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AUREOLE OF A QUASI-ORDINARY SINGULARITY

CHUNSHENG BAN

(Communicated by Eric Friedlander)

Abstract. The aureole of an analytic germ (X, x) C (C , 0) is a finite family

of subcones of the reduced tangent cone | Cx, x I such that the set Dx, x of the

limits of tangent hyperplanes to X at x is equal to \J(Pro)Ca)v . The aureole

for a case of quasi-ordinary singularity is computed.

1. Introduction

When they studied the limits of tangent spaces to an analytic space, Le and
Teissier introduced the notion of aureole. Let (X, x) c C" be a germ of

analytic space. There exists a finite family {Ca} of subcones of the reduced

tangent cone \Cx,x\ such that the set Dx,x of the limits of tangent hyperplanes

to I at x is equal to |J(Proj CQ)V . This family is called the aureole of (X, x).

The aureole is an important geometric object. In this paper we will compute
the aureole for a case of quasi-ordinary singularity.

A quasi-ordinary singularity is an analytic germ (V, 0) of dimension d

which admits a finite map (i.e., proper with finite fibers) of analytic germs

n : (V, 0) -+ (Cd, 0) whose discriminant locus D (the hypersurface in Cd

over which n ramifies) has only normal crossings as singularities. In the hyper-

surface case, every quasi-ordinary singularity (V, 0) can be parametrized by a
fractional power series

C = H(x\'n ,...,xiJn) = Yl c«xVn ■ ■ ■ Kdln

(77 a power series) in the sense that (V, 0) is the image of the map <P : U -»

Cd+X   (U some neighborhood of 0 in Cd) given by

(1) <D(xi, ... ,xd) = (xl, ... ,x%,H(xx, ... ,xd)) ,

and (V, 0) is equipped with a set of fractional monomials {x['/n ■ ■ ■ X^n) ,

called characteristic monomials, which is totally ordered by divisibility. These

monomials determine quite a lot of the geometry and topology of (V, 0). (For

more details about quasi-ordinary singularity, see [2] or [3].)
The main result of this paper is (cf. Theorems 3.0.7, 3.0.10, and 3.0.14).
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Theorem. Suppose the reduced discriminant locus \D\ is given by Xx ■ ■ ■ Xe = 0

and X"1'n ■■■Xee'n is the smallest characteristic monomial. Then the aureole

of (V, 0) c (Cd+X, 0) is determined by the following subcones of the reduced
tangent cone |CV,ol:

(1) if n>ax+--- + ae, Q = {(xx, ... , xd, z) £ Cd+X | xt = 0, i £ 7} for
7 c {1, 2, ... ,e} and I ^0;

(2) if n < ax + --- + ae,  C, = {(xx ,...,xd,z)£ Cd+X \ z = 0, xt = 0,

i e 7} /or 7 c {1, 2, ... , e} such that n > £i6/a, or I = 0;

(3) if n = ax-\-h ae, the irreducible components of Cv,q-

This result shows that the characteristic monomials determine the aureole of

(F,0).

2. Aureole

Let Ic5x[/bea closed subspace with U an open set in C" and /: X ->

S be the restriction of the first projection S x U —► S to ^T. Let %>f{X) be the

closure in S x U x P"-1 of the set of couples (x, 77) where x £ X° and 77

is the direction of a hyperplane in C containing the tangent space at x to the

fiber of /. A point of fff(X) is a couple (x, 77) where x £ X and 77 is a limit
of hyperplanes in C tangent to the fibers of / at smooth points of the fibers.

Let Kf be the morphism induced by the projection S x U x tn~x ^> S x U.

Then W/(X) is called the relative conormal space of / : X —> S and Kf

is called the relative conormal morphism. If S is a point, then we get the

(absolute) conormal space W(X) and (absolute) conormal morphism k . Note

that Dx,x - k~1(x) is the set of the limits of the tangent spaces to X at x.
Let (X, x) c (C" ,0) be a analytic germ. Then we have the following nor-

mal/conormal diagram of (X, x):

EY^(X)    -U   W(X)

K1 K

EyX —► X
e

where e is the blowing-up of x in X, e is the blowing-up of k~x(x) in

^(X), and k' is the morphism by the universal property of blowing-up. Let

£ = k o e = e o k ,  |d:_1(x)| = UAj be the decomposition into irreducible

components, and Va = \K'(Da)\ c |e"_1(x)| = |Proj Cx,x\ ■

Definition 2.0.1. The collection {Va} is called the aureole of X at x or the
aureole of (X, x).

Let Ca be the corresponding cone of Va in Cx,x- By abuse of language we

also call Ca the aureole.

Let f: X -► C be the deformation to the normal cone Cx,x , xx : %(X) —► X

the relative conormal morphism, and q - f o kx : % (X) —► C. We have the

following result (cf. [4, 2.1.4.1]).

Proposition 2.0.1. The cones Ca are the image in f-1(0) = Cx,x by Kf of the

irreducible components of the fiber q~x(0) — k7x(Cx,x) ■



AUREOLE OF A QUASI-ORDINARY SINGULARITY 395

By definition, k~x(Cx,x) consists of the limits (q, <f>) of (p, H) £ X° x P"-1

as p approaches q £ Cx ,x x {0}. p can approach q from inside the fiber

f-i(O) = Cx,x x {0} or from other fibers f_l(f) with t ^ 0. However, if

(X, x) is a reduced hypersurface germ in (Cd+X, 0), we need only consider the

second kind of limits by the following lemma.

Lemma 2.0.2. Let (X, 0) be a reduced hypersurface germ in (Cd+X, 0). Let

f: X —> C be the deformation to the tangent cone and X° C X - f—' (0) be an

open dense set such that f|£° : X° —> C has smooth fibers. Then %?(Cx,o),

the conormal space of Cx,o identified with a subspace of Cd+X x C x td by

the inclusion Cd+X x {0} x P** <-> Cd+X xCxP1', is contained in the closure

of k~1(X°) in Cd+X x C x td, where kx:%(X)-+X is the relative conormal

morphism.

Proof. Let

/(Z,,...,Zrf+1) = /,(Z) + /,+1(Z) + ... = 0

be the defining equation of (X, 0), where the f are homogenous polynomials

of degree i and fv is the initial form of /. The tangent cone Cx,o is a

hypersurface and is defined by fv(Z) = 0. Then (cf. [4]) X C Cd+X x C and is
defined by

T~"f(Z) = MZ) + Tfl/+x(Z)--- = 0

and Cx.o is defined by fv(Z) = 0. Let p = (zx, ... , zd+x) £ Cx,o be a
smooth point. Since Cx, o is a hypersurface, the tangent direction <pp to Cx, o

at p is unique and <pp = (Dxfv , ... , Dd+Xfv) where 7), = d/dz,.

We now show that (p, <pp) is a limit of the points of k^x(X°) . Let {t„} c

C* be a sequence of nonzero numbers approaching 0 and Xt„ = f_1(f„). Let

pn £ Xt„ fl X° such that p„ —» p . The tangent direction to Xt„ at p„ is

Hp„ = (A„,i : ••• : hntd+x)

where /?„,, = T>ifv(z) + t„Difl,+x(z) + ■■■ . Then lim,,..^A„,,■ = Dtfv and so
lim(p„ , HPn) = (p, cpp). Therefore,

y={(p,(pp)\p£Cx<o}ck;x(x°).

Since ^(Ca-,o) is the closure of Y in Cd+X x {0} x F , it follows that W(Cx,o)

CK~X(X°).   a

The family {Ca} contains the irreducible components of |Cx,x|- In general

it also contains much more. The cones in the family {Ca} which are not

irreducible components of |C^>X| are called exceptional cones. But if (X, x)

itself is a cone, there is no exceptional cones (cf. [1]).

Proposition 2.0.3. If (X, x) itself is a cone, then

Dx,x = ?ro]\Cx,x\\

where Proj |Cx,x|v is the dual of Proj \CX,X\ ■ So if (X, x) is a cone, then X

has no exceptional cone at x.
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3. The case of a quasi-ordinary singularity

Let (V, 0) c (Cd+X ,0) be a quasi-ordinary hypersurface singularity defined
by a pseudopolynomial

f(Z) = Zm + gx (X)Zm~x + ■ ■ ■ + gm (X)

where gt(X) = gt(Xx, ... , Xd) are power series. We may assume that the

quasi-ordinary projection n : (V, 0) -»(Cd, 0) is induced by the projection

p:(xx, ... ,xd, z)-*(xx, ... ,xd,).

Then (V, 0) being quasi-ordinary means that the discriminant of / has the

form

A = X^---X^u(Xx,...,Xd),        W(0,...,0)#0,

for some e < d . Let C = H(X\'n ,... , XxJn) be a parametrization of (V, 0)

with respect to n. We assume in this paper that the smallest characteristic

monomial of £ is M — X"'/n ■ • • X"e/" , i.e., M contains the same variables Xt

with those of A/u. Then we may assume that

r —  ya\ln Yael"p( YXln YXln     Y Y \
i, — A{        ■ ■ ■ Ae       fc(A,       , . . . , Ae      , Ae+X , ... , Ad)

where e is a unit (cf. [1, p. 17]). Let K = C((XX, ... , Xd)), the quotient field
of C[[XX, ... , Xd]]. It can be shown that the initial form f of / is (cf. [2,
Lemma 2.5])

{Zm if ax + --+ae> n,

(Z< - e0X[a>/n ■ ■ ■ X'ea</ny   ifai+-+ae = n,

cXyma^ln...Xemaeln if ax + .-- + ae<n,

where e0 = e(0, ...0), m = [K(Q : K], t = [K(X^'/n ■ ■■Xaeeln) : K], r =

[K(Q : K(Xal'/n ■ ■ ■ X?1")], and c £ C*.

Let f : X —* C be the deformation to the tangent cone Cv,o ■ Since Cv,o

is defined by T~v f(TXx, ... , TXd, TZ) = 0 (v = ord(//))', similar to (1),

X - f_1(0) is the image of the map <P : W - {t = 0} -» Cd+X x C ( W some

neighborhood of 0 in Cd+X) given by

(3) 0(u;i, ... ,wd,t) = (wnx , ... ,w^ , we+x, ... ,wd,n,tn)

where n = ta~"w^ ■ ■ ■ w%ee(twx, ... , twe, tnwe+x, ... , t"wd) and a = ax +

-h ae.

Let X° c X be the open dense subset of points where lOi • • • we ^ 0. Then

the tangent to the fiber Xt = f"1 (0 at p = <P(wx, ... , wd, t) £ X° = X° C\Xt
for t ^ 0 is given by the direction Hp = (hx : ■ ■ ■: hd+x) where

' ta~"wUi ■ • -w"1
—■—-L—-—(ate + tWjDie),        1 < / < e,

nw"

(4) Ai = ] tawa{' ■ • • wfDie, e<i<d,

-1, z = rf + 1,

with 7), = d/dz, as before.
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We are going to use Proposition 2.0.1 to compute the aureole for (V, 0).

For this purpose, we need a description of k^x(Cv,o)- By definition and

Lemma 2.0.2, k^x(Cv,q) consists of the limits of the pairs (p, Hp) as p ap-

proaches the points in CV ,o x {0} C X where p — <P(u>i, ... , wd, t) £ X° and

Hp = (hx : ■ ■ ■: hd+x) is a tangent direction to Xt at p .

Lemma 3.0.4. Let (V, 0) c (Cd+X ,0) be a quasi-ordinary singularity and f :

X —* C be the deformation to the tangent cone CV,o • Let C c X be a curve

parametrized by a : (D, 0) —> (X, p), D a disc in C centered at 0, such that

o(D-{0})cX-rl(0),    and   <j(0) =p £ p'(0) = CV,0.

Then there exists a parametrization a : (D, 0) -> (X, p) of C and an analytic

map o': D* -> Cd+X such that the diagram

Cd+X

X I*
D*--    X

a

is commutative, where D* = D - {0} and <P is as in (3).

Proof. Suppose a = (oj,..., 0^+2) where ct,(t) = Aft"' + higher-order terms,
1 < i < d + 2. Define ct(t) = a(xn). Then er, = t^'c^t) , e,(0) ^ 0, and the

y/£i(r) are analytic near t = 0. Define t' : D* -* Cd+X by

></£Kt), l<*<e,
ff,'(T) = < ct,(t) ,_        e<i<d,

J^^/Wt),       f = rf + i,

where the branches of the {/sj(t) are chosen in such a way that dd+x(r) =

®d+\ ° c'(T)   (^rf+i is me (^ + 1) component of O). It follows that

Cd+X

D*-    X
a

is commutative.   □

Let (q, (p) £ K^l(Cyto) ■ Then (q, tp) is a limit of (p, Hp) as p -»<? along

a curve C in jt. By Lemma 3.0.4, C is given by

jWj = 0,t"' + higher-order terms      (0, ^ 0, i/,- > 0),  1 < 1 < d,

(r = rcT"' + higher-order terms (tc / 0, f, > 0).
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If p = <b(wx, ... , wd , t) £ C, then the components of Hp = (hx: ■■■: hd+x)

have orders (cf. (4))

' = (a - n)vt + (Yfi=i Wi) -nvj,       1 < j < e,

(6) ordT(hj) I > avt + (£-=1 am) , e <j <d,

= 0, j = d+l.

Since limHp = <p , g>j-^ 0 if and only if ordT(/z;) = min,{ordT(/z,)} .

There are three cases.

Case I. n > a = ax -\-\-ae

Lemma 3.0.5. If n > a, then (pd+x = 0, qjtpj = 0 for 1 < j < e, and fj = 0
for e < j < d.
Proof. Suppose <pd+x ̂ 0. Then in (6) ordT(/z;) > ordT(hd+x) = 0 for each ;'.

Let vk = maxi<,<e{^;} • Then ordx(hk) > 0 implies

e e e

(a - n)vt + ^ apt >nvk>^ atvk > ^ am
i=\ i=\ i=\

e

> (a-n)v, + ^2a;Pi.
;=1

This contradiction shows that <pd+x = 0.
Since p -► q along C, limT_0Pd+\ = limT—o^+i °o'(x) exists; so, the

order of pd+x — n (see (3)) along C satisfies

e

ordx(ta-"w^ ■■■w?) = (a- n)vt -T-^am > 0.

Now suppose qj ^ 0 for some j , 1 < j < e. Then Vj■ = 0 in (5) and

e

ordr(hj) = (a- n)vt + ^am > ordT(hd+x) = 0.

i=i

Since tpd+x = 0, tpj■■ = 0. Thus qjtpj = 0 for 1 < j < e.

If j > e, then ordr(hj) > av, + Y%=\ aivi > 0 = ordx(hd+x) and so <pj =

0.   □

Proposition 3.0.6. If n > a, the ideal J in (fd+2[Yx, ... , Yd, Yd+X] which de-

fines \k~x (Cv, o)| in Cd+l xCx¥d is generated by {X/y,}i<,<e, {Yj}e<j<d+X,

Xi-Xe, and T, where cfd+1 = C[[XX, ... , Xd, Z, T]].

Proof. From (2) we know that if n > a, the reduced tangent cone |CV,o| is

defined by Xx ■ ■ ■ Xe = 0. By Lemma 3.0.5,

J C {{XiYi}\<i<e, {Yj}e<j<d+X, Xx ■ ■ ■ Xe, T).

Conversely, let (q, q>) £ Cd+X x C x Fd such that qjtpj = 0, 1 < j < e,

tpj= 0, e < j <d , and qx ■ • • qe = 0. It suffices to show that (q, q>) is a limit

of (p, Hp) as p —* q along some curve C . Without loss of generality, we may

assume that qx = ■ ■ ■ = qc = 0, qc+x ■ ■ ■ qe ^ 0, (px ■ ■ ■ tps -£ 0, and (ps+x = • • • =

cpe = 0 where  1 < s < c < e.   Choose positive integers vx,V2, ... ,vc,vt,
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complex numbers b\,bi, ... ,be,to such that v\ = v% = • ■ • = vs = v > Vi for

s < i < e, and

9i=      nb»     *«(0,...,0),       1</<c,

such that

(a - n)vt + ^2 aivi > 0
i=i

if &/+i = 0 and such that

e

{a-n)vt + ̂ 2am = 0,
/=i

ta = Oi-W0.0)
if <7</+i 7^ 0. Let C be the curve in X given by

{bit"',       l<i<c,

bi, c < i <e,        t = to%"'.

q>, e <i<d;

Then (p, Hp) approaches (q, (p) as p —> q along C.   n

Theorem 3.0.7. If n > a, the aureole of (V, 0) consists of Vj = Proj C/ where

Ci = {(xx,... ,xd, z)£ £d+x | xt = 0, i £ 7}

/or / c {1, 2,..., e) and 7^0.

T'roo/ Let P c cfd+2[Yx, ... ,Yd, Yd+X] be a minimal prime over J (cfd+2
and 7 are as in Proposition 3.0.6) homogeneous in Y. Since P is prime,

Xx-Xe£ J cP implies Xj £ P for some ;', 1 < j< e. Also XjYj £ J c P
implies Xj or Y, e P for some i, 1 < / < e. Therefore,

P, = ({Xi}ieI,{Yj}m,T)cP

where I c {1,2, ... , e]. It is clear that J c P/. Since P is minimal over J
and Pi is prime, Pj = P. These TV's determine the irreducible components of

Kf_1(Ci/,o) • The image of these irreducible components in Cy,o are

C, = {(x,,..., xd, z) e Crf+1 | x, = 0, i 6 7},        Ic{l,2,...,e).

By Proposition 2.0.1, the C/ determine the aureole of (V, 0).   □

Case II. « < a = ai -I-\- ae

Lemma 3.0.8. Let (q, <p) £ k^x(Ck,o) • If n < a, then qjtpj = 0 ./or 1 < j <e,

q>j = 0 /or e < j < d, and (p^ ■■ ■ (f>jk =0 /or 1 < j\, ..., jk < e such that

b <«/,+••■ + ay* •

Proo/ Since ordT(/^) > ordT(/zi) in (6) for e + 1 < j < d, q>j = 0.
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Now assume q} ■ ± 0, 1 < j < e . Then Vj = 0 (cf. (5)) and

e

ordr(hj) = (a-n) + ^a,*/, > ordx(hd+x) = 0.

;=1

Thus q>j = 0 and so qjtpj = 0.

Suppose q>jx ■■■(Pjk ̂ 0 and n < ah +-\- aJk where 1 < jx, ... , jk < e.

Then

ordx(hjl) = • • • = ordx(hjk) = min{ordr(/z,)}.

Let I be this integer. Then it follows that I < ordx(hd+x) — 0. Since ordT(/z,) =

ordx(hf) implies vt = Vj if 1 < i, j < e, we have (cf. (6))

vj. = • • • = vj = i/ = max {^,}.

Then

A = (a - n)vt + I ̂ 2 aivi   ~ nv

= (a - n)vt + j    ^2   aivi    + (aji H-h aA _ b)i/ > (a - n) > 0.

\M,¥Ji j

But we have shown that X < 0. This contradiction shows that q>jx ■ ■ ■ <pjk —

0.   □

Proposition 3.0.9. If n < a, then the ideal J in cfd+2[Yx, ... ,Yd, Yd+X] which

defines |/cf_1 (CK ,o)l in Cd+X xCxF is generated by {AT,-Yi}i</<«, {?)}«<,■<</,

Z,   T, and {Yjx ■■■YJk}x<jl.jk<e,n<aJt+-+aJk ■

Proof. Let N be the ideal generated by the elements as stated. We want to

show that J = N. It is clear by Lemma 3.0.8 that J c N.
Conversely, let (q, q>) be in the zero locus of N.  It suffices to show that

(q, (p) £ /c(_1(Ck,o) ■ Renumbering the variables if necessary, we may assume

<p = (tpx ■.■■■:<pc:0:---:Q:tpd+x)

and

o = (0, ... , 0, qr+x, ... ,qd, 0, ... , 0)

where (px---q>c ^ 0, qr+\---qd i1 0, and c < r < e. Then n > ax +

-1- ac. Similar to the proof of Proposition 3.0.6, we choose positive inte-

gers V\, ... ,vr,vt, nonnegative integers ve+x, ... ,vd, and nonzero complex

numbers bx, ... , bd, to such that

i/j = ... = vc = max[v{] = v > Vj   for j = c + I,... , r;
l<i<r

(a - n)v, +    >   am    - nv <    n   ._     +    , _

bf = qt,        r<i<e;

limbir'/' = qi,        e < i <d;
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and

ta0-nbax'---b^_m r],j-<Pi/<Pd+i    if fei^O,

BO? [<Pi lf<pd+X=0.

Let C be the curve in X given by

fo/T"',     l<i'<rore<i<i/,

[0,,        r<*<*>;

Then (p, Hp) approaches (<7,V) along C. Therefore, (o,^) e /^""'(Cj/.o) •

This completes the proof.   □

Theorem 3.0.10. If n < a, the aureole of (V, 0) consists of Vt = Proj C/ w«ere

Ci = {(x,.xrf, z) € Crf+1 | z = 0, x, = 0, i £ 7}

/or 7 c {1, 2, ... , e} such that n > J2i€l a, or I = 0.

Proof. Let P/ be the ideal in cfd+2[Yx, ... , Yd, Yd+X] generated by {Xi}ieI,
{Yj}j$j, Z, and T for some 7 c {1, 2, ... , e} such that n > S<€/fl<. It
is obvious that XtYi € P/ for 1 < / < e. If n < a,, H-h a,t, then some

ji $ I since « > X),e/ a»; thus, 7,, • • • J}t £ (Yjt) c Pi. Hence, J C Pi, where
J is as in Proposition 3.0.9. It is also clear that P/ is prime and homogeneous
in the Yj. We will show that these P/ are the minimal primes over J and

homogeneous in Yj.
Now, let P D J be any prime ideal homogeneous in Yj. If n < a,, H-1- a7t

for 1 < j't,..., jk < e, then Yj{ ■ • • Yjk e J C P; so, Yj, e P for some >/.
Considering all such monomials Yj, ■ ■ ■ Yjk, we get

({XilYil}l=l>„.tk,{Yj}j*i,,Z,T)cP.

We may assume that n > at] -\-V aik or k = 0. If n < a,-, -t-h a,-t, then
y,, • • • Yik e / C P. Then Y,, e P for some //, say ik , and then

{{XilYil}l=1,...,k-l,{Yj}j#l,Z,T)cP.

Repeating this procedure, we get a set 7' c {1, 2, ... , e} with n > 2~^ieI, ai

or 7' = 0 such that

({XiYi}ier,{Yj}Jir,Z,T)cP.

Since XjYj £ P implies X{ £ P or Yj £ P, there is a subset 7 of 7' with

n > J2iei ai or 7 = 0 such that

{{Xi}m,{Yj}stI,Z,T)=PIcP.

We have shown that:

(1) J c Pi for any I c {1,2, ... , e} such that n > £,e/a, or 7 = 0 ;
(2) If P d J is prime, then Pi c P for some such 7.

It follows that the P/ are the minimal prime ideals over J homogeneous in

Y. These P/ determine the irreducible components of ^""'(Ck.o) in Cd+X x

CxF. The images of these components in Cy, o (identified as a subspace of
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C^1 x C x td) under Kf are

{(xi,..., xd, z, 0) € Cd+2 | z = 0, x, = 0, i £ 7}

for 7 c {1, 2, ... , e} such that n > Y^ieia' or 7 = 0 . Then

C, = {(xi,... , xd, z) € Cd+l | z = 0, x, = 0, / e 7}

determine the aureole of (V, 0) by Proposition 2.0.1.   □

Cost' III. « = a = ax H-v ae

Lemma 3.0.11. Let (q, q>) £ k^x(Cvto) ■ If n = a, then nqjtpt + atqd+x<pd+x = 0

for 1 < / < e, <pj = 0 for e <j <d, and <p[a,/" ■ ■ ■ (p'eae/n = Xtp'd+i where

tajn tae/n

* = Vo£-e(0---0)'

and t are as in (2).

Proof. Let (p, Hp) approach (q, <p) as p approaches q along a curve C in

X. It is obvious that <pj = 0 for e < j < d since ordx(hj) > 0 = ordx(hd+x)

for e < j < d in (6).
Let k = mini<(<d+i{ordT(/!,)} . Then k < 0. Since (see (4) for notation)

Hp = (hx : ■ ■ ■: hd+x) = (x~khx :■■■: x~khd+x)

at p £ C - {q} , lim Hp = <p implies limT^0 r~khj - q>, for 1 < i < d + 1. We

have

Wd+\<Pd+\ =lirnaiw\ai---w?e(twx, ... , tnwd)(-x~k)

and

nqt(pi = limnw,"x~khj = limx~kwa,x ■ ■ ■ w^^s + tWjDjE)
T—»0 T—»0

= limx~kw^ ■■■wfaiz = -aiqd+x(pd+x.

Hence, nc7,<p, + atqd+xq>d+x = 0 for 1 < / < e .

If <pd+x ̂ 0, then

y;«,/.»,..,/«./.. =       n?=1(T-^r/"

= (   IVlim K' ••■Otn!=i(fl»e + ̂ l-Z?,-er/"

.   „,<l/W'--^/Be(0)'     i
-(-l) ^ -A

and so <p[a]/n ■ ■ ■<p'eae/n = A<p'd+l.

If ?></+i = 0> then /c < 0 and ordT(/z,) = /c for some j = 1, 2, ... , e, say,

ordT(«i) = k . If we can prove that there exists at least one «,, 1 < i < e, such

that ordx(hi) > k, then <p, = 0 and we have (p\a,/n ■■ ■<pea'ln = Wd+X(= 0) •

This is done by the following lemma.   □
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Lemma 3.0.12. If

k=   min   {ordr(«,)| < 0,
\<i<d+\

then there exists an hi, I < i <e, such that ordx(h,) > k .

Proof. Suppose the lemma is not true. Then ordT(«,) = k for all i - I,

2, ... , e. This implies vx — • ■ • — ve (cf. (6)). But then

k = ordx(hx) = 1^2 a': J "i ~ nu\ = 0-

This contradicts k < 0.   □

Proposition 3.0.13. If n = a, the ideal J in cfd+2[Yx, ... , Yd+X] which de-

fines K~x(CVt0) in Cd+X xCxtd is generated by {nXiY + aiZYd+x}x<(<e,

{Yj}e<j<d. T, Z' - e(0)X[a,/n ■ ■ ■ X^/n , and XYld+x - Y[aUn ■ ■ ■ Yeta'ln, where

X is as in Lemma 3.0.11.

Proof. Let N be the ideal generated by the elements as stated. By Lemma

3.0.11, J c N. To show that N c J, it is enough to show that, if (q, <p) £

Cd+X xCxtd is in the zero locus of N, then (q, <p) e /cf_1 (Cv. n). We consider
two cases.

1-  <Pd+i 7^ 0. In this case <px ■ ■ ■ (pe ̂  0.

If Qd+\ ^ 0, then qx ■ ■ ■ qe ^ 0. Choose integers ve+x, ... , vd (= 0 or 1)

and complex numbers bx,... ,bd such that

bf = qi,        1 < e < e;

limo,!"' =67,,        e < i <d;
T —0

b?---b?e(0,...,0) = qd+x;

and
h"1 ■■■ ba' m

Then (q, (p) is the limit of (p, 77p) along the curve given by

\bi, Ki<e,
Wj = i ," -   - , t = x.

\biXv',       e<i<d;

If Qd+\ = 0, then nqt(pt + ajqd+x<pd+x =0 and <px--- tpe ̂  0 imply tf, = 0,
1 < / < e. Choose nonnegative integers vx - ■■ ■ = ve = v > 0, vt■ = 0 or 1,

e < j < d, and nonzero complex numbers bx, ... , bd such that

i> > f>,        e < j <d;

limO/T"' = <?,,        e < i <d;
x—»0

and
>L_*^(0,...,0) = -^,       ■ <,<*.
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Then (q, tp) is the limit of (p, 77p) along the curve given by

Wj = biXv',     I < i <d;        t = x.

2. <pd+x = 0. In this case (px ■ ■ ■ <pe = 0 .

We may assume tpx ■ ■ ■ tpc ̂  0, <pc+x = ■ • • = fe = 0 for some c, 1 < c < e .

Choose integers v\ = • • ■ = vc = v > 0, i/,- = 0 or 1, c < j < d, and complex

numbers bx, ... , bd such that

i/ > *//,        e < j <d;

limbjx"' =67,,        e < i < d;
T^O

lim of t""'■ = ?,-,       c</'<e;
T-.0

and
oa' • • • oflf

'^„ e aie(0,...,0) = <pi,        l<i<c.

Then (67, <p) is the limit of (p, 77p) along the curve given by

to,- = O/f"',     1 < 1 < e;        ? = x.

In either case, (q, tp) £ k^x(Cv,q) ■ This completes the proof.   □

Theorem 3.0.14. If n = a, then (V, 0) «6i5 «o exceptional cones and so the

family {C/} consists of the irreducible components of Cv .o o«/y.

Proo/ Let (V, 0) = (O.o, 0) and f : 3f -» C be the deformation of V to
the tangent cone Cy ,0 and /Cf : %\X') -» X' the relative conormal space.

Then repeating the proof of Proposition 3.0.13 for (F', 0), f , and /c<<, we

will get the same ideal / as in Proposition 3.0.13. Then by Proposition 2.0.1
(V, 0) has the same aureole as that of (Cj/,o> 0). Then the theorem follows

from Proposition 2.0.3.   □
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