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SOME GEOMETRIC PROPERTIES OF SPACES
ASSOCIATED WITH MULTIPLE STABLE INTEGRALS

JERZY SZULGA

(Communicated by Dale Alspach)

Abstract. We investigate properties of vector lattices of multiply integrable

functions with respect to a symmetric stable process.

1. Introduction

In this note we describe certain properties of spaces Sa of multiparameter

functions that are multiply integrable with respect to a symmetric a-stable Levy

process Xa(t), 0 < a < 2. Such spaces are special tensor products of La-

spaces, and

f|L^Sa^La,

where " *-+ " denotes the continuous embedding, but a closed characterization

is unknown at this time, for dimensions higher than two.

As is known, the distribution and the existence of the single stochastic integral

Xaf = / f'dXa depends only on the integral / \f \a . In [KaS] there was derived

a recursive procedure for multiple integrability, but, except for d — 1 or d = 2,

it did not provide any closed formula for the integrability. For the record, the
double stable integrable // fdXadXa exists if and only if

(1)       [[\f(s,t)\a(l+\n+-FTT-,-y^'PX,-a—rA dsdt< oo
K '      J J UV     n   \ f\f(u,t)\°duf\f(s,v)\«dvj

(cf. [RW], and for its discrete counterpart, cf. [CRW]). The condition is clearly

equivalent to the double integrability of \f \a with respect to X\ . Hence, it is

clear, at least in the case d = 1 or d = 2, that the spaces Sa are obtainable

from one another by a convexification (or concavification) procedure

Sa = {/:/aeS,}.

In spite of the lack of concrete representation of integrable functions, the latter
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relation, obtained in a simple way in this note, allows us to examine prop-

erties of Banach or -F-lattices SQ, like reflexivity, "closeness" to La-spaces,

Rademacher type, convexity type, etc.

2. Notation and known facts

For two quantities A = A(6) and B = B(9) depending on some parameter

6, we will write A x. B (A 4 B, respectively) if there is a constant c > 0

such that c~lA < B < cA (respectively, A < cB), uniformly for 6. It will

be clear from the context whether or not the constant c depends on additional

parameters, like dimension or the stability index a.
Sequences of length d will be denoted by a boldface character, e.g., u =

(u\, ... , ud). The relation i = (i\, ... , if) < n will mean maxi^^ ik < n .

For an x G R and pel we write xp = \x\p sgn(x).
Throughout the paper, U and V, with or without subscripts, will denote ran-

dom variables uniformly distributed on [0, 1], while e will be a Rademacher

random variable, i.e., one taking the values ±1 with probabilities \. Note

that the random variable eU~]/a belongs to the domain of normal attraction

of the symmetric a-stable law [F]. Let [Uik]ke^t i=\,...,d and [^LteN, i=i,...,d
be two independent random matrices whose entries consists of i.i.d. random

variables. Let a matrix [e^L^N, /=id consist of independent Rademacher

random variables and be also independent of both matrices of uniform random

variables.
We will use the operator notation, Xf = J fdX, for stochastic integrals. A

symmetric a-stable Levy process on [0,1] with values in Rd is denoted by

X = Xa = (Xl,...,X%). Given a function u = u(t) = (ux(t), ... , ud(t)) G

LQ([0, 1]; Rd), the distribution of the vector-valued coordinatewise integral

Xu = (XlU\, ... , Xduf) is given uniquely by a Levy measure va(dx) or, sepa-

rating the Levy measure into the radial and angular components, by the corre-

sponding spectral measure (Ja(dx) on the (d - l)-dimensional sphere Sd ,

Eexp j i^Xkuk \ = expi - /    1(1 - cos(x • u(t)))va(dx) dt\

= exp|- J j \x-u(t)\aaa(dx)dt\ ,

where x • u denotes the inner product in Rd .

Let 2 be a linear space of functions on [0, l]^ which vanish on diagonal

hyperplanes and are symmetric with respect to permutations of their arguments.

Let X: 2 —> Lq be a linear operator. Consider the conditions:

(1) /  (h,..., td) = Mh)■■ ■ fd(td) e 2 , whenever feL\ and Xf =~
Xlf---Xdfd.

(2) If {/„} c 2 , /„ —» / in measure, and sup„ \fn\<g&2, then f e 2

and Xfn A Xf.
The space of integrable functions Sa  is, by definition, a maximal space 2

with the above properties, while the operator XQ = X\ ■ ■ ■ Xd = X: Sa —> L0 is

termed the multiple stable integral [Kas]. This axiomatic definition is indepen-

dent of a particular construction of a multiple stable integral.
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Basic properties of the multiple stochastic integral and the space SQ, are

gathered below. Recall that by an F-space we mean a linear space with a topology

induced by a complete invariant metric (cf., e.g., [Ru, pp. 8, 9]). Denote

||/||a,, = (E|Xa/r)1/a,

where s is any positive number less than a .

Theorem A. The following properties hold:

(i) The functional || • \\a<s (|| • \\sa<s if s < 1) is a norm (s-norm, if s < 1) on

Sa, turning Sa into a Banach or F-space. Moreover, for a fixed a, the norms

are equivalent for all s G (0, a).

(ii) Decoupling principle. If X\, ... ,Xd are independent copies of the coor-

dinate processes Xxa , ... , Xd, then

(2) ||XQ/|Uj,x||^--.^/||a,,.

In particular, the class of integrable functions SQ does not depend on the Levy

or spectral measures.

(iii) The finite dimensional distributions of stochastic processes with a param-

eter space §a ,

^(/)="-rf/aE/(^";;,y^---^.

i<n      UU,   '"Udid

converge weakly to the distribution of a multiple stable integral Xaf with inde-

pendent coordinate processes.

(iv) Sa is isomorphic to an F-space {/: (S"(f)) is bounded in L0}, equipped

with a complete metric generated by the modular

pa,s(f) = suv\\S»a(f)\\s.
n

(v) The modular ps is equivalent to

PaM)= sup»"rf/Q   (£|/(F,,,,... , Vud)(Uur--Udid)-l/aA

s

( v'21/a

= supn-rf/«   \yj\\f(VXh,...,Vdld)\a(Uux---Udid)-x\2la\

s/a

(vi) Under the natural ordering, Sa becomes a vector lattice. The norm (or s-

norm) induced by the modular pas is monotone. Hence, \f\ < \g\ => \\f\\a,s ^
II <? II
115 \\a,s •

Proof, (i) [SI, Theorem 3.5; KS1, Theorem 2.5 and Corollary 2.3].
(ii) [KS3, Proposition 5.1].
(iii) [S3, Proposition 3.1 and Corollary 3.2].
(iv) The connection between modulars and metrics is described, for example,

in [M, pp. 2, 3]. The statement was proved in [S2, Theorem 6.6] in the case

of an L°-metric. Here, we can switch to a more convenient L5-norm, for any

0 < s < a, due to hypercontractivity of the random variable Z(n) = eU~[/a

(cf. [SI, Theorem 3.1; KS1, Theorem 2.5 and Corollary 2.3]).
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(v) It suffices to apply the 6?-dimensional Khinchin inequality (cf., e.g., [KS2,

inequality (2.4)].

(vi) Obviously.   □

Lemma 1. Let 0<q<p<r<oo. Then, uniformly in all real sequences (a,-),

(\qlr     f \ qlp
5>,.|t/-1/prj      x (X>f J      xEsup(|a,|c/-1/p)^.

Proof. Let 1 < p' < oo, and let (Y,) be a sequence of independent random

variables such that P(|Y| > t) = t~{lp' for every i and every t > 1. Then for

every r' > p', by [LT, Lemma l.f.8], we have

Efekr.M       xfefc?')       xE sup 1^7,1.

The lemma follows by substituting

r' = r/q,        p'=p/q,        fl{ = |«/|«, Yt = U'11"' = U~^p.    D

Lemma 2. Let r > p > q > 0, a«d /ef U = [Uik]i=l ,...yd, fceN be a random ma-

trix of mutually independent random variables uniformly distributed on [0, 1].

(i) Let {A(i): i G Nd} be a family of random variables independent of U.

Then, for every q G (0, p).

\T(\A(i)\(Uill---Udld)-l'p)r) x   suv\A(i)\(Uur--Udid)-l/p    .

(ii) Let 0 < q < p < oo. Then

Yj8(\)a(\)(UUi---Udidrxlp    x   5>(i)(tfUl ••• %<,)->''    •

/or all functions a: Nd -» E+, J: Nrf _—► [—1, 1].

Brao/. (i) The relation " > " is obvious. To prove the relation " =<: ", we use Fu-

bini's theorem which, in particular, allows us to consider nonrandom matrices

[A(i)]. For simplicity, we prove the statement in the case d = 2. The general

case follows in the similar way. Denote by Ei and E2 the expectations corre-
sponding (in terms of Fubini's theorem and product measures or, equivalently

in this context, by means of conditioning) to independent random sequences

(Uu) and (U2j), respectively. Put

bj=\T(\A(i,j)\U-l/py)        and   c, = sup\A(i, j)\U^lp.
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We have

e (x E(M(M')i^'*C)r]  = E^ (l></p)')

< E,E2 |^sup(0jc/2-1/p)rJ      4 E2E, f Y,(ctUr,lfpyJ

«   sup|^(/,y)|C/-1/pi72-1/p *.
u

(ii) The statement follows from the generalized Khinchin inequality and state-

ment (i) of this lemma.   □

3. Main results

Theorem 1. Let 0 < a, P < 2 and f: [0, l]d -» R fea symmetric function

vanishing on diagonal hyperplanes.

(i) / is Xa-integrable if and only if \f\ is Xa-integrable.

(ii) / is Xa-integrable if and only if fa is X\-integrable if and only if fa^

is X^-integrable. Additionally, for any s, 0 < s < a,

(3) E|Xa/7 x E\Xifa\s'a x E\Xfifa^\s^a.

Proof. By the decoupling principle, we may deal with stable processes with

independent coordinates. By Theorem A(iii), (iv), it suffices to consider the

random operators S"(f) instead of the integrals Xa/. Thus Lemma 2(ii)

yields statement (i).

(ii) We infer from Lemma 2(i) that the modulars

\,,,r(A)=   \Tt\A(i)(uur--udld)-^pA

where A: Nd —► Lq and r > p > q > 0, are equivalent for all r. By hypercon-

tractivity of U~xlp (cf. [SI, Theorem 3.1]), the modulars are also equivalent for

all permissible q . Then, the substitutions p = 1, r = 2/q , A = fa prove the

former equivalence in (3). The latter equivalence in (3) follows a fortiori.   □

Theorem 1 enables us to reduce the investigation of the totality of spaces Sa

to that of a space marked by an arbitrarily selected index a. We will give a

precise meaning of this statement.

Let p > 0. We call the norm || • ||  p-convex if

and p-concave if the relation " s$" in the above definition is replaced by the

relation "&*". Observe that the function (J2i\fi\")1,p is well defined in S„,

since Sa is a solid vector lattice (i.e., |/| < g e Sa => / G SQ). These notions
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are well known in the context of Banach lattices and indices p > 1  (cf. [Kri]

or [LT, §l.d]). For an arbitrary F-lattice L of functions, define

l(p) = {/: fP e L}.

If || • || denotes a homogeneous positive functional on L, we also put

\\f\hP) = \\fp\\l/p-

It is easy to check that, if || • ||  is s-convex and r-concave, then  || • W^)  is

ps-comex and pr-concave.  The operation L i-> L'p' is usually called the p-

convexification if p > 1, and 1 /p-concavification if p < 1 [LT, pp. 53-54].
Recall that a Banach space L is of Rademacher type r if

E  E*<£i   ** (Ew)      '        {*/}<= L.

By a suitable concavification, it is easy to formulate an analogous property in

the context of spaces Sp and /? < 1.

In the one-dimensional situation, the spaces Si and L{ are identical. For a

higher dimension, the structure of the space is no longer explicit, even though

Si, for d = 2, is clearly characterized by (1).

Theorem 2. Let 0 < a < 2.

(i)For 0<p <2, (S„)W> = Sa.
(ii) Except for d = 1, there is no equivalent Banach lattice renorming of Si.
(iii) Sa is r-concave for every r > a and r-convex for every 0 < r < a. In

particular, (a) multiple l-stable integrals satisfy the relation

(4) (E(E^)'/^5:(Ey'5)1/i;

and (b) SQ is r-uniformly smoothable for 1 < r < a and, thus, it is a reflexive

(even superreflexive) Banach lattice.

(iv) SQ is not of Rademacher type a although it is of Rademacher type r for

1 <r <a.

Proof, (i) follows immediately from Theorem 1 (ii)-

(ii) Let a > \. Assume the contrary. If there were an equivalent Banach

lattice norm on Sj , it would be 1-convex. It suffices to construct a two-

dimensional counterexample based on the characterization (1).

Let 0 < c, < 1, and put // = C/l[,-,,-i-i)x[i-i,i) • Then, by (1), X^fi
converges in Lq for some q< 1 if and only if ^c,ln(l/c,) converges. On the

other hand, Y, \\%\fi\\q converges if and only if £c, converges. It is easy to

find a suitable sequence (c,), for instance, taking c, - (/ln1+e i)~l , 0 < e < 1.

(iii) Let xi ' and XL be d- and (d- l)-dimensional multiple stable inte-

grals, respectively. Then the first of the following relations is another byproduct

of the decoupling principle (Proposition 2), and the last one uses s-convexity
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of La for s < a:

lix£°/ll** U(j\x«-Vf(>,t)\°dt\    J

=   (j*\xld-l)A',t)\°dt\      >(j\\x«-l)A-,t)\\?dt\    .

s

To prove the r-concavity of Sa,  r > a, we use the induction with respect to

d:

^ (E \/A    > U *tl) (e i/'(- . or)'   * j

* (jf (DI^-Vi(-.OIIg)    dt\

> (e(/,|Ix^1)I^-'0III?)/ *)

- fel|x">/,||')    >
where, besides the inductive assumption, we have also used the /"-concavity of

To prove the convexity, we proceed as follows. Let r < q < a. By Theorem

1 and the triangle inequality in Lq/r, we have

/ \l/r / \l/r 1/r

\j2\fA      = XcI^m)    x xa/rEwr
a, q q 1lr

1A        / \ l/r

= Ex«/^r   < Eii^/^-nu

- (Ell^-li;)   =felWBi.f)   •

(iii)(a) Inequality (4) holds for 7, = Xig, since Si is 1-concave. Note that

this inequality shows that 1-stable processes behave, in a sense, like nonnegative

random processes, even though there is no positive 1-stable process.

(iii)(b)Cf. [LT, p. 101].
(iv) This can be seen by modifying appropriately the example given in the

proof of statement (ii) of this theorem. Indeed, in the aforementioned exam-

ple, the functions fk have disjoint supports; hence, (5Zfc|ADlQ! = J2kfk =
\J2kekfk\- Thus, the same argument applies. The second part of the state-
ment is obvious, for a p-convex Banach lattice is of Rademacher type p . This

completes the proof.   □
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The restriction to the parameter space T = [0, 1 ] and the governing Lebesgue

measure is not essential. One can easily extend the results to an arbitrary separa-

ble (7-finite measure space S. Also, the extension of main results (Theorems 1

and 2) to strictly stable processes is direct, through the appropriate symmetriza-

tion (cf., e.g., [KS3, Proposition 5.1 and p. 774]).
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