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WOJCIECH SZYMANSKI

(Communicated by Palle E. T. Jorgensen)

Abstract. We show that ifNCMCLCK is a Jones's tower of type II t

factors satisfying [M: N] < oo , N'nM = C/, N'nK a factor, then M'nK

bears a natural Hopf *-algebra structure and there is an action of M'nK on

L such that the resulting crossed product is isomorphic to K.

1. Introduction

Since Jones's fundamental work [4], understanding the structure of subfac-

tors of type II i factors has become one of the most important subjects in von

Neumann algebra theory. Finite index subfactors with trivial relative commu-

tant are of particular interest.

Several authors have tried to explain the relationship between subfactors and

the crossed product construction related to group or, more generally, Hopf al-

gebra actions. Treating the hyperfinite factor case Ocneanu has provided in [5]

a very interesting and general scheme for studying this problem.
In this paper we give a simple proof of the following theorem, which was

also announced by Ocneanu. IfNCMCLCK is a Jones's tower of type

Hi factors with finite index, N' n M = C, and N' n K a factor, then M'nK

has a natural Hopf *-algebra structure and acts on L in such a way that the
resulting crossed product is isomorphic to K. This can serve as an intrinsic

characterization of crossed products of type II i factors by outer actions of
finite-dimensional Hopf *-algebras (the downward construction plays a role).

A similar theorem for infinite index inclusion is conjectured in [3].

The preliminary section of our article contains some elementary and proba-

bly well-known facts. Next we give a detailed construction of a Hopf algebra

structure on M'nK. The comultiplication is defined as a map dual to the

multiplication in N'nL, duality between the two relative commutants being

established by a very natural bilinear form.

In our approach we managed to avoid all cohomological complications.

As a byproduct we obtained a sharper version of the Pimsner-Popa trace

inequality [6, Proposition 1.9].
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In the last section we give a simple formula for the action and prove the

isomorphism theorem.

2. Preliminaries

Let / € N C M be type II i factors with finite index [M : N] = X and trivial
relative commutant N'nM = C/. Let L be the Jones extension of M by

N, that is, L = (M, e^), where ^n is the Jones projection. Similarly, let K

be the Jones extension of L by M with the corresponding projection ^m • By

Proposition 3.1.7 of [4] we have [K : L] = [L : M] = X, and it is clear that
M'nL = L'nK = c/.

We denote by x the canonical trace on K and by El and Em the conditional

expectations related to x from K onto L and M respectively. Clearly Em =

Em ° El .
We denote N' n L by A, M' n K by B, and N' n K by C. All of them

are finite dimensional C*-algebras (cf. [4, Corollary 2.2.3]). Proposition 1.9 of

[6] implies that e^ and e^i are minimal and central projections in A and B

respectively.

We denote by D the two-sided ideal of C generated by ^m (which coincides

with the ideal generated by es). We denote by EA and Eb the conditional

expectations related to x from C onto A and B respectively. For any c € C

we denote by c its image under the projection of C onto D.

The following proposition is easily established by considering the tower of

commutants K'CL'CM'CN', with L represented on L2(L, t) .

Proposition 1. There is a tower of type II i factors ZePcQcRcS such

that:

(1) [Q:P] = A;
(2) P'nQ = C/;
(3) R is the Jones extension of Q by P (with the corresponding projection

ep);
(A)   S is the Jones extension of R by Q (with the corresponding projection

eQ); and
(5) there is an isomorphism  S:P'nS-»C such that 0(P' n R) = B,

0(QTiS) = A, e(ep) = eM, 6(eQ) = eN.

An easy proof of the following proposition is also omitted.

Proposition 2. For any ae A, b eB, c eC, xeM, y € L:

(1)- Em(c) = t(c)7;
(2) Ex(b) = x(b)I, EB(a) = x(a)I;
(3) x(ab) = x(a)x(b);
(A) if xa = 0 then either x = 0 or a = 0, and if yb = 0 then either y = 0

or b = 0;
(5) EL(C) = A_and, therefore, EL|c = EA ;

(6) both A -» A and B —* B are isomorphisms.

Proposition 3. A map A ® A -> D defined by «i ® a2 i-> aieua2 is a linear

isomorphism. Similarly, a map B ® B —> D defined by bi <8> b2 >-* bie^b2 is
a linear isomorphism. This implies that D = A^mA = B^B and dim A =

dim B = d.
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Proof. The map A®A-»D has a trivial kernel. Indeed, if {a,} form a

T-orthonormal basis of A then {ate^a*} are pairwise r-orthogonal, nonzero

vectors and, hence, linearly independent.

The map is onto. To this end it suffices to show that A^mA is an ideal of

C. Let «i, a2 e A and c e- C. By Lemma 1.2 of [6] we have caie-^a2 =

A_1EL(caieM)^M^2 and EL(caieM) € A by Proposition 2(5).

With the help of Proposition 1 one can prove in the same way as above that

the map B®B-»D is an isomorphism.   □

Corollary 4. For any a e A, b eB, c eC:

(1) £m and e>j are minimal projections in C;

(2) eMaeM = ?(a)eM,

eNbeN = x(b)ea;

(3) CeM = A?m—more precisely, ceM = XEA(ceM)eM, and

C^n = B^n—more precisely, ce^ = XEB(ce^)e^ ; and

(A)  D = AB and D = Mrf(C), where d = dim A = dimB.

Part (1) of the following proposition is established by examining the represen-

tation of L on L2(L, t) . Part (2) is proven similarly with help of Proposition

1.

Proposition 5. Let D act on %? as a full algebra of endomorphisms. Since e^

and eyi are minimal in D (Corollary 4(1)), they project onto one-dimensional

spaces, say, spanned by £ and C respectively. Then:

(1) C is cyclic and separating for A. If Ja denotes the corresponding mod-

ular involution then

(a) yAB7A = B;
(b) if x, y e A then J\(xeMy)J\ = x*eMy*; and

(c) if Xj, >', € A and £ Xie^yi e B then Y, y^tixi € B.

(2) £ is cyclic and separating for B. If Jn denotes the corresponding modular

involution then

(a) /rA/b = A;

(b) if x, y eB then Jn(xeNy)JB = x'e^y*; and

(c) if Xi j,€B and Ex^islV; 6 A then £ J^n-*; £ A.

3. Duality between N'nL and M'nK

From now on we fix a system of matrix units in As ®q Aa , with each AQ

a factor, as follows:

{sfj | sf, = pf is a minimal projection in Aa and sfj is

a partial isometry with domain pj and range pf}.

We denote by /a/ the natural number such that Aa = M/a/(C).

Definition 6. For any a, i, j we define ffj as

j?J = T(pjr1ij(ewli?j.

Proposition 7. {ffj} are pairwise orthogonal minimal projections in D such that

ZiJ?j =Tj- Moreover, e^f* = S^P], ff*eM = SijP^eu, and sfj^j =
-a fa
Sijjkj ■
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Proof. Each ft is self adjoint and

ftjfL = r(pJ)-1x(p^x(sfjsUs^eMsL = *«*<M/«./?/-

Hence, they are pairwise orthogonal subprojections of p°- .   Since x(f°j) =

?(eM), they are minimal in D.

By virtue of Proposition 3 there are scalars tmn such that

Pj — /-^JiJ = 2—i ̂ mnSjmeMSnj.
i m,n

Multiplying it from the left by s"keMSkj (for an arbitrary k) we get

0 = YJtknS°keMsanr
n

Since s^e^s^ are linearly independent, tkn = 0 for all n and £,• ffj =Pj ■

The remaining claims are easily verified.   □

Corollary 8. For any a, i we have x(pf) = /a/X~x .

Since x(pf) > x(pf), the preceding corollary is a sharper version of Propo-

sition 1.9 of [6]. It also says that h(x) := Xd~lx(x) would be the Haar trace

on A (see Appendix 2 of [8]) if we could define a Hopf algebra structure on

A.

Definition 9. We define a bilinear form (•,•): A x B —> C by

(a, b) = X2x(aeue^b).

Proposition 10. The form defined above establishes duality between A and B.

Proof. Let b e B and, for any a 6 A, (a, b) — 0. Hence, 0 = x(Aewenb) =

x(AeMAet<tb) — x(e^bD). In particular, 0 = x(e-^bb es) and faithfulness of x

implies 0 = e^b and, hence, b = 0.
Similarly, a = 0 if (a, b)I = 0 for all b € B.   □

Definition 11. We denote by {?;?•} the basis of B dual to {sfj} viz.   (•, •).

That is,

(4i>vij) = 3ap3ik3ji.

From now on we assume that one of the following easily equivalent conditions

is satisfied.

(1) C is a factor (i.e., C = D).
(2) d = k  (d = dimA = dimB, A = [M : N]).
(3) x(pf) = /a/X~l for any a, i.

Proposition 12.   (1)   vf^u = dijeu ■

(2) (a)   (v-re^vf^/a/^fff;
(b)   e^ivfj = enVjjSjj, hence /a/l^2e^vfj is a partial isometry with do-

main  ft and range e>j.

(3) (a)  eMeNVfj = /a/-leMs°,;

(b)   eMeN(vfj)* = /a/^euJ^J^.
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(4)   r((vfjrvin) = 3afi3imSjn/a/-1.

(5) (a) Ek(»*)•«*»;* = i«rx*tj-;
(b)   E* vfkeN(v°k)* = /a/-lJBsfjJB .

(6)   (a)   EA((^)*^) = SapSk!/a/-2s°j;

(b)   EA(^(^n = SafiSkl/a/-2JBsfjJB.

Proof. (l)and(2): Since e^ and fff are both minimal projections in D, there

is a c 6 D such that c*e^c = fff. By Corollary 4(3) there is a b e B such that

e^b = e^c; hence, b*e^b = c*e^c = fff. Since e^ is minimal and central in

B, there is a scalar t such that beu = ^m • We have \t\2X~leM = I^^m^n^m =

^(^N^M = eMfffeM = eMPfeM = ^(pf)em • Therefore, \t\2 = Xx(pf) = /a/
and we can find a 6 e R such that w = e,0/a/~ll2b satisfies w*eNVJ = /a/~lfff
and weu = eyi- Now we have

(s£„ , to) = X2x(si„eMw*eNw) = x(pf)~x Xx^emfff) = 3afi3im3in.

Therefore, w = vf and we have proven (1) (in case i = j) and (2)(a).

Again by Corollary 4(3) there is a u eB such that e^u = e^v^s^ . We have

(*£„, u) = X2T{sLe*(Vjj)metivjtfi) = Xx(pjyx x(sineMffjsJi) = 8afS3imSjn;

hence, u = vfj and (2)(b) is proven.

If / ^ j then

0 = (7, vfj) = X2x(eMeNvfJ) = {Proposition 2(3)} = A2T(u?.efci)T(en).

This proves (1) in case i ^ j.

(3) is established by a direct computation (with help of Proposition 5(2)).

(4)

«Wj)'vL) = ^((vfjTe^vL) = Xx(sfj(vJ])*e^nynm) (2)(b)

= 3aP3imXx((v^)*esvflnsflj)

= Sap8imXT((vJjrenV%) (2)(b)

= 8afi3imXx(f^J)*eNv%fffj) (2)

= 3ap3im3j„Xr((vfj)*etiVjj) = 8afidimdjn/a/-1.

(5)(a)

^2(vfk)*eNvJk = 'EiikWeKV&Gj (2)(b)
fc A:

= /«/-'E^JSM?/ (2)(a)

= /a/-ls?j'£ij?j = /<*r1s?j.
k

(b) follows from (a) with the help of Proposition 5(2)(b).

(6)(a) If Ac ̂ / then EA((t;^)*eN'y/Q/) = 0. Indeed, for any B,m,n

x(sL(vakk)*eNvf,) = x(sLfkak(VkkyeNV?lflf) (2)(b)

= 3afi3kn3lmT(fn*sfkfk*k(vk*kresvrl)

= SafiSknStn^faftMtfeKVfi) = 0.
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Since clearly EA(fffk) = /a/~xpk , we obtain

Ea((wJ)^«//) = $k*A((VkkTwfiK (2)(b)

^dap3klsfkEA((vakk)*eNavakk)sfj

= Sa/}Skl/arlsfkEA(fk\)sakj (2)(a)

= 3afi3ki/a/~2sfj.

(b) Since JBAJB = A by virtue of Proposition 4(2)(a) we have Ea(7b-^-/b) =

JBEk(x)JB and the claim follows from (a) and Proposition 5(2)(b).   □

Corollary 13. The matrix [va], whose i, j entry equals vfj, is a unitary element

of MH(B).

Remark. This fact corresponds to the duality between unitary modules of a

Hopf *-algebra and unitary comodules of its dual (see [8]).

4. Hopf algebra structures on N' n L and M'nK

Definition 14. We define linear maps A: B -* B® B, e:B-»C, and S: B -> B
as follows.

(1) A(b) = E b\ ® bf , where E b\ ® bf is uniquely determined (by virtue
of Proposition 10) by equality (xy, b) = £(*> bf-)(y, bf), to be sat-
isfied by all x, y e A.

(2) s(b) is defined by be-w. = e(b)eM .
(3) S(b) is an element of B uniquely determined (by Proposition 10) by

equality (x, S(b)) = (x*, b*), to be satisfied by all x e A.

Theorem 15. B equipped with its C*-algebra structure, comultiplication (A),

counit (s), and coinverse (S) introduced by Definition 14 is a Hopf *-algebra

and a finite-dimensional compact matrix quantum group as defined in [8] by

Woronowicz.

Proof. (1) Since ^n is a minimal and central projection in A, there is a selfad-

joint, multiplicative functional i/:A-»C such that ae^ = n(a)e^ for any a €

A. For any x, y e A, we have (xy, I) = X2x(xyeyies) = X2n(xy)x(eyf)x(eM) =

rj(xy) and (x, I)(y, I) = X4x(xeMeN)x(yeMeN) = n(x)n(y). Hence, (xy, I) =

(x,I)(y,I) and A(/) = /®/.
We keep the notation of Proposition 5. We have x(effxe^) = X~l(x£, £) for

any x € D; hence, (a, b) - X(aeM%, b*£) for any a & A, b e B. For any

x, y e A we have

(xy, b*) = X(xyeMZ,b£)

= X((JBxJB)(JByJB)eMtl,b*t;)

= X2Y/(JBxJBeM^, (bfrt) (Jayheat, (b?)*Z)

=Yl(*Abtr)(y,(bfn
This proves that A(b*) = A(b)*.

(2) Associativity of the multiplication in A implies (A <g> id)A = (id ®A)A.
(3) Since eyi is a minimal and central projection in B, e is a selfadjoint,

multiplicative functional.
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(4) For any c € B we have (I, c) = A2t(^m^nc) = e(c). Therefore, for

any a G A, (a, b) = (a • /, b) = £(a, b{*)(1, 6f) = (a, £ e(6/%L); hence,
b = Yl^(bji)bf' and (id <g>e)A = id. Similarly, (e <g> id)A = id.

(5) Let b G B and 6 = E*ieA/;V; with x,, y, G A. By Proposition 5(1),

iZy^uXt■■ = J\(Y,y*eMxi)J\ belongs to B. Since

(a, ^y/^MX*) = (a*, ^2y*eMx* j

for any a G A, S(<b) = J\b*J\ for any <b G B. This implies that 5 is a
♦-preserving, antimultiplicative involution.

(6) We claim that S(vfj) = («?■)*. Indeed, by Proposition 12(3) we have

(a, (vfiY) = X2x(aeMe^(vJt)*) = la/-xX2x(aeMJBsfjJB) = /a/-lXx(JBsf}JBa).

Similarly,

(a*, (vfj)*) = X2x(vfjeNeMa) = /a/~lX2x(JBsfj JBeMa) = /a/-lXx(aJBsfjJB),

and the claim follows. Since it is an immediate consequence of our definitions

that A(vfj) = E/t vfk ® vffj, it now follows easily from Proposition 12(1) and

Corollary 13 that m(S ® id)A = e = m(id®5)A, where m: bi ® b2 h-> bib2 .
(7) Now we are in a position to prove multiplicativity of A.

Let us define a map P: B®B —► D by T:bi®b2^> bie^S(b2). By Proposi-
tion 3 and (5) this map is a linear isomorphism. We claim that P(A(B)) = A.

At first we notice that (4) implies that A is an injective map. We have

T(A(vfj)) = $><^NlS«7) = Y,vfkeN(v°k)*
k k

belongs to A by Propositions 5(2) and 12(5). Since {A(vfj)} form a linear basis

of A(B), we see that P(A(B)) C A, and, since T is injective and dimA(B) =

dim A, we conclude that P(A(B)) = A.
Now we define a new multiplication © in D by x Qy = T(T~l(x)T~l(y)).

One can easily check that if bi, b2, ci, c2 G B then (bie^Ci) © (b2e^c2) -
bib2e^c2Ci (by (5) S is an antimultipicative involution).

Since A has a multiplicative inverse e®id, in order to prove multiplicativity

of A it suffices to show that A(B) is closed in B ® B under multiplication or,

equivalently, that A is closed in D under © . We have

T(A(vfj)) © T(A(vL)) = J>£ (y/<M^ir) (VjkT

and Yltvmte^(vnt)* is in A. We have to show that Yk^k^lk)* *s *n A f°r

any a G A. Since A = N' n L and Y,k vtka^v<jk>* being in D is in N', it

remains to show that Yk vfka(Vjk)* is in L. But there are elements xs, ys in

M such that a = Y, xse^ys. Therefore,

^vfka(v?kr = Y,vfk (x>w,) (v%r = j> (l>*^w*) *.
k k V  s / s \ k I

and, since Y,k ̂ /Jt^N^/fc)* belongs to A c L, we are done.
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(8) One can check that a matrix with blocks [va] along its diagonal satisfies

the requirements of the definition of a compact matrix quantum group.   □

Corollary 16. A with its natural C*-algebra structure, comultiplication, counit,

and antipode defined as dual to multiplication, unit, and antipode respectively in

B (viz.  (•, •)) bears a Hopf *-algebra structure dual to that of B.

5. Action of M' n K on L

Definition 17. We define a bilinear map BxL-»L (denoted by b —- x) by
setting b —>• x = XE^(bxe\\) ■

Lemma 18. For any b G B, x G L we have bx = YX(bf) ~" x)bf ■

Proof. Since {vfj} form a basis of B and A(vf}) = Y,k v?k ® vkj > ** sumces t0

show that vfjX = X Y,k Eh(vfkxeM)vkj ■ At first we prove this for x = eN .

Since dimB = X and El|b = t , we infer that B contains a quasi-basis for

EL (see [6, 7]). It follows that there are elements xyns G L such that

v?Je* = J2xivi-
yns

Multiplying this equality by (vkm)* (for any fixed fi, k, m) from the right and

taking El of both sides we get

yns

= Zxh«vL(vimr)=/prlxfikm-
yns

Since El|d = EA, by virtue of Proposition 12(6)(b) we have

t^ - E /fi^(vfjes(vlm)')vlm
Pkm

= /a/-i^2(JBSfkJB)vakj.
k

On the other hand, with the help of Propositions 5(2) and 12(3) we get

EaKVn^m) = /arlEA((JBsfkJB)eM)=X-l/a/-lJBsfkJB.

Thus the lemma is proven for x = e^ . The general case follows from the fact

that for any x G L there are yn , tn G M with x = ^2y„e^tn (cf. [3, Theorem

3.6.4(iii)]).   □

Proposition 19. The map introduced by Definition 17 is a left action of B on

L

Proof. (1) / -» x = AEL(xeM) = AxEl(^m) = x.
(2) b- I = XE^(beM) = e(b)I.
(3) By virtue of Lemma 1.2 of [6] we have

bib2 —- x = XE^(bib2xeM)

= XEL(biXEh(b2xeu)eM) -fr-> (b2 — x).
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(4) Proposition 12(3) implies that E^eyie^b) = E^(S(b)e^eM) for any b G
B. Since any x G L can be written as x = E Uje^Wi, Uj, w,■ e M, the above

gives El(^mX(J) = EL(S(b)xeM) ■ Thus, for any b eB, xgL, (b -» x)* =

XEL(eMx*b*) = XEL(S(b*)x*eu) = S(b*) - x .
(5) By the preceding lemma bx = X £ E\J(bf'xeM)bf for any b eB, x e L.

Multiplying this equality from the right by yeyit with y, t e~L arbitrary and

then taking trace of both sides we get x(bxyeMt) = Xx(^2EL(bf-xeM)bfyeMt).
This yields

EL(bxyeM) = xY^EL(bi-xeM)EL(b?yeM).

This means that b — (xy) = £(&/" -* x)(bf — y).   U

At this point we have no difficulties in proving our final result.

Theorem 20. Let B act on L from the left as in Definition 17. A map </> such

that <p: x®b >-> xb, xgL, b eB, is a ^isomorphism from the crossed product
L x B onto K.

Proof. If {bi} forma T-orthonormmal basis of B then {(bi, b*)} form a quasi

basis for EL (cf. [7; 6, Proposition 1.3]). Thus the map is a linear isomorphism.

We have (p(I ® /) = / and for any x G L, b eB

<t>((x ® b)*) = <p (E((^L)* - x*) ® (bfy)

= J2((bh*-x*)(bfy.

On the other hand, since A preserves * , applying Lemma 18 we get

<l>(x ® by = b*x* = E((*f)* - x*)(bfy,

thus <f> preserves * . (p also preserves multiplication, since for any Xi, x2 e L,

bi, b2 e B we have (again by Lemma 18)

<p((xi ® bi)(x2 ® b2)) = x, (J2(bt - x2)bf) b2

= xibix2b2 = cf)(x\ ® bi)cp(x2 ® b2).   D
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