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AN INTERPOLATION THEOREM AND A SHARP FORM
OF A MULTILINEAR FRACTIONAL INTEGRATION THEOREM

JONG-GUK BAK

(Communicated by Andrew M. Bruckner)

Abstract. We prove a sharp interpolation theorem for Orlicz spaces with the

Luxemburg norm. As a corollary we obtain a sharp form of an exponential

integrability theorem, due to Grafakos, for the multilinear fractional integration

operator. This generalizes a theorem of Adams.

1. Introduction

In his 1988 paper [A] Adams proved a sharp form of certain limiting cases of

the Sobolev embedding theorem by first establishing the following exponential

integrability theorem for the fractional integration operator Ia (Riesz potential

of order a) defined by Ia(f)(x) = /R„ f(x - y)\ y\a~ndy (0 < a < n). The

symbol p' = -^ denotes the conjugate exponent to p, wn-X the surface area

of the unit sphere in R" , and |Q| the Lebesgue measure of the set Q c R" .

Theorem A (Adams [A]). For p £ (1, oo) and a = &, there is a constant

Co = Co(p) depending only on p such that for all f £ LP(R") with support

contained in a domain Q in R" , |Q| < oo,

1    f       (   n     Ia(f)(x)p\J
1 7^7 / exp-"V ,v  ;     )dx<c0.

n

Furthermore, (1) fails if ^— is replaced by a larger constant.

Grafakos [G] extended this result to cover a multilinear analog of Ia , namely,

the operator Ia(fx, ... , fK) defined by

/«(/.,... ,/*)(*) = jfi(x-exy)---fK(x-6Ky)\y\a-ndy,

R"

where 0, e R\0, 1 < j < K. He proved the following theorem, which may be

called a multilinear fractional integration theorem.

Theorem B (Grafakos [G]). Let p £ (1, oo), \ = £f=1 j-, Pj £ (I, oo], and

a = i1 ■ Assume the real numbers 6j ^ 0 are distinct. Let B be a ball in R",
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and let f £ LP> be supported in B. Then for any y < 1, there exists a constant

Co(y) depending only on n, a, 6j 's, and y such that

(2) '/e*p(^^p#'W0<rt,
,   \B\ J \wn-\       ll/illp, ■■■\\Jk\\Pk       J

B

where L = U^iWjl"1"' ■ Furthermore, (2) fails if y > 1.

Note that Theorem B leaves the case y = 1 open. The proof of (2) was based

on complicated estimates involving properties of the multisublinear maximal

function defined by

M(fx,... ,&)(*) = sup       *    .   /       \Mx-exy)-.-fK(x-6Ky)\dy,
r>0  \B(U, r)\ JBio,r)

where 5(0, r) is the Euclidean ball of radius r centered at the origin in R" .

(Here 0, £ R"\0 are assumed to be distinct.) The purpose of this note is to

show that the end point case y = 1 of (2) is actually an easy consequence

of Theorem A, once we establish a sharp form of a multilinear interpolation

theorem for Orlicz spaces (with the Luxemburg norm). We will state and prove

this interpolation result in §2. Our observations may be combined with the

known results and stated as follows:

Theorem 1. Let K > 1, p e (1, oo), a = f, | = £*=, j-, and pj £ (1, oo].

Then there exists a constant en = Co(p) depending only on p such that for all

fj £ Lpi(R") with support contained in a domain Q, in R", |Q| < oo,

(3) '   /exp(^L_ UM... ..Mx)'\d
\&\J \Wn-l        ll/llU-'-ll/jfllp, /

n

where L = Yif=x \dj\"/Pj ■ Furthermore, (3) fails if ^— is replaced by a larger

constant.

Remark. The constant cq in (3) is in fact identical to the one appearing in

(1). So it depends only on the ratio n/a — p. On the other hand, note that

the constant Co(y) in (2) depends on the other parameters also. In particular,

C0(y) -> oo, as y -* l~ .

Theorem 1 will be proved in §3.

2. A MULTILINEAR INTERPOLATION THEOREM FOR ORLICZ SPACES

Let (X, J?, p.) be a cr-finite measure space. A convex function Q: [0, oo) ->

[0, oo] is called a Young's function if Q(0) = 0 and Q is not identically 0 or

oo on (0, oo). Given a measurable function / on X we let

ll/llg = inf 11 > 0 : f Qr-y)dp. < l|    (Luxemburg norm),

||/||o=    sup        fgdp (Orlicz norm),
ll*llo«<i J

where Q* denotes Young's complementary function of Q (defined by Q*(t) =

sups>olst ~ Q(s)] f°r ' > 0).   ||/I|q and ||/||g are equivalent norms on the



MULTILINEAR FRACTIONAL INTEGRATION 437

Orlicz space L<*{X) = {/ : ||/||e < 00}. The letters <D, Q, and 7? (with
subscripts) will stand for Young's functions. Given a Young's function Q its

(generalized) inverse is defined by Q~x(t) = sup{/ > 0:Q(l) < t} (for / > 0).

We will write Re for Young's complementary function of Qe, £ = 0, 1. Rs

will denote the intermediate function defined to be the inverse of the function

R~x(t) = (RQX(t))x-s(R-l(t))s for 0 < 5 < 1 . For more details on Orlicz spaces

see [KR, R].
We now state our interpolation result. Note that all the norms in the state-

ment of Theorem 2 are the Luxemburg norms (see the remark after the proof

of the theorem). Let (Xj , J(j, pf) be a-finite measure spaces and

T: L^'(XX) x • • • x L*K-'{XK) -» LQ'(X)

denote a multilinear operator. Me will denote constants independent of the

functions fj.

Theorem 2. Let T be a multilinear operator such that

K

\\T(f,... ,h)\\Ql <Mtl\\\fj\\»hl,        / = 0,1.
7=1

If <S>~]s(t) = (©jiW)1-' • <Pj}i(t)Y - ■ 1 < J < K, 0 < s < 1, and Qt = (Rs)*,
then

(4) \\T(f,... ./rJllflf ̂^"'^flllWIk.,

where f are (integrable) simple functions.

The following lemma is stated on p. 135 of [KR] in the case when p is

finite. Essentially the same proof can be used to show that it is valid when p
is cr-finite and / e Lx n LQ(p). We wish to thank Steve Bellenot for helpful

conversations about the lemma.

Lemma 3. If Q and Q* are continuous and f £ Lx n L°-(p) then

\\f\\Q = ™p{jfgdp : \\g\\*Q.<\\.

Proof of Theorem 2. As was observed in [R] we may assume all of our Young's

functions are continuous and strictly increasing. By Lemma 3 we have

||r(/,,... ,/0||a+=supj JT(fx,... ,fK)gdp:\\g\\l<l\,

if the /)'s are integrable simple functions. Fix a number 5 £ (0, 1). For

I<j<K,£ = 0,l, and z 6 C, let f and g be (integrable) simple
functions with ||./}||<j>; , = 1 and \\g\\*R = 1 . Then it suffices to show that |7| =

I/7X/i, ••• . h)gdp\ < MX~SM\. Let aj,t = O"1,, aJtI(t) = (a^oW)1"2 •

(ajA(t)Y , Pi = RJ1, and fiz{t) = (h(t)Y~z • (^i(0)z. Define
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Let e > 0. Since 7?^ is continuous by assumption, we have

i=ii^=iDfi(i+y*^(/cki)^

(see [KR, p. 92]). Hence there exists a number ks,e £ (0, oo) such that

^(l+JR^^g^Kl+e.

Now define

g: = T^-Pz(Rs(ks,E\g\))'e'^g).

Then I(z) = J T(fXtZ, ... , fx,z)gzdp can be shown to be continuous in the

strip {z e C: 0 < Re z < 1} and analytic in {z £ C : 0 < Re z < 1} (see [R]).

By Holder's inequality (6),

|/(WI< lira,*,."  ,fK,iy)\\Qo-\\giy\\R0
K

<M)ii&jj0nn//.frik.o  (^eR)-
7 = 1

Now /*;,o(|/7.fr|)^ = /*;,o(^,o(*7.*(l/-|))) = f ®j A\fj\) < 1' since
ll/lk,,, = 1. So ||/7.,yHi0<l.Also,

= kh{1 + j' R0(MPs(ks,e\g\)))^

= -£-e(l + jRs(ks,e\g\)\<l+e.

Therefore, \I(iy)\ < (1 + e)M0 VyeR. Similarly, |7(1 + iy)\ < (1 + e)Mx .
Hence by the three lines theorem, it follows that

\I\ = \I(s)\<(l+s)Mx-sMsx,        0<5<1.

Since e > 0 was arbitrary, we conclude that |7| < M0x~sMf.   □

Remark. Rao (see [R, Theorems 1, 2, and 4]) originally proved an analog of

Theorem 2 with the sharp constant Mq~sMx using the Orlicz norm on both

sides in place of the Luxemburg norm. Since the two norms are equivalent

( II/Hq < \\f\\*Q < 2||/||(2 ), it is easy to see that Rao's result implies (4) with the

constant M0X~SM\ replaced by AM0x~sMf with some constant A > 1 (seethe

remark following Theorem 2 in [R]; also see [M, p. 102] in this connection).

Corollary 4. Let T be a multilinear operator such that for pjj £ [1, oo]

lira,- ,fK)\\Q<Mef[\\fj\\Phl       (£ = 0,1).
7=1
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//J. = _l_ = i=£ + ^L_j  Kj <K, 0<s<l, then
J    Pj Pj.s Pj,0 P),\ —J   — —       —

lira,... ,fK)\\Q<Mx-sM(f[\\fj\\Pr
7=1

Proof. Just take Qt = Qf = Q, and <bj,s(t) = tp'-> (when pitS = oo, take
<Pj >s(t) = 0 for t < 1, and = oo for / > 1) in Theorem 2. (In fact, in this

case the arguments simplify considerably. So we may give a short direct proof

with gz = g and

fj,z = \fj\PilPi{z)-ei«*W    (if pj <oo),

where -4jy = J=* + -^ . (Let f tZ = f ,if pj = oo.) The rest proceeds exactly

as in the proof of the Riesz-Thorin theorem (see [SW]) once we use Lemma 3

and Holder's inequality (6).)   D

Corollary 5. Let K > 2, p £ [1, oo), where ± = £*=, j-, and ps £ (1, oo].

Suppose T is a multilinear operator and that

(E;) lira,-.- ,A)llQ<^l|/;l|pnil^lloo       (7 = 1,••• ,*)•

Then

iira,..-,A)iic<n(^;/pjii/7iu)-
7 = 1

Proof. We use a straightforward induction argument. If K = 2, the corollary

follows from Corollary 4. Now assume that the corollary is true with K replaced

by K - 1 for some K > 3 . Interpolating the estimates ( Ek ) and (E7), using

Corollary 4, gives for 1 < j < K - 1

(Fy)     iirai,...,/jc)iiG<^/;,^rii/iciipji/;ii, n h/<ii«"
<**,7

where ^ = Yli=x p ■ We may assume q < oo, since otherwise there is nothing

to prove. Now fix a function /^ and apply the induction hypothesis to the

estimates (F,), I <j <K-l (with the constants M} = Mpk,Pk Ml-,9\\fK\\PK ).

We get

lira.,... ,A)iic<n^7/Pjii/7^)
7 = 1

K— 1 K

=Mp^wfK\\pK n{Mpjipiwfj\\Pj)=n(<pjii/7'iu)- °
7=1 7=1

3. Proof of Theorem 1

Fix a domain Q in R" , 0 < |Q| < oo, and p £ (1, oo). Define a Young's

function Q by Q(f) = ^nj(exp(^r/) - 1), / > 0, where cx = c0 - 1   (> 0)
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and Co = cq(p) is the constant appearing in (1). Then (1) may be rewritten as

WH' •
n

which is equivalent to the norm estimate

(7) ||/q(/)IIg<II/IIp   (v/gL"(Q)),

in view of the definition of the (Luxemburg) norm. In exactly the same way,

the estimate (3) is equivalent to

K

(8) ||/«(/,,... , fK)\\Q < L-1 • J] UjWpj   (V// e L"'W ,l<j<K).
7=1

We will deduce (8) from (7) and Corollary 5. We have for 1 < j < K

iu/i,... ,fK)(x)\< f\fj(x-djy)\ iyrB^nn^ii~

= \dJ\-aIa(\fJ\)(x)ll\\fe\\oo.
Ill

Hence

l|/a(/l , • • •   , h)\\Q < |0yn|/a(L/}|)||Q U \\ ft \\oo
14)

<i^-rQii/-ii,niwii<» ^ w (!<j<^)-
t¥J

Therefore, an application of Corollary 5 gives

K

IIU/i,... ,A)lle<n(l07rQpMll/7lk)
7=1

= \[(\ej\-nlp>\\fj\\p1)    (since a = n/p)

= L-xf[\\fj\\Pj,
7 = 1

with L = rjf=, \dj\n/Pi. This finishes the proof of ( 8 ) and Theorem 1.   □
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