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JORDAN *-DERIVATIONS OF STANDARD OPERATOR ALGEBRAS
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(Communicated by Palle E. T. Jorgensen)

Abstract. Let H be a real or complex Hilbert space, dim H > 1 , and 38(H)

the algebra of all bounded linear operators on H . Assume that j/ is a standard

operator algebra on H . Then every additive Jordan *-derivation J: sf —►

SSifl) is of the form J(A) = AT-TA* for some Te^(H).

Let s/ be a real or complex *-algebra and sfi any subalgebra of sf . An

additive (linear) mapping D: srf\ -^i is called an additive (linear) Jordan

derivation if D(a2) = aD(a) + D(a)a for all a 6 s/i . An additive (real-linear)

Jordan *-derivation J: j/i —> srf is defined as an additive (real-linear) mapping

satisfying J(a2) - aJ(a) + J(a)a* for all a e stf\. It is easy to verify that for
an arbitrary element b e sZ the mapping D[,: $/\ -»i defined by Df,(a) =

ab - ba  (Z)j(a) = ab - ba*) is a Jordan derivation (Jordan *-derivation).

The study of Jordan ^-derivations has been motivated by the problem of

the representability of quasi-quadratic functionals by sesquilinear ones (for the

results concerning this problem we refer to [5, 7, 9-11]). It turns out that

the question of whether each quasi-quadratic functional is generated by some

sesquilinear functional is intimately connected with the structure of Jordan

*-derivations [7, 9].

Let H be a real or complex Hilbert space. By 33(H) we mean the algebra

of all bounded linear operators on H. We denote by 9~(H) the subalgebra
of bounded finite rank operators. We shall call a subalgebra srf of 33(H)
standard, provided sf contains 9~(H). It is easy to see that 9~(H) is a prime

ring; that is, A, B e 9~(H) and A9'(H)B = {0} imply A = 0 or B = 0.
Assume that H is an infinite-dimensional Hilbert space. Let j/ be a stan-

dard operator algebra on H. Suppose that D: srf —> 33(H) is an additive

Jordan derivation. Every finite rank operator is a linear combination of idem-

potent operators of rank one. If P is an idempotent operator of rank one and

X = p2 is a scalar, then D(XP) = p(PD(pP) + D(pP)P) has rank at most two.

Thus, D maps 9~(H) into itself. Using the result of Herstein [3], which states

that all additive Jordan derivations of prime rings of characteristic different

from two are derivations, we infer that D satisfies D(AB) = AD(B) + D(A)B

for all pairs A, B e 9~(H). It follows from [8] that there exists T e 33(H)

Received by the editors May 26, 1992.
1991 Mathematics Subject Classification. Primary 47B47, 47D25.

This work was supported by the Research Council of Slovenia.

© 1994 American Mathematical Society

0002-9939/94 $1.00+ $.25  per page

515



516 PETER SEMRL

such that

(1) D(A) = AT-TA

for all finite rank operators A. Linearizing the equation D(A2) — AD(A) +

D(A)A we get D(AB + BA) = AD(B) + BD(A) + D(A)B + D(B)A . Together
with (1) this yields that

B(D(A) -AT+ TA) + (D(A) - AT + TA)B = 0

holds for all A e sf , Be 9r(H). Consequently, we have D(A) = AT - TA
for every A e sf . Thus, every additive Jordan derivation D: sf —> 33(H) is of

form (1) for some T e 33(H). The assumption that H is infinite dimensional

is indispensable in this statement [8].

It is the aim of this note to obtain a similar result for additive Jordan

♦-derivations. More precisely, we shall prove the following result:

Theorem. Let H be a real or complex Hilbert space, dim H > \, and let sf be

a standard operator algebra on H. Suppose that J: sf —► 33(H) is an additive

Jordan ^-derivation. Then there exists a unique linear operator T e 33(H) such

that J(A) = AT- TA* holds for all Aesf .

Remark. Two special cases of this result have been already proved—the case

when sf = 33(H) [6] and the case when H is a complex Hilbert space and sf

is the algebra of all compact linear operators [1]. In this general setting we use

a completely different approach as in [1, 6].

Proof. Let us denote by Ji the restriction of / to the ideal 9~(H). We define

a mapping (j):9~(H)^33(H®H) by

(2) 4>(A)=(AQ    *<£>).

Clearly, <p is an additive Jordan homomorphism; that is, <t> is additive and

(4>(A))2 = <p(A2) holds for all finite rank operators A. It should be men-

tioned that relation (2) is a variation of a standard connection between linear

derivations and algebra homomorphisms (see [2]). Since 9~(H) is a locally

matrix algebra, by a result of Jacobson and Rickart [4], <p = (p + xp, where
<p: 9~(H) -* 33(H®H) is a ring homomorphism and y/: 9r(H) -^33(H®H)
is a ring antihomomorphism. We have

ImcpcU*   ^v\e33(H®H):X,Y,We33(H)\.

It follows that tp and y/ are of the form

where q>i, <pi are additive homomorphisms on 9~(H), ipi, y/^ are additive

antihomomorphisms on 9~(H), and the equations <Pi(A) + >Pi(A) = A and

(p^(A) + ip^,(A) = A* are valid for all A e 9~(H). Pick an idempotent P on
H of rank one. Then P is the sum of the idempotents ^i(P) and Wi(P);

therefore, we have that either <pi(P) = 0 or y/i(P) = 0. Thus, at least one of

<Pi and \pi has a nonzero kernel. Since the kernels of homomorphisms and

antihomomorphisms are ideals and since the only nonzero ideal of 9~(H) is
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9~(H) itself, we have <pi - 0 or ip\ - 0. As a consequence we get \p\ = 0 and

(Pi(A) = A for all A £ 9~(H). Similarly we show that ^3 = 0. Thus, relations
(3) can be rewritten as

™-{i •*£>).    ̂ )-(S^).
The mappings <p and ip are an additive homomorphism and an additive antiho-

momorphism respectively, and consequently, q>2 and ip2 are additive mappings

satisfying

(4) <p2(AB) = A<p2(B)

and

(5) tp2(AB) = <p2(B)A*

for all A,Be9r(H). Applying /, = (p2 + \p2, Ji(A2) = AJi(A) + Jx(A)A* ,(A),
and (5), one can see that cp2(A)A* + Axp2(A) = 0 holds true for all A e 9~(H).
Linearizing this relation we get that cp2(A)B* + tp2(B)A* + Ay/2(B) + Bxp2(A) = 0

for all A,Be9r(H). Replacing B by CB we obtain

C(<p2(B)A* + Bip2(A)) + (<p2(A)B* + Ay/2(B))C* = 0

for every finite rank operator C. Consequently, we have

(6) <p2(A)B* + Aip2(B) = 0

for all finite rank operators A and B.

For any x, y e H we shall denote the inner product of these two vectors by

y*x, while xy* shall denote the rank one operator given by (xy*)z = (y*z)x .

Every rank one operator can be written in this form. For every nonzero x e H

we denote Lx = {xy*: y e H} c 9~(H). It follows from (4) that <p2 is
a linear mapping on 9~(H). Moreover, for every nonzero x e H we have
<Pi(Lx) c Lx . Thus, we can find for every nonzero x from H a linear mapping

Sx: H —> H such that (p2(xy*) = x(Sxy)*. For linearly independent vectors

x, u € H and for an arbitrary vector y e H we have

(jr. + u)(Sx+uy)* = (p2((x + u)y*) = (p2(xy*) + <p2(uy*) = x(Sxy)* + u(Suy)*.

This yields that Sx = Su. In the case that nonzero vectors x and u are

linearly dependent, we find a vector z from H such that x and z are linearly

independent. Then we have Sx = S2 — Su . Hence, we have proved that there

exists a linear operator S: H -> H such that

(7) <p2(xy*) = x(Sy)*.

One can verify using (5) that the mapping xp^ given by y'2(A) = (y/2(A))*

satisfies y/2(AB) = Ay/'2(B). This yields the existence of a linear operator
T:H-+H such that

(8) ip2(xy*) = -Tyx*.

Replacing A and B in (6) by xy* and uv* respectively and applying (7),

(8) we get that (Sy)*v = y*Tv for all v, y e H. It follows from the closed
graph theorem that the operators S and T are bounded. Moreover, we have
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S = T*. The equation Ji - tp2 + ip2 yields

(9) J(A) = AT-TA*

for every finite rank operator A .

Replacing A by A + B in J(A2) = AJ(A) + J(A)A*, we get that

J(AB) + J(BA) = AJ(B) + BJ(A) + J(A)B* + J(B)A*

is valid for an arbitrary pair of operators A , B from sf . Applying this relation
with (9) we see that

B(J(A) -AT+ TA*) + (J(A) - AT + TA*)B* = 0

holds true for all A e sf and all finite rank operators B. Thus, (9) is satisfied
for all A e sf . This completes the proof.
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