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ABSTRACT. Let H be a real or complex Hilbert space, dim H > 1, and % (H)
the algebra of all bounded linear operators on H . Assume that %/ is a standard
operator algebra on H. Then every additive Jordan x-derivation J: & —
Z(H) is of the form J(A4) = AT — TA* forsome T € B (H).

Let &/ be a real or complex x-algebra and %, any subalgebra of & . An
additive (linear) mapping D: & — & is called an additive (linear) Jordan
derivation if D(a?) = aD(a) + D(a)a for all a € % . An additive (real-linear)
Jordan x-derivation J: & — & is defined as an additive (real-linear) mapping
satisfying J(a?) = aJ(a) + J(a)a* for all a € & . It is easy to verify that for
an arbitrary element b € &/ the mapping Dy: & — & defined by Dy(a) =
ab — ba (Dy(a) = ab — ba*) is a Jordan derivation (Jordan x-derivation).

The study of Jordan x*-derivations has been motivated by the problem of
the representability of quasi-quadratic functionals by sesquilinear ones (for the
results concerning this problem we refer to [5, 7, 9-11]). It turns out that
the question of whether each quasi-quadratic functional is generated by some
sesquilinear functional is intimately connected with the structure of Jordan
*-derivations [7, 9].

Let H be a real or complex Hilbert space. By % (H) we mean the algebra
of all bounded linear operators on H. We denote by ¥ (H) the subalgebra
of bounded finite rank operators. We shall call a subalgebra & of Z(H)
standard, provided &/ contains # (H). It is easy to see that .# (H) is a prime
ring; that is, 4, Be€ ¥ (H) and A¥ (H)B = {0} imply A=0 or B=0.

Assume that H is an infinite-dimensional Hilbert space. Let &/ be a stan-
dard operator algebra on H. Suppose that D: &/ — Z(H) is an additive
Jordan derivation. Every finite rank operator is a linear combination of idem-
potent operators of rank one. If P is an idempotent operator of rank one and
A= u? is a scalar, then D(AP) = u(PD(uP) + D(uP)P) has rank at most two.
Thus, D maps % (H) into itself. Using the result of Herstein [3], which states
that all additive Jordan derivations of prime rings of characteristic different
from two are derivations, we infer that D satisfies D(AB) = AD(B) + D(A)B
for all pairs 4, B €  (H). It follows from [8] that there exists T € % (H)
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such that
(1) D(A) = AT — T4

for all finite rank operators A. Linearizing the equation D(42?) = AD(A) +
D(A)A we get D(AB + BA) = AD(B) + BD(A) + D(A)B + D(B)A . Together
with (1) this yields that

B(D(A) — AT + TA) + (D(A) — AT + TA)B =0

holds for all 4 € &, B € ¥ (H). Consequently, we have D(4) = AT — TA
for every A € & . Thus, every additive Jordan derivation D: &/ — % (H) is of
form (1) for some T € & (H). The assumption that H is infinite dimensional
is indispensable in this statement [8].

It is the aim of this note to obtain a similar result for additive Jordan
x-derivations. More precisely, we shall prove the following result:

Theorem. Let H be a real or complex Hilbert space, dim H > 1, and let &/ be
a standard operator algebra on H . Suppose that J: & — B (H) is an additive
Jordan x-derivation. Then there exists a unique linear operator T € B (H) such
that J(A) = AT — TA* holds for all A€ < .

Remark. Two special cases of this result have been already proved—the case
when & = % (H) [6] and the case when H is a complex Hilbert space and &/
is the algebra of all compact linear operators [1]. In this general setting we use
a completely different approach as in [1, 6].

Proof. Let us denote by J; the restriction of J to the ideal & (H). We define
a mapping ¢: ¥ (H) - #Z(H @ H) by

_ (4 Ji(4)

@ sa=(4 0.

Clearly, ¢ is an additive Jordan homomorphism; that is, ¢ is additive and
(¢(A4))* = ¢(4?) holds for all finite rank operators 4. It should be men-
tioned that relation (2) is a variation of a standard connection between linear
derivations and algebra homomorphisms (see [2]). Since # (H) is a locally
matrix algebra, by a result of Jacobson and Rickart [4], ¢ = ¢ + v, where
9: F(H)— % (Ho H) is a ring homomorphism and y: ¥ (H) - Z(H ® H)
is a ring antthomomorphism. We have

0o w
It follows that ¢ and w are of the form

(3) 0(A) = <¢1(A) (02(/1)) C w(d) = (V/l(A) Wz(A)) ’

Imo C {(X Y) cBHOH):X,Y, We.%’(H)}.

0 ¢3(4) 0 w4

where ¢, g3 are additive homomorphisms on % (H), w,, w3 are additive
antihomomorphisms on % (H), and the equations ¢,(4) + y;(4) = 4 and
93(A) + w3(A) = A* are valid for all 4 € # (H). Pick an idempotent P on
H of rank one. Then P is the sum of the idempotents ¢;(P) and y,(P);
therefore, we have that either ¢,;(P) =0 or y;(P) = 0. Thus, at least one of
¢; and w; has a nonzero kernel. Since the kernels of homomorphisms and
antihomomorphisms are ideals and since the only nonzero ideal of ¥ (H) is
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& (H) itself, we have ¢; =0 or y; = 0. As a consequence we get y; = 0 and
91(A) = A forall A e ¥ (H). Similarly we show that ¢; = 0. Thus, relations
(3) can be rewritten as

o=(g ") wa= (g ).

The mappings ¢ and y are an additive homomorphism and an additive antiho-
momorphism respectively, and consequently, ¢, and y, are additive mappings
satisfying

(4) 92(AB) = Ap2(B)
and
(5) v2(AB) = ya(B)A”

forall 4, B € F (H). Applying J; = 92+, J1(4%) = AJ;(A)+J1(A)A*, (4),
and (5), one can see that ¢;(A4)A4* + Ay>(A) =0 holds true forall 4 € ¥ (H).
Linearizing this relation we get that ¢,(A4)B*+ ¢2(B)A* + Ay, (B) + By, (A) =
forall 4, Be ¥ (H). Replacing B by CB we obtain

C(p2(B)A" + Bya(A)) + (92(4)B* + Ayr(B))C* =0
for every finite rank operator C. Consequently, we have
(6) 92(A)B* + Ay, (B) =0

for all finite rank operators 4 and B.

For any x, y € H we shall denote the inner product of these two vectors by
y*x, while xy* shall denote the rank one operator given by (xy*)z = (y*z)x
Every rank one operator can be written in this form. For every nonzero x € H
we denote L, = {xy*:y € H} ¢ & (H). It follows from (4) that ¢, is
a linear mapping on & (H). Moreover, for every nonzero x € H we have
@2(Lx) C L, . Thus, we can find for every nonzero x from H a linear mapping
Sx: H — H such that ¢,(xy*) = x(Syy)*. For linearly independent vectors
X, u € H and for an arbitrary vector y € H we have

(X + u)(Sx4ud)” = @2((x + u)y") = 92(xy*) + p2(uy™) = x(Sxy)" + u(Sup)".

This yields that S, = S,. In the case that nonzero vectors x and u are
linearly dependent, we find a vector z from H such that x and z are linearly
independent. Then we have S, = S, = S, . Hence, we have proved that there
exists a linear operator S: H — H such that

(7 92(xy*) = x(Sy)*.

One can verify using (5) that the mapping y; given by y;(A4) = (y2(4))*
satisfies y;(AB) = Ayj(B). This yields the existence of a linear operator
T: H— H such that

(8) wa(xy*) = —Tyx*.

0

Replacing 4 and B in (6) by xy* and uv* respectively and applying (7),
(8) we get that (Sy)*v = y*Tv for all v,y € H. It follows from the closed
graph theorem that the operators S and 7 are bounded. Moreover, we have
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S = T*. The equation J; = ¢, + y, yields

9)

J(A) = AT — T4*

for every finite rank operator 4.
Replacing 4 by A+ B in J(A4%) = AJ(A) + J(A)A*, we get that

J(AB) + J(BA) = AJ(B) + BJ(A) + J(4)B* + J(B)A*

is valid for an arbitrary pair of operators 4, B from % . Applying this relation

with

(9) we see that
B(J(A)— AT+ TA*)+(J(A)— AT+ TA*)B* =0

holds true for all 4 € & and all finite rank operators B. Thus, (9) is satisfied
for all 4 € & . This completes the proof.
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