JORDAN *-DERIVATIONS OF STANDARD OPERATOR ALGEBRAS

PETER ŠEMRL

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let H be a real or complex Hilbert space, $\dim H > 1$, and $\mathscr{B}(H)$ the algebra of all bounded linear operators on H. Assume that \mathscr{A} is a standard operator algebra on H. Then every additive Jordan *-derivation $J: \mathscr{A} \to \mathscr{B}(H)$ is of the form $J(A) = AT - TA^*$ for some $T \in \mathscr{B}(H)$.

Let \mathscr{A} be a real or complex *-algebra and \mathscr{A}_1 any subalgebra of \mathscr{A} . An additive (linear) mapping $D \colon \mathscr{A}_1 \to \mathscr{A}$ is called an additive (linear) Jordan derivation if $D(a^2) = aD(a) + D(a)a$ for all $a \in \mathscr{A}_1$. An additive (real-linear) Jordan *-derivation $J \colon \mathscr{A}_1 \to \mathscr{A}$ is defined as an additive (real-linear) mapping satisfying $J(a^2) = aJ(a) + J(a)a^*$ for all $a \in \mathscr{A}_1$. It is easy to verify that for an arbitrary element $b \in \mathscr{A}$ the mapping $D_b \colon \mathscr{A}_1 \to \mathscr{A}$ defined by $D_b(a) = ab - ba$ ($D_b(a) = ab - ba^*$) is a Jordan derivation (Jordan *-derivation).

The study of Jordan *-derivations has been motivated by the problem of the representability of quasi-quadratic functionals by sesquilinear ones (for the results concerning this problem we refer to [5, 7, 9-11]). It turns out that the question of whether each quasi-quadratic functional is generated by some sesquilinear functional is intimately connected with the structure of Jordan *-derivations [7, 9].

Let H be a real or complex Hilbert space. By $\mathscr{B}(H)$ we mean the algebra of all bounded linear operators on H. We denote by $\mathscr{F}(H)$ the subalgebra of bounded finite rank operators. We shall call a subalgebra \mathscr{A} of $\mathscr{B}(H)$ standard, provided \mathscr{A} contains $\mathscr{F}(H)$. It is easy to see that $\mathscr{F}(H)$ is a prime ring; that is, $A, B \in \mathscr{F}(H)$ and $A\mathscr{F}(H)B = \{0\}$ imply A = 0 or B = 0.

Assume that H is an infinite-dimensional Hilbert space. Let $\mathscr A$ be a standard operator algebra on H. Suppose that $D\colon \mathscr A\to \mathscr B(H)$ is an additive Jordan derivation. Every finite rank operator is a linear combination of idempotent operators of rank one. If P is an idempotent operator of rank one and $\lambda=\mu^2$ is a scalar, then $D(\lambda P)=\mu(PD(\mu P)+D(\mu P)P)$ has rank at most two. Thus, D maps $\mathscr F(H)$ into itself. Using the result of Herstein [3], which states that all additive Jordan derivations of prime rings of characteristic different from two are derivations, we infer that D satisfies D(AB)=AD(B)+D(A)B for all pairs A, $B\in \mathscr F(H)$. It follows from [8] that there exists $T\in \mathscr B(H)$

Received by the editors May 26, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B47, 47D25.

This work was supported by the Research Council of Slovenia.

such that

$$(1) D(A) = AT - TA$$

for all finite rank operators A. Linearizing the equation $D(A^2) = AD(A) + D(A)A$ we get D(AB + BA) = AD(B) + BD(A) + D(A)B + D(B)A. Together with (1) this yields that

$$B(D(A) - AT + TA) + (D(A) - AT + TA)B = 0$$

holds for all $A \in \mathcal{A}$, $B \in \mathcal{F}(H)$. Consequently, we have D(A) = AT - TA for every $A \in \mathcal{A}$. Thus, every additive Jordan derivation $D: \mathcal{A} \to \mathcal{B}(H)$ is of form (1) for some $T \in \mathcal{B}(H)$. The assumption that H is infinite dimensional is indispensable in this statement [8].

It is the aim of this note to obtain a similar result for additive Jordan *-derivations. More precisely, we shall prove the following result:

Theorem. Let H be a real or complex Hilbert space, $\dim H > 1$, and let $\mathscr A$ be a standard operator algebra on H. Suppose that $J: \mathscr A \to \mathscr B(H)$ is an additive Jordan *-derivation. Then there exists a unique linear operator $T \in \mathscr B(H)$ such that $J(A) = AT - TA^*$ holds for all $A \in \mathscr A$.

Remark. Two special cases of this result have been already proved—the case when $\mathcal{A} = \mathcal{B}(H)$ [6] and the case when H is a complex Hilbert space and \mathcal{A} is the algebra of all compact linear operators [1]. In this general setting we use a completely different approach as in [1, 6].

Proof. Let us denote by J_1 the restriction of J to the ideal $\mathscr{F}(H)$. We define a mapping $\phi \colon \mathscr{F}(H) \to \mathscr{B}(H \oplus H)$ by

(2)
$$\phi(A) = \begin{pmatrix} A & J_1(A) \\ 0 & A^* \end{pmatrix}.$$

Clearly, ϕ is an additive Jordan homomorphism; that is, ϕ is additive and $(\phi(A))^2 = \phi(A^2)$ holds for all finite rank operators A. It should be mentioned that relation (2) is a variation of a standard connection between linear derivations and algebra homomorphisms (see [2]). Since $\mathscr{F}(H)$ is a locally matrix algebra, by a result of Jacobson and Rickart [4], $\phi = \varphi + \psi$, where $\varphi \colon \mathscr{F}(H) \to \mathscr{B}(H \oplus H)$ is a ring homomorphism and $\psi \colon \mathscr{F}(H) \to \mathscr{B}(H \oplus H)$ is a ring antihomomorphism. We have

$$\operatorname{Im} \phi \subset \left\{ \begin{pmatrix} X & Y \\ 0 & W \end{pmatrix} \in \mathscr{B}(H \oplus H) \colon X, \ Y, \ W \in \mathscr{B}(H) \right\}.$$

It follows that φ and ψ are of the form

$$(3) \hspace{1cm} \varphi(A) = \begin{pmatrix} \varphi_1(A) & \varphi_2(A) \\ 0 & \varphi_3(A) \end{pmatrix} \,, \hspace{1cm} \psi(A) = \begin{pmatrix} \psi_1(A) & \psi_2(A) \\ 0 & \psi_3(A) \end{pmatrix} \,,$$

where φ_1 , φ_3 are additive homomorphisms on $\mathscr{F}(H)$, ψ_1 , ψ_3 are additive antihomomorphisms on $\mathscr{F}(H)$, and the equations $\varphi_1(A) + \psi_1(A) = A$ and $\varphi_3(A) + \psi_3(A) = A^*$ are valid for all $A \in \mathscr{F}(H)$. Pick an idempotent P on H of rank one. Then P is the sum of the idempotents $\varphi_1(P)$ and $\psi_1(P)$; therefore, we have that either $\varphi_1(P) = 0$ or $\psi_1(P) = 0$. Thus, at least one of φ_1 and ψ_1 has a nonzero kernel. Since the kernels of homomorphisms and antihomomorphisms are ideals and since the only nonzero ideal of $\mathscr{F}(H)$ is

 $\mathscr{F}(H)$ itself, we have $\varphi_1=0$ or $\psi_1=0$. As a consequence we get $\psi_1=0$ and $\varphi_1(A)=A$ for all $A\in\mathscr{F}(H)$. Similarly we show that $\varphi_3=0$. Thus, relations (3) can be rewritten as

$$\varphi(A) = \begin{pmatrix} A & \varphi_2(A) \\ 0 & 0 \end{pmatrix}, \qquad \psi(A) = \begin{pmatrix} 0 & \psi_2(A) \\ 0 & A^* \end{pmatrix}.$$

The mappings φ and ψ are an additive homomorphism and an additive antihomomorphism respectively, and consequently, φ_2 and ψ_2 are additive mappings satisfying

$$\varphi_2(AB) = A\varphi_2(B)$$

and

$$\psi_2(AB) = \psi_2(B)A^*$$

for all A, $B \in \mathcal{F}(H)$. Applying $J_1 = \varphi_2 + \psi_2$, $J_1(A^2) = AJ_1(A) + J_1(A)A^*$, (4), and (5), one can see that $\varphi_2(A)A^* + A\psi_2(A) = 0$ holds true for all $A \in \mathcal{F}(H)$. Linearizing this relation we get that $\varphi_2(A)B^* + \varphi_2(B)A^* + A\psi_2(B) + B\psi_2(A) = 0$ for all A, $B \in \mathcal{F}(H)$. Replacing B by CB we obtain

$$C(\varphi_2(B)A^* + B\psi_2(A)) + (\varphi_2(A)B^* + A\psi_2(B))C^* = 0$$

for every finite rank operator C. Consequently, we have

(6)
$$\varphi_2(A)B^* + A\psi_2(B) = 0$$

for all finite rank operators A and B.

For any $x, y \in H$ we shall denote the inner product of these two vectors by y^*x , while xy^* shall denote the rank one operator given by $(xy^*)z = (y^*z)x$. Every rank one operator can be written in this form. For every nonzero $x \in H$ we denote $L_x = \{xy^* \colon y \in H\} \subset \mathscr{F}(H)$. It follows from (4) that φ_2 is a linear mapping on $\mathscr{F}(H)$. Moreover, for every nonzero $x \in H$ we have $\varphi_2(L_x) \subset L_x$. Thus, we can find for every nonzero $x \in H$ we have $\varphi_2(L_x) \subset L_x$. Thus, we can find for every nonzero $x \in H$ a linear mapping $S_x \colon H \to H$ such that $\varphi_2(xy^*) = x(S_xy)^*$. For linearly independent vectors $x, u \in H$ and for an arbitrary vector $y \in H$ we have

$$(x+u)(S_{x+u}y)^* = \varphi_2((x+u)y^*) = \varphi_2(xy^*) + \varphi_2(uy^*) = x(S_xy)^* + u(S_uy)^*.$$

This yields that $S_x = S_u$. In the case that nonzero vectors x and u are linearly dependent, we find a vector z from H such that x and z are linearly independent. Then we have $S_x = S_z = S_u$. Hence, we have proved that there exists a linear operator $S: H \to H$ such that

(7)
$$\varphi_2(xy^*) = x(Sy)^*.$$

One can verify using (5) that the mapping ψ_2' given by $\psi_2'(A) = (\psi_2(A))^*$ satisfies $\psi_2'(AB) = A\psi_2'(B)$. This yields the existence of a linear operator $T: H \to H$ such that

$$(8) \psi_2(xy^*) = -Tyx^*.$$

Replacing A and B in (6) by xy^* and uv^* respectively and applying (7), (8) we get that $(Sy)^*v = y^*Tv$ for all $v, y \in H$. It follows from the closed graph theorem that the operators S and T are bounded. Moreover, we have

518 PETER ŠEMRL

 $S = T^*$. The equation $J_1 = \varphi_2 + \psi_2$ yields

$$(9) J(A) = AT - TA^*$$

for every finite rank operator A.

Replacing A by A + B in $J(A^2) = AJ(A) + J(A)A^*$, we get that

$$J(AB) + J(BA) = AJ(B) + BJ(A) + J(A)B^* + J(B)A^*$$

is valid for an arbitrary pair of operators A, B from $\mathscr A$. Applying this relation with (9) we see that

$$B(J(A) - AT + TA^*) + (J(A) - AT + TA^*)B^* = 0$$

holds true for all $A \in \mathcal{A}$ and all finite rank operators B. Thus, (9) is satisfied for all $A \in \mathcal{A}$. This completes the proof.

REFERENCES

- 1. M. Brešar and B. Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (1992), 163-171.
- P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras,
 J. Funct. Anal. 12 (1973), 275-289.
- I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104– 1110.
- N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502.
- 5. P. Semrl, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), 27-29.
- 6. _____, On Jordan *-derivations and an application, Collog. Math. 59 (1990), 241-251.
- 7. _____, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165.
- 8. _____, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991), 234-240.
- 9. _____, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. (to appear).
- 10. J. Vukman, A result concerning additive functions in hermitian Banach *-algebras and an application, Proc. Amer. Math. Soc. 91 (1984), 367-372.
- Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100 (1987), 133-136.

Department of Mathematics, University of Ljubljana, Jadranska 19, 61000 Ljubljana, Slovenia

E-mail address: peter.semrl@uni-lj.si