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A DISCRETE FRACTAL IN Z|
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(Communicated by Lawrence F. Gray)

Abstract. In this paper, we show that the level sets of mean zero finite variance

random walks in R1 form a discrete fractal in the sense of Barlow and Taylor.

Analogously to the Brownian motion result, the Hausdorff dimension of the

level sets is almost surely equal to | .

1. Introduction

Let Yi ,Y2, ... be an independent sequence of identically distributed "Ld-

valued random variables with mean vector zero when it is defined. Assume that

d > 2, and define the corresponding random walk T„ = £"=1 Yj. Suppose

there exist constants Ci and c2 such that, for all x, y eZd with x ^ y,

ci\x -y\a'd < E* £ \{y)(Tn) < c2\x - y\a~d

n

for some fixed 0 < a < 2 with a < d. (In particular, the random walk is

transient.) Then among other interesting results, in [BT2] Barlow and Tay-

lor prove that the range of the walk {Tj; j > 1} has a structure similar to

that of a stable Levy process with index a. More precisely, they proved that

dim//((J^,{r,}) = a , almost surely. Here dimn(A) denotes the discrete Haus-

dorff dimension of Borel set A C Zd (see [BT1] or [BT2]). The above result

shows that many of the dimension properties of stable processes in Rd have

rigorous discrete analogues in Zd. Such ideas are useful and have appeared

in the physics literature; see [N]. Motivated by this, one wants to know what

happens in the case of recurrent random walks. We shall start by considering

lattice walks. To this end, let Xx, X2, ... be i.i.d. Z1-valued random variables

with mean zero and finite variance. Define the random walk t\n = Y?j=\ Xj ■

Unless specifically mentioned to the contrary, we always take £o to be zero. Let

Z denote the "zero set" of £,, i.e.,

(1.1) Z = {j> 1:^ = 0}.
Following [BT2], define %? to be the collection of all monotonically increas-

ing functions, h: R\ i-> R^ , satisfying h(0) = 0 and

h(2t)<Khh(t)   forall0<><i.
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Here Kn depends only on the function h e W whose elements are said to be

measure functions. Corresponding to every h e %? define, for all ^CZ|,

(1.2)

mh(A) = f>in Jf> (%^) : Bj € €, An[2»~2, 2""1) C {Jb\ ,

where € is the collection of all intervals in Zl+ which are of the form [a, b),

a < b both in Z|. This is the discrete Hausdorff ^-measure that appears

in [BT1, BT2] specialized to the case of Z\. When h(x) = x? for p > 0,
we write m$ for mh . Based on this, one can define the (discrete) Hausdorff

dimension of A CZl+ as

(1.3) dimH(A) = inf{p > 0: mfi(A) < oo}.

For properties of discrete Hausdorff measure and dimension, see [BT2].

The main results of this paper are the following:

Proposition 1.1. Suppose /ie J satisfies

fe~e h(e)^log\og(l/E) ^ ^
/      --—T7^-de < oo.

Jo e3/2

Then almost surely, mn(Z) < oo.

Proposition 1.2. Let h e %? be given by h(e) = y/e / (\og(l / e) V 1). Then almost

surely, mh(Z) — oo.

The following is immediate from Propositions 1.1 and 1.2.

Corollary 1.3. With probability one, dimH(Z) = \ .

The above corollary shows that the discrete fractal index of Z is the same

as the fractal dimension of the zero set of Brownian motion.

The proofs of Propositions 1.1 and 1.2 appear in §2. In §3 we first present an

extension of Corollary 1.3 to some lattice-valued random walks in the domain

of attraction of a-stable Levy processes. Then we show how to prove a suitable

restatement of Corollary 1.3 for all random walks in the real line which have

mean zero and variance one. By scaling, this clearly implies the corresponding

result for all mean zero finite variance random walks.

Finally it should be pointed out that we have used the term "(discrete) fractal"

rather loosely. However, with little extra effort, our estimates imply that in the

situation of Corollary 1.3, for example, dim^(Z) = \ almost surely. Here

dim/> denotes the discrete packing dimension as defined in [BT2]. In other

words, the above level sets are indeed fractals as defined by [BT2].

Throughout, # A will denote the cardinality of A c Z|, and cx,c2, ... are

constants whose value is unimportant and may change from line to line.
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2. Proofs

Define for 0 < X < 1 , k > 1 , and n > 0,

n

(2.1a) ,/(«) = £l{o}(^) = #(Zn[0,«]),

OO

(2.1b) M(A)=E5>'1 ,„}(<?;),
7=0

(2.1c) £(A) = EAr|,

(2.Id) rt = min{« > 0: n(n) = k}.

We start by recalling some basic identities and inequalities.

Lemma 2.1. Suppose £ is any random walk on Z1 (no restrictions on its mean

nor variance). Then, for all 0 < X < 1 and all k>\,

\l + u(X)J

Proof. By the Markov property,  {Tk; k > 1} is an increasing random walk;

therefore, for all X e (0, 1),

(2.2) EA7"* = g(X)k.

Now we write
oo

u(X) = EY/V(r,(j)-r,(j-l)).
7=0

Since n(j) - rj(j - 1) = J2T=\ !{7'}(^fe) > me aDove expression is equal to

fc=l tw

The lemma follows from the above identity and (2.2).   D

Remark 2.1.1. (1) If EX, = 0 and EX2 = 1, using the saddle point method
one can see that as X —> 1

(2) For any random walk £ , the following holds:

sup(l -atVW^i+ «(*))"*-*")
0<A<1

< P(q(n) > k) <   inf  ( , m(^,.>)   A"".

For this and more, see [FP].
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Corollary 2.2. If EXX = 0 and EX2 = 1, then almost surely

,;_        r\(n)
lim sup    . = 1,

«^oo   yJ2n\og\o%n

and

limsup«~' max    max    J——(n(k + j) - n(j)) < oo.
„^oo j<2"-23<k<2"~2 V      k

Proof. The first statement is well known and is a consequence of Remarks

2.1.1(1), (2). Indeed (see [K, FP]), Remark 2.1.1 implies that, for all e > 0,
there exists K(e), c(e) > 0, such that, for all k > K(e),

(2.3) ¥(n(n) >k)<c(e)exp(-(l -e)k2/2n).

For the second result notice that by the strong Markov property and (2.3) for

all e > 0 and all x > K(e)

P   3<max_2 y/logk/k(ri(j + k) - n(j)) > x

< 22n~4    max   f(n(j + k) - n(j) > xJk/\ogk)
3<k<2"~2 V

j<r~2

<22n max V(n(k) >xJk/logk) < 22"c(e)exp(-log2(l -e)x2/2n).
k<2n-l V

The second result now follows from the Borel-Cantelli lemma.   D

Proof of Proposition 1.1. Define xx = min{j > 1:^ = 0}, t2 = min{7 >

Ti: ij = 0}, etc. Let Bk = [rk, xk + \). Then it is easy to see that Bj e £ for

all j > 1 and

(2.4) Zn[2"72,2"-')C (J Bj.

{j :   2"-2<Tj<2"-'}

Therefore, our choice of Bj given by (2.4) is a possible covering of Zn

[2"~2, 2""1). Substituting this in (1.2), we see from Corollary 2.2 that there

exists an almost surely finite random variable V such that, with probability

one,

oo     oo

n=\ j=\

oo

= ^/2(22-")(?7(2"-1 - 1) - ?7(2"-2 - 1))

n=\

oo

< c3VKh Y, h(2~n)y/2n log log 2"    (since h e •f)

«=i

fe" h(e)^\og\of>(l/E)
< CiY \-—-^-rz-de < oo.

Jo e3/2

This finishes the proof of Proposition 1.1.   D
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Proof of Proposition 1.2. Let Bin = [a,,n , £>,-,„) DZ+ be any (possibly random)

covering of Z n [2n_2, 2"_1). Corollary 2.2 implies that, for all e > 0, there

exists M such that, for all n > M,

(#Bj,„\ in_2)/2 #B,,n

\2»-2 ).- )j \og(2»-2/#B,,n)

> c5(l - e)n-l'22-n'2(n(bi,n) - r,(ai,n)).

Therefore since IJ, BitH 2 [2"_2, 2"-1) nZj., for all n > M,

£ A (^r) ^(1 - e)«-,/22-"/2(fy(2"-1 - 1) - n(2"~2))   a.s.

Summing over « , we see that the proposition follows if we show that

_"n(V)-ri(2J-1)

goes to infinity almost surely, as N —► oo .

From Remark 2.1.1(1) and the Karamata Tauberian theorem [BGT, Corol-

lary 1.7.3], for all n > 1,

(2.5) c6y/n < En(n) < ciy/n.

Moreover, since n >-> n(n) is a subadditive process whose jumps are of size

one, it follows from (2.5) and [DM, Theorem VI. 105.1] that

(2.6) c\n < En(n)2 < 2c2n.

Integrating by parts, we see that

FN = (N2N)-['2n(2N)-2-l'2n(2) + Y n(V) (-*     - —    l ) .
j^2 VV^ y/(j+l)2J+l)

The above observation and (2.5) together imply

(2.7) cg^A7 < EFN < c9VN.

Next, we proceed to estimate the second moment of Fn ■ Indeed by (2.7), (2.6),

and the strong Markov property,

;'=1 j=\ v   J

N   i-l

< Cio\ogN + Cii ££(/;r1/2 < Ci2N.

i=\ j=\

Therefore,

CsVN < EFN = ®FNl{FN>CiVN/2} + ®FNl[FN<CiVN/2}

< Jcx2NF(FN > c$y/N/2) + c8v/7V/2.
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Therefore,

V(FN > cs^/N/2) > cj/(Acx2) > 0.

Since N >-> FN is increasing, FN must diverge in probability and by Kol-

mogorov's 0-1 law, almost surely. This concludes the proof.   □

3. Extensions

(a) Stable walks. Suppose X\,X2,... are i.i.d. Z'-valued random variables

and £,n = J2l=i %i *s tne corresponding random walk. Suppose further that, for

some 1 < a < 2, the function u(X) as defined in (2.1b) satisfies the following
for all 0 < X < 1:

(3.1) c13(l -X)l~l'a < u(X) < c14(l -/l)'-1/a.

By adapting the proof of Karamata's theorem in [BGT, Corollary 1.7.3], one

sees that (3.1) is equivalent to the following holding for all k > 1:

(3.2) c15A:1-1/a<Er7(l)<Ci6A:1-1/Q.

We then have the following analogue of the result for stable processes implied

by [TW, Theorem 1]:

Proposition 3.1. Suppose (3.1) holds and Z is defined by (1.1). Then almost
surely, dimH(Z) = 1 - 1/a.

Remark 3.1.1. One can get more precise information on the exact measure func-

tion (as in Propositions 1.1 and 1.2) with extra effort. The needed estimates

can be found, for example, in [MR].

Proof. By (3.2) and subadditivity for all n, k > 1,

(3.3) En(k)n < n\cnl(skn(X-{la\

(See [DM, Theorem IV. 105.1].) Therefore, for all n > 1,

(3.4) Eexp(«-(1-1/a)/7(«)/2ci6) < 2.

By the Borel-Cantelli lemma,

,• n(n)
lim sup   ,   , '—;-< oo   a.s.

n^oo     «•-!/« log log «

Arguing as in the proof of Proposition 1.1, we see that, if h e ^ satisfies

r-'/,(e)loglog(l/e)rf£<oo
Jo e2-'/«

then mn(Z) < oo, almost surely. In particular, dim#(Z) < 1 - 1/a, with

probability one. To find the lower bound, use (3.4) and the strong Markov

property as follows: for all n > 3, 3 < k < 2n~2 , and all e, x > 0,

F(n(k + j) - n(j) > k]~x'a-£x) < cne~x.

Therefore, as in the proof of Proposition 1.2 with probability one,

max     max k~{]~]/a~£)(ri(k + j) - n(j)) < c^n ,
3<fc<2"-2j<2"-2
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eventually. Continuing through the proof of Proposition 1.2, picking h e %?

by h(x) — x'~l/a_£, it follows that mh(Z) = oo, almost surely, for all e > 0.

The lower bound on the dimension is the consequence of (1.3).   □

(b) Nonlattice case. Suppose Xi, X2,... are i.i.d. random variables with

mean zero and variance one. Let <p(t) - Eexp(itXi) be their characteristic

function. If the X's are nonlattice, i.e., \<p(t)\ = 1 is equivalent to t — 0,

then the random walk £„ = Y%=\ %i does not hit zero. In this case, the correct

notion of the zero set is given by the set of close approaches,

(3.5) Z = {j>\:U<\}.

Of course, in the lattice case, this matches with (1.1).

Proposition 3.2. Under the above assumptions, dim#(Z) = j , almost surely.

Remark 3.2.1. It is well known that distributions on the real line are either

lattice or nonlattice. Therefore, the above, together with Corollary 1.3, imply

that the discrete Hausdorff dimension of the level sets of any mean zero variance

one random walk on the real line is one half.

Proof. Define the local time of <^ by n(n) = JLl=o l(-i/2,i/2)(£/) • The proof is
almost identical to that of Proposition 3.1. The only estimates that one needs to

prove, at this point, are upper and lower estimates for sup|X|<1/2 ̂ (*l(k)\£o = x) ■

This is needed to make all the strong Markov arguments work (in particular,

the argument that leads from (3.2) to (3.3)). Fortunately, such estimates are

well known. Indeed by [S, Theorem 1], for all k > 1,

sup P(|&| < ^|£o = x) - (2kn)-1'2 /      e-(x~u) '2k du = o(k~['2).
x J-l/2

Summing the above from k = 1 to n , we have

Ci6y/n <   sup  E(n(n)\£0 = x) < c20S/n.
|jc|<1/2

The rest of the modifications are standard.   D
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