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Abstract. For generic Sturm-Liouville problems with piecewise constant lead-

ing coefficients, the leading coefficient can be determined up to a finite ambiguity

from the eigenvalues of the problem.

1. Introduction

Ordinary differential operators with discontinuous leading coefficients occa-
sionally arise in scientific modelling; for instance [11] and [8] discuss such a

geophysical application, while [ 10] gives examples in electromagnetics and elas-

ticity. This paper addresses the inverse spectral problem of recovering infor-

mation about the coefficients of Sturm-Liouville operators from the sequence

of eigenvalues. The case we analyze is the case when the leading coefficient has

a finite number of jump discontinuities. Our aim is to determine, to the extent

possible, the location and magnitude of these jumps from the spectrum of a

single Sturm-Liouville problem.

Inverse eigenvalue problems, usually for equations of the form

-y" + q(x)y = Xy

with a variety of boundary conditions, have an extensive literature. Unless

q(x) is constrained, one needs the spectra from two sets of boundary condi-

tions, or one spectrum and a sequence of norming constants, to uniquely de-

termine q(x). Early important work on these problems was done by Borg [3],

followed shortly thereafter by extensive work in the Soviet Union [6, 9]. More

recently, new geometric ideas were introduced by McKean and Trubowitz and

their coworkers (see [15] and the references therein). There have been sev-

eral works addressing inverse eigenvalue problems with less-regular coefficients.

Most of these are motivated by geophysical models for oscillations of the earth.

Hald [8] examines problems with an interior jump condition. Andersson [1]

and Coleman and McLaughlin [5] consider problems of the form

(p2y')' + Xp2y = 0
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with coefficients too irregular for the classical reduction to Liouville normal

form. For surveys of these and related results and extensive lists of references

one can consult [12] and [4].

The problem we consider is

fla) -[\/p(x)2]<p" + q(x)<p = X<p,
a<p'(0)-b(p(0) = 0,        c<p'(l)-d<p(l) = 0

with a2 + b2 and c2 + d2 positive, where q(x).e L'[0, 1] and p(x) is a

piecewise constant positive function with value pn on the intervals (x„ , xn+\),

n = 0,... , N — \, and with 0 = x0 < x\ < •■• < Xn = 1 • We require that
<p(x) and <p'(x) are continuous on [0, 1] and satisfy the differential equation

on the open intervals (x„ , xn+\).

Elementary examples show that in general p cannot be determined from

the eigenvalues of the problem (l.a). If q(x) - 0 and a - c - 0, then the

two problems with coefficients P\(x) and p2(x) will have the same eigenvalues

if P\(x) = p2(\ - x). A more interesting family of examples on the interval

[0, n] was pointed out in [7]. If 0 < a < 1, it is easy to show that the following

problems all have the same eigenvalues:

(l.b) -[l/p(x)2]y"=Xy, y(0) = 0 = y(n)

where p(x) - l/(2a) for 0 < x < an and p(x) = 1/(2(1-a)) for an < x < it.

To state the main result it will be convenient to introduce some notation.

Let /„ = xn+i - xn and £„ = l„p„ , n = 0,..., N - 1. Let pn = pn/pn+i for

n = 0,..., N -2. Denote by Bt = (p(0,i), ... , B{N - 1, /)) an /V-tuple
whose entries have values ± 1. One of our hypotheses will be that the numbers

5TmIo^(m> OCm are distinct if the vectors 5, are distinct. Notice that for
distinct 5, two such sums agree when (Co, ■■■ , Cjv—i) lies in a hyperplane,

so asking for the sums to be distinct is the condition that (Co> • • ■ , Cjv-i) he

outside a finite number of hyperplanes.

Theorem 1.1. Suppose (Co, • • • , Cn-i) is such that the sums Y,m=o P(m > OCm

are distinct if (P(0, i),... , P(N - 1, i)) are distinct vectors with entries ±1.

Suppose that p„ ^ 1 for n = 0, ... , N - 2.  If two problems (1 .a) have the

same eigenvalues, then the interval lengths and corresponding constants (/„ , p„),

n = 0,..., N —1, are the same up to a permutation of 0, ... , N - 1.

In outline form, the proof of Theorem 1.1 is straightforward. As in the case

with p = 1 the eigenvalues of problem (1 .a) are the zeros of an entire function

Fq(X), which has order \ and only simple zeros (Lemma 3.1); by Hadamard's

theorem [16, p. 74] Fq(X) is determined up to a constant multiple by its zeros.

Problem (l.a) can be treated as a perturbation of the case when q — 0. For the

case q = 0 it is possible to find an explicit formula for Fo(X). In fact, it has

the form

F0(X) = Y^e>{P(N ~ l» i)acpN-icosm(fi(o)
i€l

+ [ad + P(N - 1, i)bcpN-i/po]cos(fco) + bd sin( fiaj)/[p0co]}

where f = 52mIo^(w' /)'=m  anc*  w = ^'/'2 •   ^ne frequencies f  and the
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coefficients can be determined by considering expressions like

lim [2/L] /   F0(X)sin(va>)/a)da)

for v > 0. Some elementary algebra then gives the result.

By a change of variables it is possible to show that more general boundary

value problems will have the same eigenvalues as one of the problems (l.a).

Consider first a problem of the form

-R(x)[Pl(x)u'}' + Ql(x)u = Xu,

[ X) klu'(0) + k2u(0) = 0,       k3u'(l) + k4u(l) = 0.

It is assumed that R(x), l/R(x), P\(x), and 1/P\(x) are positive and bounded

and that Pi (x) is continuous except for a finite number of jump discontinu-

ities.  It is pointed out in [13] that the change of variables t = [Jx P~l(s)]/

[J0 P~[(s)ds] and <p(t) = u(x(t)) leads to an equation -P2(x)<p" + Q2(x)<p =

Xtp with a simple change in end point boundary conditions and the location

of the discontinuities. Also the jump conditions for u natural at the disconti-

nuities of problem (l.c) become simply the requirement that q> be continuous

with continuous first derivative everywhere. To further simplify the problem,

note that if P2(x) is continuous except for finitely many jump discontinuities,

then P2(x) =p(x)J(x) where J(x) is continuous while p(x) is piecewise con-

stant with jumps at the same locations as P2(x). Finally a standard change of

variables [2, p. 296] reduces the problem to the form (l.a).

2. The case q(x) = 0

The analysis of problem (l.a) will begin with the case q(x) = 0. Let a> =

X1/2 with oj > 0 when X > 0. On the interval (xn,xn+\) any solution of

—y" = Xp(x)2y must have the form

y(x) = An cos(pnco[x - xn]) + (Bn/co) sin(pno)[x - xn]).

There is a linear map from the coefficients

■An f An+\

_Bn\ [Bn+\_

which can be computed using the continuity of y and y'. The matrix taking the

basis elements cos(pna)[x-xn]) and sin(pna)[x-xn])/a) to a linear combination

of cos(pn+ico[x - xn+i]) and sin(pn+i(o[x - xn+[])/a> is

_ \an    bn
n~    c     d

where

a„ = cos(pncoln), bn = sm(pn(Dln)/aj,

cn= - o)pn sm(pncoln)/p„+i,       d„=pn cos(pncol„)/pn+l.

Notice that the entries of T„ are entire functions of X and that

T .   [ 1    0 j cos(pnl„(o) sin(p„lna>) \ 1      0

"~ [0   co\ [-pnsin(pnl„aj)/p„+i   pncos(pnl„aj)/pn+l\ [0    \/co   '

^ G(co)=[0°J and G-\a>) = [\ «„].
The following lemma is the result of direct computation.
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Lemma 2.1.

cos(b) sin(b) cos(a) sin(a)

-pi,sin(b)   pt,cos(b)\ [^fpasin(a)   ±pacos(a)

_ (l±Ha) I"   cos(a + b) sin(a + b)

2      [-pbsin(a + b)   pb^os(a + b)

(lTfe) [  cos(a - b) sin(a - b)
2        Pb si-n(a ~ b)    -pb cos(a - b)

Let
= r om(J)     sinW

v ;     |_-sin(0   cos(0

The next lemma provides a representation for the composition T„---Tq.

Lemma 2.2. For n > 0, Tn---T0 = <?((y)[X^6/ C,]C7_l((y) vv/zere r/ze z>Z6fec

■sei /„ is rTze j^ of distinct vectors Bt = (P(0, i), B(l, i),..., P(n, /)) with
P(0, i)=l, P(m, i) = ±1 ybr /n = 1, ... , n and the matrices C, are given

by

"n-l

C,- = 2-"   l[(\+p(m,i)P(m+l,i)pm)

(2-a) L=° ,      /   r, IX

x o p(n°i)pn\Mr E^.'X-   •
\      Lm=0 J /

Proo/. The proof is by induction, using Lemma 2.1 as the essential tool. The

initial case n = 1 is easily checked. Let Sn = G~x(co)TnG(co). When we

multiply r„_i ■ • • To on the left by Tn , we find

TnTn^-- -T0 = G((o)    £ S„Q   G~l(co),

_/e/„-i

with 7„_i running over the distinct vectors (P(0, i), ... , P(n-\, i)). Putting

aside for the moment the scalar factor 2~"+1 rim=o(l + P(m > i)P(m + 1, 0) >
we examine the product

n        o       i   ( I""-1 1\
5" [o   B(n-\, 0^-JM (^ [^/(m' °HJ '

which by Lemma 2.1 is equal to
(2.b)

[(l+0(/l-l,O/*„-l)/2][J    ̂ l^f"   C+ £>(>", OCm   j

+ [(1-/?(„- 1,0^-0/2]   q   _^   Mw  -C„+ £>(»*, 0C«   J.

Examining (2.a) we see that the power of 2 is correct. Now each of the vectors

(P(0, i),... ,P(n, i)) appearing in (2.a) is just one of the vectors (/? (0, i),...,

P(n— 1, 0) augmented in the last place with ±1. It is exactly this augmentation

that we see in (2.b), establishing the lemma.   □
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Next the eigenvalues of the q(x) = 0 problem will be expressed as the zeros

of an elementary function. Using the boundary conditions ay'(0) - by(0) = 0

and cy'(0) - dy(\) = 0, we see that for all X any eigenfunction has the form

a

.b/Po.

in the basis cos(powx), sin(p0(Dx)jco which is valid in the first interval.  On

the last interval the eigenfunction is represented by the vector

[b/Po.

Writing TN-2■■■To as

t(A)=[Ti1    Xn

LT21     T22.

we get our eigenfunction

[xua + TnblPo\cos(pN-XG}[x - xN.{\)

+ [t2ifl + T22b/Po]sin(PN-\(o[x - XN-i])/C0

and the equation defining the eigenvalues is F0(X) = 0 where

F0(X) = d[tna + Tnb/po]cos(pN^Q)lN-i])

+ d[x2ia + x22b/p0] sin(pN_icolN-i])/a>

+ c[xna + x{2b Ipo\Pn-\W^(Pn-\wIn-\])

- c[x2xa + x22b/p0]PN-\ cos{pN-itolN-\]).

If we define p^ — 1 and px- i = Pn- i then it is a simple computation to

verify that

F0(X) = [d, -c]TN.i---T0  b       .

It is also elementary that F0(X) is an entire function of order 1/2.
It will also be helpful to have a representation for the eigenfunctions y\ (x, X),

y2(x, X) which satisfy the equation -(\/p2)D2y = Xy and the usual initial con-

ditions }>y_1)(0, X) = Sij, i, j = 1, 2. For any x G [0, 1], x will lie in an

interval [x„ , xn+x]. In this interval the eigenfunctions will have the form

y](x,X) = [cos(pna)[x-xn]),sin(pnco[x-xn])/co]Tn_l---T0        ,

y2(x, X) = [cos{pnaj[x - x„]), sm{pna)[x-x„])/a)]T„-i ■■■T0
A/Po.

Using the expression for 7"„_i ■••To from Lemma 2.2 it is easy to compute that

yx(x, X) = Y^lck C0S(WA)cos(p„(o[x -x„])

+ Ckcosin(cofk)sin(pnco[x-xn])/co],
(2.c)

y2(x, X) = 22^dk C0S(WA) sin(pnco[x - xn])/co

+ Dk sin(a)fk) cos(p„a)[x - xn])/co]

where the terms ck, Ck, dk, Dk , and fk  depend on the interval [xn, xn+\]

and on the values pm and Cm but not on X.
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Theorem 1.1 will now be proven in the special case q(x) = 0. Writing

FQ(X) = [d,-c]G(co)     Y,  C<   G_1Mfj„

and letting et = 2~N+l rimloO + £(m - l)P(m + 1, i)pm) for / g In^ we find
that

FoW =   Yl et{P(N - 1, i)acpN-iWsin(fiOi)
i'6/at-i

+ [ad + P(N - 1, i)bcpN-l/p0]cos(fia>)

+ bdsin(foj)/[poO}]}

where f = Y,mZo P(m, OCm ■ Notice, in particular, that e, ^ 0 for all i G

IN-x and that if a2 + b2 > 0 and c2 + d2 > 0 then at least one of acpN-\,

[ad + P(N- 1, i)bcpN-\lpo\, or bd/po is not zero. In short, all the frequencies
which appear to be present are in fact there.

There is an algorithm for recovering, up to a permutation, the function p(x)

from the eigenvalues of problem (l.a). Consider

(2.d) lim[2/L] I   Fo(X)oj-1sin(i/co)d(o
L->oo 7l

for v positive. These limits will all be zero if and only if ac = 0. If ac ^ 0,

the frequencies f are determined, and the coefficients et are determined up

to a single scalar multiple. If the limits in (2.d) are all zero then this data is
recovered from

lim [2/L] /   F0(X) cos(vco) dco

or from

lim [2/L] /   F0(X)(osin(uoj)dct).
L-.00 y.

Because of the assumption that the frequencies f are distinct, it is easy to

determine the numbers Cm , up to a permutation, from the f . For convenience

of notation assume that Co < • • • < C/v-i • Let S = X) Cm and Sk = [J2 Cm] -

2Ct • Since the Cm are all positive, the largest two observed positive frequencies

are S and So ; their difference is 2 Co • Proceeding inductively, suppose we have

identified Co»• • • > Ck ■ Discard all observed positive frequencies of the form

Em=k+i Cm + Em=o(±)Cm • The largest remaining frequency must be Sk+l,

which gives us Ck+i ■ Of course, this procedure only determines Co, • • • , Cn-i

up to a permutation since their size order is unknown.

The remaining steps will be carried out for each permutation of Co, • • •, Cat-i-

With each hypothesized permutation we can generate the distinct frequencies

Y,P(m, i)Cm and find the (hypothesized) coefficients e,■■, i G Lv-i • For each

m, 0 < m < N - 1, examine the two coefficients ek obtained when / is

selected so that p(0, 1) = • •• = p(k, i) = 1, P(k+ 1, i) = ••• = B(N- 1, i) =
— 1, and e obtained when /?(0, /) = ■•• = P(N -1,0= 1 • Notice that ek
will have factors (1 + pm) except for the single factor (1 - pk) and that the

corresponding factors of e will all be (1 + pm). Defining Ek — ek/e, we find

[1-Pk]/U+P~k] = Ek or Pk = [l-£/t]/[l+£it] • Thus for each of our candidate
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permutations we can identify po, ... , Pn-i ■ (Note that the unknown scalar

dropped out.)
So far we have determined Co, • • ■ > Cn-\ up to permutation and, for each

permutation, the hypothesized values of po, ... , Pn-2 ■ To finish note that the

total length of the interval is  1 = J2m=o^-  We have pm = Po/[Po- ■■ Pm-\]

and   Cm  =Pmlm, SO that   1   =  £/m  -  ZCm/Pm  =  [VPo]2ZmZoCm{Tl?JoPj}
gives us po. Finally, for each hypothesized permutation the corresponding

operator (with q(x) — 0) can be constructed, and those giving the correct set of

eigenvalues (or F(X)) determined.

3. The general case

Let <p(x, X) be the solution of the initial value problem

(3.a)       -[l/p2(x)]<p" + q(x)<p = X<p,        <p(0,X) = a,        <p'(0,X) = b,

and let Fq(X) = dtp(\, X) - c<p'(l, X). Fq(\, X) is an entire function whose

zeros are the eigenvalues of problem (l.a). Define z(x, X) = d(p(x, X)/dX, and

note that z satisfies the initial value problem

(3.b)     -[l/p2(x)]z" + q(x)z = <p+Xz,        z(0,X) = 0,        z'(0,X) = 0.

Following part of the proof of [15, Theorem 2.2] we have

Lemma 3.1. Fq(X) has only simple zeros.

Proof. Multiplying the equation in (3.a) by z and the equation in (3.b) by <p

and subtracting we find that

<p"z - tpz" = [tp'z - <pz'\ = p2<p2.

Integration gives

(p'(\,X)z(\,X)-<p(\,X)z'(\,X)= f p2(x)<p2(x,X)dx>0.
Jo

Thus the two equations Fq(X) = c<p(\, X) + dip'(I, X) = 0 and 8Fq(X)/dX =
cz(\, X) + dz'(\, X) — 0 cannot be satisfied simultaneously.   □

The proof of Theorem 1.1 will be completed by using standard techniques to

estimate the growth of solutions of the initial value problems

-[l/P2(x)]D2ipj(x) + q(x)(pj(x) = Xtpj(x),

<Pji-i\0,X) = 6ij,       i,j, = 1,2.

The estimates are based on the solutions y\(x, X), y2(x, X) previously devel-

oped for the case q(x) = 0. We begin with the variation of parameters repre-

sentations

(pj(x,X) = yj(x,X)

+ I [yx(t,X)y2(x,X)-yx(x,X)y2(t,X)]p2(t)q(t)(pj(t,X)dt,
Jo

tp'j(x, X) = y'j(x, X)

+ / [yi(t,X)y'2(x,X)-y[(x,X)y2(t,X)]p2(t)q(t)<pj(t,X)dt.
Jo
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Let Q>(x, t, X) = y\(t, X)y2(x, X) - yx(x, X)y2(t, X). Observe that for each t

the function 0(x, t, X) satisfies the equation -<I>"(x, t, X) = Xp2(x)<&(x, t, X)

with the initial conditions <b(t,t,k) = 0 and (d/dx)<t>(t,t,k) = y\{t,X)y'2(t,X)
—y\ (t, X)y2(t, X) = 1 since it is just the Wronskian of the two solutions yi, y2.

Now if x„ < t < x < xn+\ then C>(x, t, X) = sin(pnco[x - t])/[pnco]. On the

other hand, if x„ < t < xn+\ < x then the solution crosses one of the jumps,

and after applying the appropriate transition matrix we find that

0(x, t, X) = sin(pnco[xn+i - t])cos(pn+lco[x - xn+l])/[pnaj]

+ cos(p„co[xn+i - t]) sin(pn+lco[x - xn+l])/[pn+lco]

= [l/2][l/p„ + l/pn+i]sm(pnaj[xn+l - t] + pn+l(o[x - xn+i])/co

+ [l/2][l/pn- l/pn+i]$in(pnoj[xn+i -t]-pn+iCo[x-xn+l])/w.

In these two cases we get respectively the estimates

|<D(x,t,X)\< expfl lm(o))\pn[x - t])

and

|0(x, t,X)\<[l/pn + l/pn+l]exp(\lm((o)\(pn[xn+i - t] + pn+l[x - xn+l]))

< [l/pn + l/p„+i]exp(| lm(to)\([p„ +pn+i][x - t])).

Using the representation (2.c) it is then straightforward to establish

Lemma 3.2. There are constants K, P such that for all 0 < t < x < 1 we have

|0(x,t,X)\<Kexpfl lm(o))\P[x - t]),

\{d/dx)Q{x, t,X)\< Kexpfl\m(w)\P[x - t}),

and for \X\ > 1

|<D(x, t,X)\ < Kexp(\Im(a))\P[x - t])/\co\.

Similarly we have the estimates

Lemma 3.3. There are constants K, P such that for all 0 < x < 1

\yi(x,X)\<Kexv(\lm((o)\Px),

\y2(x,X)\<Kexv(\Im(co)\Px),

\y'2(x,X)\< expflIm(w)|Px),

and for \X\>1
|/,(jc, A)| <K\co\ expfl lm(co)\Px),

\y2(x,X)\ < A:exp(|Im(w)|Px)/|w|.

Based on these estimates, standard Picard iteration arguments [14, p. 331]

can be used to derive estimates for (pj(x, X) if #(x) G L'[0, 1]. For instance

if y/„(x, X) is defined by

Wo(x,X) =yl(x,X),

<p„(x, X) = yi(x, X) + f <t>(x,t,X)p2(t)q(t)y/n-l(t,X)dt,
Jo

one readily proves by induction that there are constants K and P such that

|^-^_,|(x,A)<exp(|Im(w)|P)K"+1 [f \q(s)\ds\   /n\
Jo J

Such arguments provide
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Lemma 3.4. Suppose that q(x) G L'[0, 1]. The functions 0>j'_1)(x, X), i, j =

1,2, are entire functions of X for each x G [0, 1], with order \ . There are

constants K, P such that for \X\ > 1

\(px(x,X)-yx(x,X)\ < KexpflIm(w)|Px)/|a»|,

\<p\(x,X)-y[(x,X)\<Kexp(\lm(co)\Px),

\9i(x, X) - y2(x ,X)\<K expfl \m(a))\Px)l\X\,

\<p'2(x,X)-y'2(x,X)\ <Kexp(\lm(co)\Px)/\a)\.

Now we have all the ingredients needed for the proof of Theorem 1.1. Lem-

mas 3.1, 3.3, and 3.4 imply that

Fq(X) = d<p(l,X)-c<p'(l,X)

= - ac(p[(\, X) + [da<pi(l, X) - bctp'2(\, X)] + bdtp2(l, X)

is an entire function of order j , which is determined up to a nonzero scalar

by the eigenvalues of problem (l.a). Suppose that ac / 0. By Lemma 3.4 if

v > 0 then

lim [2/L] /   Fq(X)(o~{ sin(i>a))dco
L—oo J{

= lim [2/L] /   -aap[(\, X)co~l sm(va>)dw
L^oo J{

= lim [2/L] /   -acy[ (1, X)co~l sin(i/co)do)
L->oo J\

= lim [2/L] /   F0(X)co~l sin(vQ))dco.
L-»oo Ji

In short, the presence of #(x) has no affect on these limits and the proof follows

from the previously established case when q(x) = 0. If ac = 0, the needed

data is computed, as appropriate, from

lim [2/L] /   Fq(X)cos(vco)da) — lim [2/L] /   Fo(X)cos(va})do)
L-»oo 7l L-»oo Jl

or from

lim [2/L] /   Fq(X)o)sin(i/w)da> - lim [2/L] /   Fo(X)a>sin(i/a>)d(0.
L_,°° J\ L^oo Jl
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