space of polynomials a moment

functional. We denote the action of a moment functional a on a polynomial

cp(x) by (a, cj)) and call {o-„}g° , where an := (a, x"), the moments of a . For

a moment functional a and a polynomial <p(x), we define the derivative a' of

a to be the moment functional defined by

(2.1) (o',Y(x)) = -(o,y,'(x))

and the moment functional 4>o through the formula

(2.2) {cpo , y,(x)) = (o, 4>(x)ip(x))

where y/(x) is a polynomial. Then it is easy to see that

(2.3) (cpo)' = cp'a + cPo'.
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Two moment functionals a and x are said to be equal and written a = x if

(a, 4>) = (t , <p) for any polynomial <p(x). Clearly, a = x if and only if they

have the same moments. For example, if we define a moment functional a by

(a,<p) =   /    0(x)exp(-x1/4)sinx1/4Jx
Jo

then a = 0; indeed, this result goes back to Stieltjes (see Widder [14, p. 126]).

Definition 2.1. A sequence of polynomials {P„(x)}q° is called an orthogonal

polynomial set (OPS) if
(i) {P„(x)}q° is a polynomial set in the sense that degP„ = n, n = 0, 1,

2, ... , and
(ii) there is a moment functional a such that

(o, PmPn) =Kn8mn,        m,n = 0, 1,2, ... ,

where Kn are nonzero constants. Then we call a an orthogonalizing functional

for the OPS {Pb(jc)}§° .

Now, we are ready to state our main theorem.

Theorem 2.1. Let {P„(x)}§° bean OPS. Then, for each n = 0, 1,2,..., P„(x)
satisfies the fourth-order differential equation of the form

(2.5) L4(y) =J2ti(x)y{i)(x) = £ ( £'«*' ) y{i)(x) = Ky(x)
i=o i=o \y=o        /

where U(x) ^ 0 and X„ = too + n£u + n(n - \)£22 + n(n - \)(n - 2)£^ +

n(n - l)(n - 2)(n - 3)£^ if and only if there are moment functionals x2£0,

Ti, and To such that

(2.6)
(x2,P'mP'tl) + (t,, P'mP'n) + (xo,PmPn) = Mn5mn,       m, n = 0, 1, 2, ... ,

where Mn are constants.

We need the following lemma, which is essentially a restatement of H. L.

KralFs theorem in §1 for TV = 4 expressed in terms of an orthogonalizing

functional instead of moments of an OPS.

Lemma 2.2. Let {P„(x)}o° be an OPS satisfying the differential equation (2.5)

for each n = 0, 1,2,.... Then a nonzero moment functional a is an orthog-

onalizing functional for {P„(x)}q° if and only if a satisfies

(2.7) 2(/4ff)' ~ho = 0

and

(2.8) (£Aa){3) - (£3a)" + (£2a)' -£xo = 0

where 0 in the right-hand sides mean zero moment functionals.

The two equations (2.7) and (2.8) when they are understood as differential

equations for a function are exactly the symmetry equations of which any non-

trivial classical solution is a symmetry factor for the differential expression L4

in (2.5) (see Littlejohn [10, 11] and A. M. Krall and Littlejohn [4]). They are
used to yield the distributional weights by Littlejohn [11] for the classical type

orthogonal polynomials (see also [9, Theorem 2.3]).

As an immediate consequence of Lemma 2.2, we have



488 K.. H. KWON, L. L. LITTLEJOHN, J. K. LEE, AND B. H. YOO

Corollary 2.3. Let {P„(x)}q° be an OPS relative to a moment functional a

satisfying the differential equation (2.5) for each n = 0,1,2,.... Then for

any polynomial <p(x) we have

(2.9) (L40)cr = WW - W(\(tio)' - £2a)]' + fao.

Proof. Using (2.3), (2.7), and (2.8), it comes easily that

(L4cp)a = <pw£Ao + <p{i)£3cj + cp"£2o + 4>'£xa + <p£o(J

= [<p"l4o]" - <p"{Uo)" + [<p'l2o]' - <p'(£2(T)' + 4>'£xa + <p£0o

= W'UoV - [<I>'($(W - lie)]' + Woo.

For later use, we note that (2.9) comes only from (2.7) and (2.8).

Lemma 2.4. Let {P„(x)}o° be an OPS relative to a and x a moment functional.

Then (x, P„) — 0 for n > k, k > 0 an integer if and only if x = (p(x)o for

some polynomial <p(x) of degree < k.

Proof. Assume that (t, P„) = 0 for n > k, and consider x = (YJj^ocjPj)a

where c, are constants. Then (?, Pn) = 0 for n > k and so x — x if and

only if (x,P„) = (x, Pn) for 0 < n < k. Since (x, Pn) = £-=0c>, PjP„) =

cn(a, P2), we have t = (E;=o CjPj)a with Cj = (t , Pj)/{a, Pj), 0<j<n.

The converse follows immediately from the orthogonality of {P„(x)}q° relative

to a.

Proof of Theorem 2.1. Let {P„(x)}g° be an OPS relative to a with (a, PmPn)

— K„Smn, K„ ^ 0, m, n = 0, 1, 2, ... . First assume that, for each n =

0,1,2,..., P„(x) satisfies equation (2.5). Then we have by using (2.1), (2.2),

(2.3), and (2.9)

XnKn5mn = Xn(a, PmPn) = (a,PmL4(Pn)) = (L4(Pn)a, Pm)

= ([P'n'Uor - [P'n(\(ha)' - £2a)]' + Pn£o<J, Pm)

= (£4a, P'mP':) + (i(/3ff)' - £2a, P'mP'n) + (loo, PmPn).

Hence, we have (2.6) with x2 — £40,  x\ = \(t$o)' - £2o,  To = £00, and

Mn = XnK„ . To show x2 ^ 0, write U(x) = Y?ocjPj(x) an<^ assume x2 = 0.

Then, for 0 < k < 4, we have

4

0 = <t2 , Pk) = (Uo ,Pk) = Y, cj(° > pipk) =ck{o, Pi).
0

Hence, we have ck = 0 for 0 < k < 4 and so U(x) = 0, which is a contradic-

tion.

Conversely, we assume that {P„(x)}q° satisfies (2.6). We may assume that

all Pn(x) are monic. Consider the equation (2.6) for m = 0, 1, 2, 3, 4.

For m = 0, we have (to , Pn) = 0 for n > 0 so that by Lemma 2.4

(2.10) T0 = ^

for some polynomial £q(x) of degree < 0.

For m = 1, we have for n > 1

0 = (T, , P'n) + (T0 , PxPn) = -(x\, Pn) + (o, £0PxPn) = -(t; , P„),
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so that by Lemma 2.4

(2.11) x\ = -£xo

for some polynomial ^i(x) of degree < 1.

For m — 2, we have for n > 2

o = (t2, ip1;) + <ti, p{p'n) + (t0, p2p„)

= 2(x'{,Pn) - ({Pfa)', Pn) + (a,£oP2Pn)

= 2(X'{ - T, , P„) + (O , (£XP^ + £oP2)Pn) = 2(4 - Ti , Pn) ,

so that by Lemma 2.4

(2.12) x'{-xi=£2a

for some polynomial £2(x) of degree < 2.

For m — 3, we have for n > 3

0 = (T2 , P%PZ) + (T, , PiPfi + (To , P3Pn)

= 12(T'2 , Pn) + (X'i - Ti , P;'Pn) + (O , (liPi + £oP,)Pn)

= \2(x'2,Pn) + (o, (£2P3" + £xP; + £oPi)Pn) = l2(x'2,Pn),

so that by Lemma 2.4

(2.13) t'2 = ^3<t

for some polynomial £3(x) of degree < 3 .
For m = 4, we have for n > 4

0 = (X2, P'm + (T, , P',P'n) + (T0 , P4Pn)

= (P<4)T2 + 2ifV2 + P'Jx'i , Pn) - (Pi'T, + P\x\ , Pn) + (P4X0 , Pn)

= 24(t2 , P„) + (o, (£3Pf] + £2P'l + £XP[ + £oP,)Pn) = 24(t2 , P„),

so that by Lemma 2.4

(2.14) x2 = £4o

for some polynomial £4(x) of degree < 4. With these tj(x) thus obtained, we

have (2.7) and (2.8), and so (2.9). Moreover, we have from (2.12) and (2.13)

(2.15) T, = i(/3ff)'-/2ff.

Since L4(P„)(x) = Y^=0£i(x)Pn'\x) is a polynomial of degree < n, we may

write it as L4(P„)(x) = Y?j=ocjPj(x) witn constants Cq,C\, ... ,cn. Then we

have for m = 0, 1.n from (2.9), (2.14), and (2.15)

Cm(o,Pm) = la, PnJTcjPj) = (G,PmL4(Pn)) = {L4(Pn)(T, Pm)

= ([PHUa]" - [Pn(l2(W - ha)\ + Pn£oo, Pm)

= (T2 , P'^PH) + (T, , PmP'n) + (T0 , PmPn) = M„Smn.

Hence, we have cm = 0 for m — 0, 1,2,... , n — I and so L4(Pn) = c„P„ =

X„P„ by comparing coefficients of x" from both sides. Finally we have U(x) £

0 since t2 = £40 ^ 0.
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Remark. Note that the term £o(x)y = £ooy may be cancelled from both sides of

equation (2.5). In other words, we may take £00 to be any number in equation

(2.5). Therefore, we may require Mn ^ 0, n > 0, since we may have Xn ̂  0,

n > 0, by taking |A>ol to be large.
Inspection of the proof of Theorem 2.1 shows that Theorem 2.1 remains to

hold even if we drop the requirements U(x) ^ 0 and t2 ^ 0.

Thus, we have as an immediate consequence of Theorem 2.1:

Theorem 2.2. Let {P„(x)}§° bean OPS. Then, for each n = 0, 1,2,..., Pn(x)
satisfies the second-order differential equation of type

(2.16) L2(y) = ^li(x)y^(x) = £ ( £^J' ) y{i)(x) = Xny(x)

;=0 1=0   \;=0 /

where £2(x) ^ 0 and Xn = Iqq + "^11 + n(n - \)£22 if and only if there are

moment functionals xx£0 and To such that

(2.17) (xl,PnlP„) + (xo,PmPn) = MnSmn,        m, n = 0, 1, 2,... ,

where Mn are constants (which may be taken to be nonzero if one wishes).

Proof. Necessity comes from Theorem 2.1 by taking U(x) = ^(x) = 0 so

that t2 = 0, T] = -£2o, and To = £qo . Conversely, equation (2.17) may be

understood as equation (2.6) with t2 = 0. Then, each Pn(x) must satisfy the

differential equation (2.5) with £A(x) = 0. Then we must have £-$(x) = 0 also

since the order of such a differential equation must be even by H. L. Krall's

theorem in §1.

Theorem 2.2 is a restatement of the well-known characterization theorem of

classical orthogonal polynomials by Hahn [2]. In fact, it gives a slight improve-
ment of Hahn's theorem as we now show.

Definition 2.2. A polynomial set {P„(x)}g° is a weak orthogonal polynomial set

(WOPS) if there is a nonzero moment functional a such that

(2.18) (a, PmP„) = Kn5m„,        m,n = 0,l,2,...,

where Kn are constants.

The constants K„ in Definition 2.2 may be 0 for some n but not for all n

since 0 ^ 0.

Theorem 2.3. Let {P„(x)}g° be an OPS. Then the following statements are all

equivalent.

(i)   {P„(x)}q° satisfy any one of the two equivalent conditions in Theorem

2.2.
(ii)   {P^W is an OPS.

(iii)   {Pn+l(x))r is a WOPS.

Proof. Let {P„(x)}g° be an OPS relative to 0 with (0, PmPn) = Kn5mn , Kn ^

0.
(i) => (ii) Assume (i). Then we have

(-l20 , P'mP'n) + (£0O , PmPn) = XnKnSmn

so that -(l2a, P'mP'„) = [n£u + n(n - l)£22]K„Sm„ .
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On the other hand, (i) implies that {Pn(x)}0x must be essentially one of

the four classical orthogonal polynomial sets for all of which we have n£\\ +

n(n - \)£22 ̂  0, n > 1 (see [1, 8]). Hence, {P^+i(x)}g° form an OPS relative

to £2o.

(ii) => (iii) It is trivial from the definition of WOPS.
(iii) => (i) If {P^x)}^ is a WOPS relative to x, then we have (2.17) with

Ti = t and To = er .

Finally we give the explicit representations of moment functionals t2 , Ti ,

and To in Theorem 2.1 for the classical type orthogonal polynomials. We note

first that To can be taken to be 0 since we may take £q(x) to be 0 in equation

(2.5) (cf. (2.10)).
Let {P„(x)}o° be an OPS relative to a which satisfies the differential equa-

tion (2.5). Then the distributional representation w(x) of a can be obtained

by solving equations (2.7) and (2.8) with w(x) instead of a simultaneously in

the distribution space (cf. [11]). Then the representations Wj(x) of x}■■, j = 1,

2, can be obtained immediately from equations (2.14) and (2.15).

In the following examples we follow the notation in [3] and use H(x) to

denote the Heaviside step function.

Example 2.1. Legendre type polynomials Ln(x) are polynomial solutions of

(x2 - l)2y(4) + 8x(x2 - l)y(3) + (4a + 12)(x2 - \)y" + Saxy' = X„y

which are othogonal relative to

w(x) = (a/2)H(l - x2) + (l/2)[S(x - 1) + S(x + 1)].

Hence, we have from equations (2.14) and (2.15)

Wi(x) = a[2a(l - x2) + 4]H(l - x2)

and

w2(x) = (a/2)(x2 - l)2H(l -x2)

so that {L„(x)}o° has the Sobolev type orthogonality

(a/2) J (x2-\)2L"m(x)L"n(x)dx

+ a      [2a(l -x2) + 4]L'm(x)L'n(x)dx = 0,        m^n.

Example 2.2. Laguerre type polynomials Rn(x) are polynomial solutions of

x2y(4) - (2x2 - 4x)y(3) + [x2 - (2R + 6)x]y" + [(2R + 2)x - 2R]y' = X„y

which are othogonal relative to

w(x) = (l/R)S(x) + H(x)exp(-x).

Hence, we have from equations (2.14) and (2.15)

wi (x) = 2[(R + 1 )x + 1 ]H(x) exp(-x)

and
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w2(x) = x2H(x)exp(-x)

so that {i?„(x)}g° has the Sobolev type orthogonality

<-oo

/    x2exp(-x)R„(x)R''(x)dx
Jo

/•oo

+ 2       [(R+l)x + l]exp(-x)R'm(x)R'n(x)dx = 0,        m ^ n.
Jo

Example 2.3. Jacobi type polynomials Sn(x) are polynomial solutions of

(x2 - x)2y(4) + 2x(x - 1)[(q + 4)x - 2]y(3>

+ x[(a2 + 9q + 14 + 2M)x - (6a + 12 + 2M)]y"

+ [(a + 2)(2a + 2 + M)x - 2M]y' = Xny       (a > -1)

which are orthogonal relative to

w(x) = (l/M)S(x) + (1 - x)aH(x - x2).

Hence, we have from equations (2.14) and (2.15)

Wi(x) = 2[-(a + 1 + M)x2 + (a + M)x + 1](1 - x)aH(x - x2)

and
w2(x) = x2(l - x)2+aH(x - x2)

so that {^(x)}^0 have the Sobolev type orthogonality

/ x2(l-x)2+<X(x)S»cix
^0

+ 2 / [-(a+l+M)x2 + (a + M)x+l](l-x)aS'm(x)S'n(x)dx
Jo

= 0,        m ^ n.
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