AURÉOLE OF A QUASI-ORDINARY SINGULARITY

CHUNSHENG BAN

(Communicated by Eric Friedlander)

ABSTRACT. The auréole of an analytic germ $(X, x) \subset (\mathbb{C}^n, 0)$ is a finite family of subcones of the reduced tangent cone $|C_{X,x}|$ such that the set $D_{X,x}$ of the limits of tangent hyperplanes to X at x is equal to $\bigcup (\operatorname{Proj} C_{\alpha})^{\vee}$. The auréole for a case of quasi-ordinary singularity is computed.

1. Introduction

When they studied the limits of tangent spaces to an analytic space, Lé and Teissier introduced the notion of auréole. Let $(X, x) \subset \mathbb{C}^n$ be a germ of analytic space. There exists a finite family $\{C_\alpha\}$ of subcones of the reduced tangent cone $|C_{X,x}|$ such that the set $D_{X,x}$ of the limits of tangent hyperplanes to X at x is equal to $\bigcup (\operatorname{Proj} C_\alpha)^{\vee}$. This family is called the auréole of (X,x). The auréole is an important geometric object. In this paper we will compute the auréole for a case of quasi-ordinary singularity.

A quasi-ordinary singularity is an analytic germ (V,0) of dimension d which admits a finite map (i.e., proper with finite fibers) of analytic germs $\pi:(V,0)\to(\mathbb{C}^d,0)$ whose discriminant locus D (the hypersurface in \mathbb{C}^d over which π ramifies) has only normal crossings as singularities. In the hypersurface case, every quasi-ordinary singularity (V,0) can be parametrized by a fractional power series

$$\zeta = H(X_1^{1/n}, \ldots, X_d^{1/n}) = \sum c_{\alpha} X_1^{\alpha_1/n} \cdots X_d^{\alpha_d/n}$$

(*H* a power series) in the sense that (V, 0) is the image of the map $\Phi: U \to \mathbb{C}^{d+1}$ (*U* some neighborhood of 0 in \mathbb{C}^d) given by

(1)
$$\Phi(x_1, \ldots, x_d) = (x_1^n, \ldots, x_d^n, H(x_1, \ldots, x_d)),$$

and (V,0) is equipped with a set of fractional monomials $\{X_1^{l_1/n}\cdots X_d^{l_d/n}\}$, called characteristic monomials, which is totally ordered by divisibility. These monomials determine quite a lot of the geometry and topology of (V,0). (For more details about quasi-ordinary singularity, see [2] or [3].)

The main result of this paper is (cf. Theorems 3.0.7, 3.0.10, and 3.0.14).

Received by the editors May 28, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14B05, 32S05.

Key words and phrases. Quasi-ordinary singularity, auréole.

Theorem. Suppose the reduced discriminant locus |D| is given by $X_1 \cdots X_e = 0$ and $X_1^{a_1/n} \cdots X_e^{a_e/n}$ is the smallest characteristic monomial. Then the auréole of $(V,0) \subset (\mathbb{C}^{d+1},0)$ is determined by the following subcones of the reduced tangent cone $|C_{V,0}|$:

- (1) if $n > a_1 + \dots + a_e$, $C_I = \{(x_1, \dots, x_d, z) \in \mathbb{C}^{d+1} \mid x_i = 0, i \in I\}$ for $I \subset \{1, 2, \dots, e\}$ and $I \neq \emptyset$;
- (2) if $n < a_1 + \dots + a_e$, $C_I = \{(x_1, \dots, x_d, z) \in \mathbb{C}^{d+1} \mid z = 0, x_i = 0, i \in I\}$ for $I \subset \{1, 2, \dots, e\}$ such that $n > \sum_{i \in I} a_i$ or $I = \emptyset$;
- (3) if $n = a_1 + \cdots + a_e$, the irreducible components of $C_{V,0}$.

This result shows that the characteristic monomials determine the auréole of (V, 0).

2. Auréole

Let $X\subset S\times U$ be a closed subspace with U an open set in \mathbb{C}^n and $f:X\to S$ be the restriction of the first projection $S\times U\to S$ to X. Let $\mathscr{C}_f(X)$ be the closure in $S\times U\times \check{\mathbb{P}}^{n-1}$ of the set of couples (x,H) where $x\in X^\circ$ and H is the direction of a hyperplane in \mathbb{C}^n containing the tangent space at x to the fiber of f. A point of $\mathscr{C}_f(X)$ is a couple (x,H) where $x\in X$ and H is a limit of hyperplanes in \mathbb{C}^n tangent to the fibers of f at smooth points of the fibers. Let κ_f be the morphism induced by the projection $S\times U\times \check{\mathbb{P}}^{n-1}\to S\times U$. Then $\mathscr{C}_f(X)$ is called the relative conormal space of $f:X\to S$ and κ_f is called the relative conormal space of $f:X\to S$ and κ_f is called the relative conormal morphism. If S is a point, then we get the (absolute) conormal space $\mathscr{C}(X)$ and (absolute) conormal morphism κ . Note that $D_{X,x}=\kappa^{-1}(x)$ is the set of the limits of the tangent spaces to X at x.

Let $(X, x) \subset (\mathbb{C}^n, 0)$ be a analytic germ. Then we have the following normal/conormal diagram of (X, x):

$$\begin{array}{ccc} E_Y \mathscr{C}(X) & \stackrel{\tilde{e}}{\longrightarrow} & \mathscr{C}(X) \\ \downarrow^{\kappa'} \downarrow & & \downarrow^{\kappa} \\ E_Y X & \stackrel{e}{\longrightarrow} & X \end{array}$$

where e is the blowing-up of x in X, \tilde{e} is the blowing-up of $\kappa^{-1}(x)$ in $\mathscr{C}(X)$, and κ' is the morphism by the universal property of blowing-up. Let $\xi = \kappa \circ \tilde{e} = e \circ \kappa$, $|\xi^{-1}(x)| = \bigcup D_{\alpha}$ be the decomposition into irreducible components, and $V_{\alpha} = |\kappa'(D_{\alpha})| \subset |e^{-1}(x)| = |\operatorname{Proj} C_{X,x}|$.

Definition 2.0.1. The collection $\{V_{\alpha}\}$ is called the *auréole* of X at x or the auréole of (X, x).

Let C_{α} be the corresponding cone of V_{α} in $C_{X,x}$. By abuse of language we also call C_{α} the auréole.

Let $\mathfrak{f}:\mathfrak{X}\to\mathbb{C}$ be the deformation to the normal cone $C_{X,x}$, $\kappa_{\mathfrak{f}}:\mathscr{C}_{\mathfrak{f}}(\mathfrak{X})\to\mathfrak{X}$ the relative conormal morphism, and $q=\mathfrak{f}\circ\kappa_{\mathfrak{f}}:\mathscr{C}_{\mathfrak{f}}(\mathfrak{X})\to\mathbb{C}$. We have the following result (cf. [4, 2.1.4.1]).

Proposition 2.0.1. The cones C_{α} are the image in $\mathfrak{f}^{-1}(0) = C_{X,x}$ by $\kappa_{\mathfrak{f}}$ of the irreducible components of the fiber $q^{-1}(0) = \kappa_{\mathfrak{f}}^{-1}(C_{X,x})$.

By definition, $\kappa_{\mathfrak{f}}^{-1}(C_{X,x})$ consists of the limits (q,ϕ) of $(p,H)\in\mathfrak{X}^{\circ}\times \check{\mathbb{P}}^{n-1}$ as p approaches $q\in C_{X,x}\times\{0\}$. p can approach q from inside the fiber $\mathfrak{f}^{-1}(0)=C_{X,x}\times\{0\}$ or from other fibers $\mathfrak{f}^{-1}(t)$ with $t\neq 0$. However, if (X,x) is a reduced hypersurface germ in $(\mathbb{C}^{d+1},0)$, we need only consider the second kind of limits by the following lemma.

Lemma 2.0.2. Let (X,0) be a reduced hypersurface germ in $(\mathbb{C}^{d+1},0)$. Let $\mathfrak{f}:\mathfrak{X}\to\mathbb{C}$ be the deformation to the tangent cone and $\mathfrak{X}^{\circ}\subset\mathfrak{X}-\mathfrak{f}^{-1}(0)$ be an open dense set such that $\mathfrak{f}|\mathfrak{X}^{\circ}:\mathfrak{X}^{\circ}\to\mathbb{C}$ has smooth fibers. Then $\mathscr{C}(C_{X,0})$, the conormal space of $C_{X,0}$ identified with a subspace of $\mathbb{C}^{d+1}\times\mathbb{C}\times\mathbb{P}^d$ by the inclusion $\mathbb{C}^{d+1}\times\{0\}\times\mathbb{P}^d\hookrightarrow\mathbb{C}^{d+1}\times\mathbb{C}\times\mathbb{P}^d$, is contained in the closure of $\kappa_{\mathfrak{f}}^{-1}(\mathfrak{X}^{\circ})$ in $\mathbb{C}^{d+1}\times\mathbb{C}\times\mathbb{P}^d$, where $\kappa_{\mathfrak{f}}:\mathscr{C}_{\mathfrak{f}}(\mathfrak{X})\to\mathfrak{X}$ is the relative conormal morphism.

Proof. Let

$$f(Z_1, \ldots, Z_{d+1}) = f_{\nu}(Z) + f_{\nu+1}(Z) + \cdots = 0$$

be the defining equation of (X,0), where the f_i are homogenous polynomials of degree i and f_{ν} is the initial form of f. The tangent cone $C_{X,0}$ is a hypersurface and is defined by $f_{\nu}(Z)=0$. Then (cf. [4]) $\mathfrak{X}\subset \mathbb{C}^{d+1}\times \mathbb{C}$ and is defined by

$$T^{-\nu}f(Z) = f_{\nu}(Z) + Tf_{\nu+1}(Z) \cdots = 0$$

and $C_{X,0}$ is defined by $f_{\nu}(Z)=0$. Let $p=(z_1,\ldots,z_{d+1})\in C_{X,0}$ be a smooth point. Since $C_{X,0}$ is a hypersurface, the tangent direction φ_p to $C_{X,0}$ at p is unique and $\varphi_p=(D_1f_{\nu},\ldots,D_{d+1}f_{\nu})$ where $D_i=\partial/\partial z_i$.

We now show that (p, φ_p) is a limit of the points of $\kappa_f^{-1}(\mathfrak{X}^\circ)$. Let $\{t_n\} \subset \mathbb{C}^*$ be a sequence of nonzero numbers approaching 0 and $\mathfrak{X}_{t_n} = \mathfrak{f}^{-1}(t_n)$. Let $p_n \in \mathfrak{X}_{t_n} \cap \mathfrak{X}^\circ$ such that $p_n \to p$. The tangent direction to \mathfrak{X}_{t_n} at p_n is

$$H_{p_n} = (h_{n,1} : \cdots : h_{n,d+1})$$

where $h_{n,i} = D_i f_{\nu}(z) + t_n D_i f_{\nu+1}(z) + \cdots$. Then $\lim_{n\to\infty} h_{n,i} = D_i f_{\nu}$ and so $\lim(p_n, H_{p_n}) = (p, \varphi_p)$. Therefore,

$$\Gamma = \{ (p, \varphi_p) \mid p \in C_{X,0}^{\circ} \} \subset \overline{\kappa_{\mathfrak{f}}^{-1}(\mathfrak{X}^{\circ})}.$$

Since $\mathscr{C}(C_{X,0})$ is the closure of Γ in $\mathbb{C}^{d+1} \times \{0\} \times \check{\mathbb{P}}^d$, it follows that $\mathscr{C}(C_{X,0}) \subset \overline{\kappa_{\mathfrak{f}}^{-1}(\mathfrak{X}^{\circ})}$. \square

The family $\{C_{\alpha}\}$ contains the irreducible components of $|C_{X,x}|$. In general it also contains much more. The cones in the family $\{C_{\alpha}\}$ which are not irreducible components of $|C_{X,x}|$ are called *exceptional cones*. But if (X,x) itself is a cone, there is no exceptional cones (cf. [1]).

Proposition 2.0.3. If (X, x) itself is a cone, then

$$D_{X,x} = \operatorname{Proj} |C_{X,x}|^{\vee},$$

where $\text{Proj} |C_{X,x}|^{\vee}$ is the dual of $\text{Proj} |C_{X,x}|$. So if (X,x) is a cone, then X has no exceptional cone at x.

3. The case of a quasi-ordinary singularity

Let $(V, 0) \subset (\mathbb{C}^{d+1}, 0)$ be a quasi-ordinary hypersurface singularity defined by a pseudopolynomial

$$f(Z) = Z^m + g_1(X)Z^{m-1} + \dots + g_m(X)$$

where $g_i(X) = g_i(X_1, \dots, X_d)$ are power series. We may assume that the quasi-ordinary projection $\pi: (V, 0) \to (\mathbb{C}^d, 0)$ is induced by the projection

$$p:(x_1,\ldots,x_d,z)\to(x_1,\ldots,x_d,).$$

Then (V, 0) being quasi-ordinary means that the discriminant of f has the form

$$\Delta = X_1^{k_1} \cdots X_e^{k_e} u(X_1, \ldots, X_d), \qquad u(0, \ldots, 0) \neq 0,$$

for some $e \leq d$. Let $\zeta = H(X_1^{1/n}, \ldots, X_d^{1/n})$ be a parametrization of (V, 0) with respect to π . We assume in this paper that the smallest characteristic monomial of ζ is $M = X_1^{a_1/n} \cdots X_e^{a_e/n}$, i.e., M contains the same variables X_i with those of Δ/u . Then we may assume that

$$\zeta = X_1^{a_1/n} \cdots X_e^{a_e/n} \varepsilon(X_1^{1/n}, \dots, X_e^{1/n}, X_{e+1}, \dots, X_d)$$

where ε is a unit (cf. [1, p. 17]). Let $K = \mathbb{C}((X_1, \ldots, X_d))$, the quotient field of $\mathbb{C}[[X_1, \ldots, X_d]]$. It can be shown that the initial form f_I of f is (cf. [2, Lemma 2.5])

(2)
$$f_{I} = \begin{cases} Z^{m} & \text{if } a_{1} + \dots + a_{e} > n, \\ (Z^{t} - \varepsilon_{0}^{t} X_{1}^{ta_{1}/n} \cdots X_{e}^{ta_{e}/n})^{r} & \text{if } a_{1} + \dots + a_{e} = n, \\ c X_{1}^{ma_{1}/n} \cdots X_{e}^{ma_{e}/n} & \text{if } a_{1} + \dots + a_{e} < n, \end{cases}$$

where $\varepsilon_0 = \varepsilon(0, \dots 0)$, $m = [K(\zeta) : K]$, $t = [K(X_1^{a_1/n} \dots X_e^{a_e/n}) : K]$, $r = [K(\zeta) : K(X_1^{a_1/n} \dots X_e^{a_e/n})]$, and $c \in \mathbb{C}^*$.

Let $f: \mathfrak{X} \to \mathbb{C}$ be the deformation to the tangent cone $C_{V,0}$. Since $C_{V,0}$ is defined by $T^{-\nu}f(TX_1,\ldots,TX_d,TZ)=0$ $(\nu=\operatorname{ord}(f_I))$, similar to (1), $\mathfrak{X}-f^{-1}(0)$ is the image of the map $\Phi: W-\{t=0\}\to \mathbb{C}^{d+1}\times \mathbb{C}$ (W some neighborhood of 0 in \mathbb{C}^{d+1}) given by

(3)
$$\Phi(w_1, \ldots, w_d, t) = (w_1^n, \ldots, w_e^n, w_{e+1}, \ldots, w_d, \eta, t^n)$$

where $\eta = t^{a-n}w_1^{a_1}\cdots w_e^{a_e}\varepsilon(tw_1,\ldots,tw_e,t^nw_{e+1},\ldots,t^nw_d)$ and $a = a_1 + \cdots + a_e$.

Let $\mathfrak{X}^{\circ} \subset \mathfrak{X}$ be the open dense subset of points where $w_1 \cdots w_e \neq 0$. Then the tangent to the fiber $\mathfrak{X}_t = \mathfrak{f}^{-1}(t)$ at $p = \Phi(w_1, \ldots, w_d, t) \in \mathfrak{X}_t^{\circ} = \mathfrak{X}^{\circ} \cap \mathfrak{X}_t$ for $t \neq 0$ is given by the direction $H_p = (h_1 : \cdots : h_{d+1})$ where

$$(4) h_i = \begin{cases} \frac{t^{a-n}w_1^{a_1}\cdots w_e^{a_e}}{nw_i^n}(a_i\varepsilon + tw_iD_i\varepsilon), & 1 \leq i \leq e, \\ t^aw_1^{a_1}\cdots w_e^{a_e}D_i\varepsilon, & e < i \leq d, \\ -1, & i = d+1, \end{cases}$$

with $D_i = \partial/\partial z_i$ as before.

We are going to use Proposition 2.0.1 to compute the auréole for (V,0). For this purpose, we need a description of $\kappa_{\mathfrak{f}}^{-1}(C_{V,0})$. By definition and Lemma 2.0.2, $\kappa_{\mathfrak{f}}^{-1}(C_{V,0})$ consists of the limits of the pairs (p,H_p) as p approaches the points in $C_{V,0}\times\{0\}\subset\mathfrak{X}$ where $p=\Phi(w_1,\ldots,w_d,t)\in\mathfrak{X}_t^o$ and $H_p=(h_1:\cdots:h_{d+1})$ is a tangent direction to \mathfrak{X}_t at p.

Lemma 3.0.4. Let $(V, 0) \subset (\mathbb{C}^{d+1}, 0)$ be a quasi-ordinary singularity and $\mathfrak{f}: \mathfrak{X} \to \mathbb{C}$ be the deformation to the tangent cone $C_{V,0}$. Let $C \subset \mathfrak{X}$ be a curve parametrized by $\sigma: (D, 0) \to (\mathfrak{X}, p)$, D a disc in \mathbb{C} centered at 0, such that

$$\sigma(D-\{0\})\subset \mathfrak{X}-\mathfrak{f}^{-1}(0)$$
, and $\sigma(0)=p\in\mathfrak{f}^{-1}(0)=C_{V,0}$.

Then there exists a parametrization $\tilde{\sigma}:(D,0)\to(\mathfrak{X},p)$ of C and an analytic map $\sigma':D^*\to\mathbb{C}^{d+1}$ such that the diagram

$$D^* \xrightarrow{\widehat{\sigma}} \mathfrak{X}$$

is commutative, where $D^* = D - \{0\}$ and Φ is as in (3).

Proof. Suppose $\sigma=(\sigma_1,\ldots,\sigma_{d+2})$ where $\sigma_i(\tau)=a_i\tau^{\nu_i}+$ higher-order terms, $1\leq i\leq d+2$. Define $\tilde{\sigma}(\tau)=\sigma(\tau^n)$. Then $\tilde{\sigma}_i=\tau^{n\nu_i}\varepsilon_i(\tau)$, $\varepsilon_i(0)\neq 0$, and the $\sqrt[n]{\varepsilon_i(\tau)}$ are analytic near $\tau=0$. Define $\tau':D^*\to\mathbb{C}^{d+1}$ by

$$\sigma'_{i}(\tau) = \begin{cases} \tau^{\nu_{i}} \sqrt[n]{\varepsilon_{i}(\tau)}, & 1 \leq i \leq e, \\ \tilde{\sigma}_{i}(\tau), & e < i \leq d, \\ \tau^{\nu_{d+2}} \sqrt[n]{\varepsilon_{d+2}(\tau)}, & i = d+1, \end{cases}$$

where the branches of the $\sqrt[n]{\varepsilon_i(\tau)}$ are chosen in such a way that $\tilde{\sigma}_{d+1}(\tau) = \Phi_{d+1} \circ \sigma'(\tau)$ (Φ_{d+1} is the (d+1) component of Φ). It follows that

$$D^* \xrightarrow{\tilde{\sigma}} \mathfrak{X}$$

is commutative.

Let $(q, \varphi) \in \kappa_{\mathfrak{f}}^{-1}(C_{V,0})$. Then (q, φ) is a limit of (p, H_p) as $p \to q$ along a curve C in \mathfrak{X} . By Lemma 3.0.4, C is given by

(5)
$$\begin{cases} w_i = b_i \tau^{\nu_i} + \text{higher-order terms} & (b_i \neq 0, \ \nu_i \geq 0), \ 1 \leq i \leq d, \\ t = t_c \tau^{\nu_i} + \text{higher-order terms} & (t_c \neq 0, \ \nu_t > 0). \end{cases}$$

If $p = \Phi(w_1, \ldots, w_d, t) \in C$, then the components of $H_p = (h_1 : \cdots : h_{d+1})$ have orders (cf. (4))

(6)
$$\operatorname{ord}_{\tau}(h_{j}) \begin{cases} = (a - n)\nu_{t} + \left(\sum_{i=1}^{e} a_{i}\nu_{i}\right) - n\nu_{j}, & 1 \leq j \leq e, \\ \geq a\nu_{t} + \left(\sum_{i=1}^{e} a_{i}\nu_{i}\right), & e < j \leq d, \\ = 0, & j = d + 1. \end{cases}$$

Since $\lim H_p = \varphi$, $\varphi_j \neq 0$ if and only if $\operatorname{ord}_{\tau}(h_j) = \min_i \{\operatorname{ord}_{\tau}(h_i)\}$. There are three cases.

Case I. $n > a = a_1 + \cdots + a_e$

Lemma 3.0.5. If n > a, then $\varphi_{d+1} = 0$, $q_j \varphi_j = 0$ for $1 \le j \le e$, and $\varphi_j = 0$ for $e < j \le d$.

Proof. Suppose $\varphi_{d+1} \neq 0$. Then in (6) $\operatorname{ord}_{\tau}(h_j) \geq \operatorname{ord}_{\tau}(h_{d+1}) = 0$ for each j. Let $\nu_k = \max_{1 \leq i \leq e} \{\nu_i\}$. Then $\operatorname{ord}_{\tau}(h_k) \geq 0$ implies

$$(a-n)\nu_{t} + \sum_{i=1}^{e} a_{i}\nu_{i} \ge n\nu_{k} > \sum_{i=1}^{e} a_{i}\nu_{k} \ge \sum_{i=1}^{e} a_{i}\nu_{i}$$
$$> (a-n)\nu_{t} + \sum_{i=1}^{e} a_{i}\nu_{i}.$$

This contradiction shows that $\varphi_{d+1} = 0$.

Since $p \to q$ along C, $\lim_{\tau \to 0} p_{d+1} = \lim_{\tau \to 0} \Phi_{d+1} \circ \sigma'(\tau)$ exists; so, the order of $p_{d+1} = \eta$ (see (3)) along C satisfies

$$\operatorname{ord}_{\tau}(t^{a-n}w_1^{a_1}\cdots w_e^{a_e})=(a-n)\nu_t+\sum_{i=1}^e a_i\nu_i\geq 0.$$

Now suppose $q_j \neq 0$ for some j, $1 \leq j \leq e$. Then $\nu_j = 0$ in (5) and

$$\operatorname{ord}_{\tau}(h_{j}) = (a - n)\nu_{t} + \sum_{i=1}^{e} a_{i}\nu_{i} \ge \operatorname{ord}_{\tau}(h_{d+1}) = 0.$$

Since $\varphi_{d+1}=0$, $\varphi_j=0$. Thus $q_j\varphi_j=0$ for $1\leq j\leq e$. If j>e, then $\operatorname{ord}_{\tau}(h_j)\geq a\nu_t+\sum_{i=1}^e a_i\nu_i>0=\operatorname{ord}_{\tau}(h_{d+1})$ and so $\varphi_j=0$. \square

Proposition 3.0.6. If n > a, the ideal J in $\mathcal{O}_{d+2}[Y_1, \ldots, Y_d, Y_{d+1}]$ which defines $|\kappa_{\mathfrak{f}}^{-1}(C_{V,0})|$ in $\mathbb{C}^{d+1} \times \mathbb{C} \times \check{\mathbb{P}}^d$ is generated by $\{X_iY_i\}_{1 \leq i \leq e}$, $\{Y_j\}_{e < j \leq d+1}$, $X_1 \cdots X_e$, and T, where $\mathcal{O}_{d+2} = \mathbb{C}[[X_1, \ldots, X_d, Z, T]]$.

Proof. From (2) we know that if n > a, the reduced tangent cone $|C_{V,0}|$ is defined by $X_1 \cdots X_e = 0$. By Lemma 3.0.5,

$$J \subset (\{X_iY_i\}_{1 \leq i \leq e}, \{Y_j\}_{e < j \leq d+1}, X_1 \cdots X_e, T).$$

Conversely, let $(q, \varphi) \in \mathbb{C}^{d+1} \times \mathbb{C} \times \check{\mathbb{P}}^d$ such that $q_j \varphi_j = 0$, $1 \leq j \leq e$, $\varphi_j = 0$, $e < j \leq d$, and $q_1 \cdots q_e = 0$. It suffices to show that (q, φ) is a limit of (p, H_p) as $p \to q$ along some curve C. Without loss of generality, we may assume that $q_1 = \cdots = q_c = 0$, $q_{c+1} \cdots q_e \neq 0$, $\varphi_1 \cdots \varphi_s \neq 0$, and $\varphi_{s+1} = \cdots = \varphi_e = 0$ where $1 \leq s \leq c \leq e$. Choose positive integers $\nu_1, \nu_2, \ldots, \nu_c, \nu_t$,

complex numbers b_1 , b_2 , ..., b_e , t_0 such that $\nu_1 = \nu_2 = \cdots = \nu_s = \nu > \nu_i$ for $s < i \le e$, and

$$\varphi_i = \frac{t_0 b_1^{a_1} \cdots b_e^{a_e}}{n b_i^n} a_i \varepsilon(0, \ldots, 0), \qquad 1 \le i \le c,$$

such that

$$(a-n)\nu_t + \sum_{i=1}^e a_i \nu_i > 0$$

if $q_{d+1} = 0$ and such that

$$(a-n)\nu_t+\sum_{i=1}^e a_i\nu_i=0,$$

$$q_{d+1} = t_0^{a-n} b_1^{a_1} \cdots b_e^{a_e} \varepsilon(0, \ldots, 0)$$

if $q_{d+1} \neq 0$. Let C be the curve in \mathfrak{X} given by

$$w_{i} = \begin{cases} b_{i}\tau^{\nu_{i}}, & 1 \leq i \leq c, \\ b_{i}, & c < i \leq e, \\ q_{i}, & e < i \leq d; \end{cases} \qquad t = t_{0}\tau^{\nu_{t}}.$$

Then (p, H_p) approaches (q, φ) as $p \to q$ along C. \square

Theorem 3.0.7. If n > a, the auréole of (V, 0) consists of $V_I = \text{Proj } C_I$ where

$$C_I = \{(x_1, \ldots, x_d, z) \in \mathbb{C}^{d+1} \mid x_i = 0, i \in I\}$$

for $I \subset \{1, 2, ..., e\}$ and $I \neq \emptyset$.

Proof. Let $P \subset \mathscr{O}_{d+2}[Y_1, \ldots, Y_d, Y_{d+1}]$ be a minimal prime over J (\mathscr{O}_{d+2} and J are as in Proposition 3.0.6) homogeneous in Y. Since P is prime, $X_1 \cdots X_e \in J \subset P$ implies $X_j \in P$ for some j, $1 \le j \le e$. Also $X_i Y_i \in J \subset P$ implies X_i or $Y_i \in P$ for some i, $1 \le i \le e$. Therefore,

$$P_I = (\{X_i\}_{i \in I}, \{Y_i\}_{j \notin I}, T) \subset P$$

where $I \subset \{1, 2, ..., e\}$. It is clear that $J \subset P_I$. Since P is minimal over J and P_I is prime, $P_I = P$. These P_I 's determine the irreducible components of $\kappa_f^{-1}(C_{V,0})$. The image of these irreducible components in $C_{V,0}$ are

$$C_I = \{(x_1, \ldots, x_d, z) \in \mathbb{C}^{d+1} \mid x_i = 0, i \in I\}, \qquad I \subset \{1, 2, \ldots, e\}.$$

By Proposition 2.0.1, the C_I determine the auréole of (V, 0). \square

Case II. $n < a = a_1 + \cdots + a_e$

Lemma 3.0.8. Let $(q, \varphi) \in \kappa_{f}^{-1}(C_{V,0})$. If n < a, then $q_{j}\varphi_{j} = 0$ for $1 \le j \le e$, $\varphi_{j} = 0$ for $e < j \le d$, and $\varphi_{j_{1}} \cdots \varphi_{j_{k}} = 0$ for $1 \le j_{1}, \ldots, j_{k} \le e$ such that $n \le a_{j_{1}} + \cdots + a_{j_{k}}$.

Proof. Since $\operatorname{ord}_{\tau}(h_j) > \operatorname{ord}_{\tau}(h_1)$ in (6) for $e + 1 \le j \le d$, $\varphi_j = 0$.

Now assume $q_i \neq 0$, $1 \leq j \leq e$. Then $\nu_i = 0$ (cf. (5)) and

$$\operatorname{ord}_{\tau}(h_j) = (a - n) + \sum_{i=1}^{e} a_i \nu_i > \operatorname{ord}_{\tau}(h_{d+1}) = 0.$$

Thus $\varphi_i = 0$ and so $q_i \varphi_i = 0$.

Suppose $\varphi_{j_1}\cdots\varphi_{j_k}\neq 0$ and $n\leq a_{j_1}+\cdots+a_{j_k}$ where $1\leq j_1,\ldots,j_k\leq e$. Then

$$\operatorname{ord}_{\tau}(h_{j_1}) = \cdots = \operatorname{ord}_{\tau}(h_{j_k}) = \min_{j} \{\operatorname{ord}_{\tau}(h_i)\}.$$

Let λ be this integer. Then it follows that $\lambda \leq \operatorname{ord}_{\tau}(h_{d+1}) = 0$. Since $\operatorname{ord}_{\tau}(h_i) = \operatorname{ord}_{\tau}(h_i)$ implies $\nu_i = \nu_j$ if $1 \leq i$, $j \leq e$, we have (cf. (6))

$$\nu_{j_1}=\cdots=\nu_{j_k}=\nu=\max_{1\leq i\leq e}\{\nu_i\}.$$

Then

$$\lambda = (a - n)\nu_t + \left(\sum_{i=1}^e a_i \nu_i\right) - n\nu$$

$$= (a - n)\nu_t + \left(\sum_{i=1, i \neq j_l}^e a_i \nu_i\right) + (a_{j_1} + \dots + a_{j_k} - n)\nu \ge (a - n) > 0.$$

But we have shown that $\lambda \leq 0$. This contradiction shows that $\varphi_{j_1} \cdots \varphi_{j_k} = 0$. \square

Proposition 3.0.9. If n < a, then the ideal J in $\mathcal{O}_{d+2}[Y_1, \ldots, Y_d, Y_{d+1}]$ which defines $|\kappa_{\mathfrak{f}}^{-1}(C_{V,0})|$ in $\mathbb{C}^{d+1} \times \mathbb{C} \times \check{\mathbb{P}}^d$ is generated by $\{X_iY_i\}_{1 \leq i \leq e}$, $\{Y_j\}_{e < j \leq d}$, Z, T, and $\{Y_{j_1} \cdots Y_{j_k}\}_{1 \leq j_1, \ldots, j_k \leq e}$, $n \leq a_{j_1} + \cdots + a_{j_k}$.

Proof. Let N be the ideal generated by the elements as stated. We want to show that J = N. It is clear by Lemma 3.0.8 that $J \subset N$.

Conversely, let (q, φ) be in the zero locus of N. It suffices to show that $(q, \varphi) \in \kappa_{\mathsf{f}}^{-1}(C_{V,0})$. Renumbering the variables if necessary, we may assume

$$\varphi = (\varphi_1 : \cdots : \varphi_c : 0 : \cdots : 0 : \varphi_{d+1})$$

and

$$q = (0, \ldots, 0, q_{r+1}, \ldots, q_d, 0, \ldots, 0)$$

where $\varphi_1 \cdots \varphi_c \neq 0$, $q_{r+1} \cdots q_d \neq 0$, and $c \leq r \leq e$. Then $n > a_1 + \cdots + a_c$. Similar to the proof of Proposition 3.0.6, we choose positive integers $\nu_1, \ldots, \nu_r, \nu_t$, nonnegative integers ν_{e+1}, \ldots, ν_d , and nonzero complex numbers b_1, \ldots, b_d , t_0 such that

$$\begin{split} \nu_1 &= \dots = \nu_c = \max_{1 \leq i \leq r} \{ \nu_i \} = \nu > \nu_j \quad \text{for } j = c+1, \dots, r; \\ (a-n)\nu_t &+ \left(\sum_{i=1}^e a_i \nu_i \right) - n\nu \begin{cases} < 0 & \text{if } \varphi_{d+1} = 0, \\ = 0 & \text{if } \varphi_{d+1} \neq 0; \end{cases} \\ b_i^n &= q_i, \qquad r < i \leq e; \\ \lim b_i \tau^{\nu_i} &= q_i, \qquad e < i \leq d; \end{split}$$

and

$$\frac{t_0^{a-n}b_1^{a_1}\cdots b_e^{a_e}}{nb_i^n}a_i\varepsilon(0,\ldots,0) = \begin{cases} -\varphi_i/\varphi_{d+1} & \text{if } \varphi_{d+1} \neq 0, \\ \varphi_i & \text{if } \varphi_{d+1} = 0. \end{cases}$$

Let C be the curve in \mathfrak{X} given by

$$w_i = \begin{cases} b_i \tau^{\nu_i}, & 1 \le i \le r \text{ or } e < i \le d, \\ b_i, & r < i \le e; \end{cases} \qquad t = t_0 \tau^{\nu_t}.$$

Then (p, H_p) approaches (q, φ) along C. Therefore, $(q, \varphi) \in \kappa_{\mathfrak{f}}^{-1}(C_{V,0})$. This completes the proof. \square

Theorem 3.0.10. If n < a, the auréole of (V, 0) consists of $V_I = \text{Proj } C_I$ where

$$C_I = \{(x_1, \dots, x_d, z) \in \mathbb{C}^{d+1} \mid z = 0, x_i = 0, i \in I\}$$

for $I \subset \{1, 2, ..., e\}$ such that $n > \sum_{i \in I} a_i$ or $I = \emptyset$.

Proof. Let P_I be the ideal in $\mathscr{O}_{d+2}[Y_1,\ldots,Y_d,Y_{d+1}]$ generated by $\{X_i\}_{i\in I}$, $\{Y_j\}_{j\notin I}$, Z, and T for some $I\subset\{1,2,\ldots,e\}$ such that $n>\sum_{i\in I}a_i$. It is obvious that $X_iY_i\in P_I$ for $1\leq i\leq e$. If $n\leq a_{j_1}+\cdots+a_{j_k}$, then some $j_l\notin I$ since $n>\sum_{i\in I}a_i$; thus, $Y_{j_1}\cdots Y_{j_k}\in (Y_{j_l})\subset P_I$. Hence, $J\subset P_I$, where J is as in Proposition 3.0.9. It is also clear that P_I is prime and homogeneous in the Y_j . We will show that these P_I are the minimal primes over J and homogeneous in Y_j .

Now, let $P\supset J$ be any prime ideal homogeneous in Y_j . If $n\leq a_{j_1}+\cdots+a_{j_k}$ for $1\leq j_1,\ldots,j_k\leq e$, then $Y_{j_1}\cdots Y_{j_k}\in J\subset P$; so, $Y_{j_l}\in P$ for some j_l . Considering all such monomials $Y_{j_1}\cdots Y_{j_k}$, we get

$$(\{X_{i_l}Y_{i_l}\}_{l=1,\ldots,k}, \{Y_j\}_{j\neq i_l}, Z, T) \subset P.$$

We may assume that $n>a_{i_1}+\cdots+a_{i_k}$ or k=0. If $n\leq a_{i_1}+\cdots+a_{i_k}$, then $Y_{i_1}\cdots Y_{i_k}\in J\subset P$. Then $Y_{i_l}\in P$ for some i_l , say i_k , and then

$$(\{X_{i_l}Y_{i_l}\}_{l=1,\ldots,k-1},\{Y_j\}_{j\neq i_l},Z,T)\subset P.$$

Repeating this procedure, we get a set $I' \subset \{1, 2, ..., e\}$ with $n > \sum_{i \in I'} a_i$ or $I' = \emptyset$ such that

$$(\lbrace X_i Y_i \rbrace_{i \in I'}, \lbrace Y_j \rbrace_{j \notin I'}, Z, T) \subset P.$$

Since $X_iY_i \in P$ implies $X_i \in P$ or $Y_i \in P$, there is a subset I of I' with $n > \sum_{i \in I} a_i$ or $I = \emptyset$ such that

$$(\{X_i\}_{i\in I}, \{Y_j\}_{j\notin I}, Z, T) = P_I \subset P.$$

We have shown that:

- (1) $J \subset P_I$ for any $I \subset \{1, 2, ..., e\}$ such that $n > \sum_{i \in I} a_i$ or $I = \emptyset$;
- (2) If $P \supset J$ is prime, then $P_I \subset P$ for some such I.

It follows that the P_I are the minimal prime ideals over J homogeneous in Y. These P_I determine the irreducible components of $\kappa_{\mathfrak{f}}^{-1}(C_{V,0})$ in $\mathbb{C}^{d+1} \times \mathbb{C} \times \check{\mathbb{P}}^d$. The images of these components in $C_{V,0}$ (identified as a subspace of

 $\mathbb{C}^{d+1} \times \mathbb{C} \times \check{\mathbb{P}}^d$) under κ_f are

$$\{(x_1,\ldots,x_d,z,0)\in\mathbb{C}^{d+2}\mid z=0,\,x_i=0,\,i\in I\}$$

for $I \subset \{1, 2, ..., e\}$ such that $n > \sum_{i \in I} a_i$ or $I = \emptyset$. Then

$$C_I = \{(x_1, \ldots, x_d, z) \in \mathbb{C}^{d+1} \mid z = 0, x_i = 0, i \in I\}$$

determine the auréole of (V, 0) by Proposition 2.0.1. \square

Case III. $n = a = a_1 + \cdots + a_e$

Lemma 3.0.11. Let $(q, \varphi) \in \kappa_{\mathfrak{f}}^{-1}(C_{V,0})$. If n = a, then $nq_{i}\varphi_{i} + a_{i}q_{d+1}\varphi_{d+1} = 0$ for $1 \leq i \leq e$, $\varphi_{i} = 0$ for $e < j \leq d$, and $\varphi_{1}^{ta_{1}/n} \cdots \varphi_{e}^{ta_{e}/n} = \lambda \varphi_{d+1}^{t}$ where

$$\lambda = \frac{a_1^{ta_1/n} \cdots a_e^{ta_e/n}}{(-1)^t n^t} \varepsilon(0, \ldots, 0)^t$$

and t are as in (2).

Proof. Let (p, H_p) approach (q, φ) as p approaches q along a curve C in \mathfrak{X} . It is obvious that $\varphi_j = 0$ for $e < j \le d$ since $\operatorname{ord}_{\tau}(h_j) > 0 = \operatorname{ord}_{\tau}(h_{d+1})$ for $e < j \le d$ in (6).

Let $k = \min_{1 \le i \le d+1} \{ \operatorname{ord}_{\tau}(h_i) \}$. Then $k \le 0$. Since (see (4) for notation)

$$H_n = (h_1 : \cdots : h_{d+1}) = (\tau^{-k} h_1 : \cdots : \tau^{-k} h_{d+1})$$

at $p \in C - \{q\}$, $\lim H_p = \varphi$ implies $\lim_{\tau \to 0} \tau^{-k} h_i = \varphi_i$ for $1 \le i \le d+1$. We have

$$a_i q_{d+1} \varphi_{d+1} = \lim_{\tau \to 0} a_i w_1^{a_1} \cdots w_e^{a_e} \varepsilon(t w_1, \dots, t^n w_d) (-\tau^{-k})$$

and

$$nq_{i}\varphi_{i} = \lim_{\tau \to 0} nw_{i}^{n}\tau^{-k}h_{i} = \lim_{\tau \to 0} \tau^{-k}w_{1}^{a_{1}}\cdots w_{e}^{a_{e}}(a_{i}\varepsilon + tw_{i}D_{i}\varepsilon)$$
$$= \lim_{\tau \to 0} \tau^{-k}w_{1}^{a_{1}}\cdots w_{e}^{a_{e}}a_{i}\varepsilon = -a_{i}q_{d+1}\varphi_{d+1}.$$

Hence, $nq_i\varphi_i + a_iq_{d+1}\varphi_{d+1} = 0$ for $1 \le i \le e$. If $\varphi_{d+1} \ne 0$, then

$$\begin{split} \frac{\varphi_1^{ta_1/n} \cdots \varphi_e^{ta_e/n}}{\varphi_{d+1}^t} &= \lim_{\tau \to 0} \frac{\prod_{i=1}^e (\tau^{-k} h_i)^{ta_i/n}}{(-\tau^{-k})^t} \\ &= (-1)^t \lim_{\tau \to 0} \frac{(w_1^{a_1} \cdots w_e^{a_e})^t \prod_{i=1}^e (a_i \varepsilon + t w_i D_i \varepsilon)^{ta_i/n}}{n^t w_1^{ta_1} \cdots w_e^{ta_e}} \\ &= (-1)^t \frac{a_1^{ta_1/n} \cdots a_e^{ta_e/n} \varepsilon(0)^t}{n^t} &= \lambda \end{split}$$

and so $\varphi_1^{ta_1/n} \cdots \varphi_e^{ta_e/n} = \lambda \varphi_{d+1}^t$.

If $\varphi_{d+1}=0$, then k<0 and $\operatorname{ord}_{\tau}(h_i)=k$ for some $j=1,2,\ldots,e$, say, $\operatorname{ord}_{\tau}(h_1)=k$. If we can prove that there exists at least one h_i , $1\leq i\leq e$, such that $\operatorname{ord}_{\tau}(h_i)>k$, then $\varphi_i=0$ and we have $\varphi_1^{ta_1/n}\cdots\varphi_e^{ta_e/n}=\lambda\varphi_{d+1}^t(=0)$. This is done by the following lemma. \square

Lemma 3.0.12. If

$$k = \min_{1 \leq i \leq d+1} \{ \operatorname{ord}_{\tau}(h_i) \} < 0,$$

then there exists an h_i , $1 \le i \le e$, such that $\operatorname{ord}_{\tau}(h_i) > k$.

Proof. Suppose the lemma is not true. Then $\operatorname{ord}_{\tau}(h_i) = k$ for all i = 1, $2, \ldots, e$. This implies $\nu_1 = \cdots = \nu_e$ (cf. (6)). But then

$$k = \operatorname{ord}_{\tau}(h_1) = \left(\sum_{i=1}^{e} a_i\right) \nu_1 - n\nu_1 = 0.$$

This contradicts k < 0. \square

Proposition 3.0.13. If n=a, the ideal J in $\mathcal{O}_{d+2}[Y_1,\ldots,Y_{d+1}]$ which defines $\kappa_{\mathsf{f}}^{-1}(C_{V,0})$ in $\mathbb{C}^{d+1}\times\mathbb{C}\times\check{\mathbb{P}}^d$ is generated by $\{nX_iY_i+a_iZY_{d+1}\}_{1\leq i\leq e}$, $\{Y_j\}_{e< j\leq d}$, T, $Z^t-\varepsilon(0)X_1^{ta_1/n}\cdots X_e^{ta_e/n}$, and $\lambda Y_{d+1}^t-Y_1^{ta_1/n}\cdots Y_e^{ta_e/n}$, where λ is as in Lemma 3.0.11.

Proof. Let N be the ideal generated by the elements as stated. By Lemma 3.0.11, $J \subset N$. To show that $N \subset J$, it is enough to show that, if $(q, \varphi) \in \mathbb{C}^{d+1} \times \mathbb{C} \times \check{\mathbb{P}}^d$ is in the zero locus of N, then $(q, \varphi) \in \kappa_{\mathfrak{f}}^{-1}(C_{V,0})$. We consider two cases.

1. $\varphi_{d+1} \neq 0$. In this case $\varphi_1 \cdots \varphi_e \neq 0$.

If $q_{d+1} \neq 0$, then $q_1 \cdots q_e \neq 0$. Choose integers $\nu_{e+1}, \dots, \nu_d \ (= 0 \text{ or } 1)$ and complex numbers b_1, \dots, b_d such that

$$b_i^n = q_i, \qquad 1 \le e \le e;$$

 $\lim_{\tau \to 0} b_i \tau^{\nu_i} = q_i, \qquad e < i \le d;$
 $b_1^{a_1} \cdots b_e^{a_e} \varepsilon(0, \dots, 0) = q_{d+1};$

and

$$\frac{b_1^{a_1}\cdots b_e^{a_e}}{nb_i^n}a_i\varepsilon(0,\ldots,0)=-\frac{\varphi_i}{\varphi_{d+1}},\qquad 1\leq i\leq e.$$

Then (q, φ) is the limit of (p, H_p) along the curve given by

$$w_i = \begin{cases} b_i, & 1 \le i \le e, \\ b_i \tau^{\nu_i}, & e < i \le d; \end{cases} \qquad t = \tau.$$

If $q_{d+1}=0$, then $nq_i\varphi_i+a_iq_{d+1}\varphi_{d+1}=0$ and $\varphi_1\cdots\varphi_e\neq 0$ imply $q_i=0$, $1\leq i\leq e$. Choose nonnegative integers $\nu_1=\cdots=\nu_e=\nu>0$, $\nu_j=0$ or 1, $e< j\leq d$, and nonzero complex numbers b_1,\ldots,b_d such that

$$\begin{split} \nu > \nu_j \,, & e < j \leq d \,; \\ \lim_{\tau \to 0} b_i \tau^{\nu_i} = q_i \,, & e < i \leq d \,; \end{split}$$

and

$$\frac{b_1^{a_1}\cdots b_e^{a_e}}{nb_i^n}a_i\varepsilon(0,\ldots,0)=-\frac{\varphi_i}{\varphi_{d+1}},\qquad 1\leq i\leq e.$$

Then (q, φ) is the limit of (p, H_p) along the curve given by

$$w_i = b_i \tau^{\nu_i}, \quad 1 \le i \le d; \quad t = \tau.$$

2. $\varphi_{d+1} = 0$. In this case $\varphi_1 \cdots \varphi_e = 0$.

We may assume $\varphi_1 \cdots \varphi_c \neq 0$, $\varphi_{c+1} = \cdots = \varphi_e = 0$ for some c, $1 \leq c < e$. Choose integers $\nu_1 = \cdots = \nu_c = \nu > 0$, $\nu_j = 0$ or 1, $c < j \leq d$, and complex numbers b_1, \ldots, b_d such that

$$\begin{split} \nu > \nu_j \,, & e < j \leq d \,; \\ \lim_{\tau \to 0} b_i \tau^{\nu_i} = q_i \,, & e < i \leq d \,; \\ \lim_{\tau \to 0} b_i^n \tau^{n\nu_i} = q_i \,, & c < i \leq e \,; \end{split}$$

and

$$\frac{b_1^{a_1}\cdots b_e^{a_e}}{nb_i^n}a_i\varepsilon(0,\ldots,0)=\varphi_i, \qquad 1\leq i\leq c.$$

Then (q, φ) is the limit of (p, H_p) along the curve given by

$$w_i = b_i \tau^{\nu_i}, \quad 1 \leq i \leq e; \quad t = \tau.$$

In either case, $(q, \varphi) \in \kappa_f^{-1}(C_{V,0})$. This completes the proof. \square

Theorem 3.0.14. If n = a, then (V, 0) has no exceptional cones and so the family $\{C_I\}$ consists of the irreducible components of $C_{V,0}$ only.

Proof. Let $(V',0)=(C_{V,0},0)$ and $\mathfrak{f}':\mathfrak{X}'\to\mathbb{C}$ be the deformation of V' to the tangent cone $C_{V',0}$ and $\kappa_{\mathfrak{f}'}:\mathscr{C}_{\mathfrak{f}'}(\mathfrak{X}')\to\mathfrak{X}'$ the relative conormal space. Then repeating the proof of Proposition 3.0.13 for (V',0), \mathfrak{f}' , and $\kappa_{\mathfrak{f}'}$, we will get the same ideal J as in Proposition 3.0.13. Then by Proposition 2.0.1 (V,0) has the same auréole as that of $(C_{V,0},0)$. Then the theorem follows from Proposition 2.0.3. \square

REFERENCES

- 1. C. Ban, Whitney stratification, equisingular family and the auréole of quasi-ordinary singularity, Ph.D. thesis, Purdue University, 1990.
- J. Lipman, Quasi-ordinary singularities of embedded surfaces, Ph.D. thesis, Harvard University, 1965.
- 3. _____, Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc., No. 74, Amer. Math. Soc., Providence, RI, 1988, pp. 1-107.
- 4. D. T. Lé and B. Teissier, Limits d'espaces tangents en géométrie analytique, Comment. Math. Helv. 63 (1988), 540-578.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, MANSFIELD, OHIO 44906 E-mail address: cban@math.ohio-state.edu