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ON THE RAMIFICATION THEORY OF REGULAR SCHEMES

ZHAOHUA LUO

(Communicated by Eric Friedlander)

Abstract. We prove a fundamental theorem on the ramification of morphisms

of regular schemes, extending Dedekind's theorem of different.

Suppose /: X —» Y is a dominant morphism of smooth varieties unramified
at the generic point (e.g., a birational morphism). Classically the ramification

divisor Ef of / is defined via canonical sheaves, i.e., Ef = &\v(f*(cox®o)yX))

(cf. [D]). If X, Y are regular schemes and / is essentially of finite type as
above, then Ef can be defined to be the effective divisor determined by the

Kahler different (sheaf) of the morphism / (cf. [L2]).
For any x € X and y = f(x) e Y we shall introduce three important

invariants r(xy), e(xy), and w(xy), where r(xy) is the multiplicity of Ef at

x and e(xy) is the supremum of the multiplicities at x of the products of local
coordinates of Y at y . The main purpose of this paper is to prove the following

theorem, which is a generalization of the main theorem of ramification theory

of algebraic number theory (due to Dedekind).

Theorem 1 (Geometric form). Let f: X -» Y be a morphism of regular schemes

as above. Then for any x e X and y = f(x) we have

, . r(xy) > e(xy) - codimx > wlxy) + codimy - codimx
f # 1

> codimj> — codimx > 0.

(i) Suppose f is a finite morphism and codimjc = codimy = 1. Then

r(xy) = e(xy) - 1 if and only if the residue field k(x) of x is a separable

extension of the residue field k(y) of y and e(xy) is not a multiple of the
characteristic of k(y).

(ii) Suppose f is a birational morphism. Then r(xy) = codimy - codimx

if and only if x and y determine the same discrete valuation of the rational

function field; in this case we have myrfx = mx (thus y is the generic point of a

component of f~l(x)).

The expression (*) is one of the most important formulas for the ramifica-

tion theory of regular schemes (see [L, LI, L3] for applications); a preliminary
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version of (*) (i.e., r(AB) > e(AB) - 1 for the case codimx = 1) was an-

nounced in [LI] and proved in [L2].

Since the ramification theory of regular schemes is essentially a local problem,

we shall carry out our study mainly in the category of commutative algebras.

Theorem 1 is proved in its algebraic form at the end of the paper. We first

introduce some notation and terminology.

In this paper by a pair (A, B) of regular local rings we always mean a dom-

inating pair A D B of regular local rings such that the quotient field Q(A) of

A is a finite separable extension of the quotient field Q(B) of B and A is

a quotient ring of a finitely generated 7i-algebra (i.e., A is a B-algebra essen-

tially of finite type). Denote by M and N the maximal ideals of A and B

respectively.

Denote by D(A/B) the differential module of A over B. D(A/B) is a
finitely generated torsion ^-module and the 0-Fitting ideal d(A/B) of D(A/B)

is a nonzero principal ideal of A .

If P is any subset of a local ring A , we define

OTdA(P) = sup{/ £ Z|F c M'} e Z U oo.

If A is a regular local ring then ord^ determines a discrete valuation vA of

the quotient field Q(A) of A ; denote by Z(A) the discrete valuation ring of

vA . If E = {bi, ... , bs} is a finite subset of A, for simplicity we shall write

7(F) for the product b\-b2---bs of these elements.

Definition 1. Suppose (A, B) is a pair of regular local rings with dim,4 = m

and dim B — n (here dim ,4 = krulldim^). We define

r(AB) = vA(d(A/B));

e(AB) = sup{u/4(7(F))|F is a minimal basis of N} ;

w(AB) — sup{t(vA(Q) - 1)|Q is a prime ideal of B of height t

such that B/Q is regular};

s(AB) = (n-m)vA(N).

r(AB) and e(AB) are called the ramification index and the reduced ramification

index of A over B respectively. (Clearly we have e(AB)-m > w(AB)+n-m >

s(AB) >n-m>0. We shall prove that e(AB) < oo.)

Let W(A/B) be the set of prime ideals of A of height 1 such that P is
ramified over B (i.e., AP is ramified over BPnB); ff(A/B) is a finite set.

The reader is referred to [Kl, K2, L2] for the general theory of Kahler dif-

ferent.
In the following we assume that (A, B), (B, C), and (C, D) are pairs of

regular local rings (then (A, C), (A, D), and (B, D) are also pairs of regular

local rings).

Lemma 1. r(AB) = 0 if and only if A is unramified over B. If Q(A) = Q(B),
then r(AB) = 0 if and only if A = B.

Proof. A is unramified if and only if d(AjB) = (1), i.e., r(AB) = 0 (see
[Kl]). If Q(A) = Q(B) then A is unramified over B if and only if A = B;
thus r(AB) = 0 if and only if A = B in this case.
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Lemma 2.  r(AB) = ZPmA/B) r(APBPnB)(vA(P)). Thus r(AB) > \W(A/B)\.

Proof. Since d(AB) is a principal nonzero ideal of A, d(AB) = Ha]' with

a, 6 A irreducible. Then W(A/B) consists of all the prime ideals P, = (at)A .

We have vA(Pt) = vA(at) and r(APJBmB) = U . Thus r(AB) = vA(d(A/B)) =

Z(vA(ai))ti = EpmA/B) r(APBPnB)(vA(P)).

Lemma 3. Write r(ABC) = vA(d(B/C)). Then we have r(AC) = r(AB) +

r(ABC). Also r(ABC) = E/>er(B/C) r(BPCPnC)(vA(P)).

Proof. We have d(A/C) = d(A/B)(d(B/C)A) [L2]; thus r(AC) = r(AB) +
r(ABC). The proof of the second assertion is similar to that of Lemma 2.

Lemma 4. r(ABC) > r(BC) and r(Z(B)BC) = r(BC). Thus r(AC) >
r(AB) + r(BC).

Proof. Note that vA(P) > vB(P) for any subset P of B and wZ(g) = vB .

Lemma 5. r(ABD) = r(ABC) + r(ACD) where r(ABD) and r(ACD) have the
same meaning as r(ABC).

Proof. We have r(ABD) = r(AD) - r(AB) = (r(AC) + r(ACD)) - r(AB) =
(r(AC) - r(AB)) + r(ACD) = r(ABC) + r(ACD).

Lemma 6. Suppose A is a discrete valuation ring and B is the first quadratic

transform of C along A (see[A)). Then e(AC) < e(AB)+s(AC) and r(ABC) =
s(AC).

Proof. Let E = {b\, ... , bt] be a minimal basis of the maximal ideal Q of C.

Suppose we have arranged the 6, so that vA(b\) = ■ ■ ■ = vA(bt<) < vA(bti+\) <

■■■<vA(bt). Then vA(Q) = vA(b\), which implies that s(AC) = (t - l)vA(bi).

The set E' = {b\, bti+i/b\, ... , bt/bi} is part of a minimal basis of the max-

imal ideal N of B; hence e(AB) > vA(I(E')). Since vA(bj) = vA(b\) for
i < t', we have vA(I(E)) = vA(I(E')) + (t - l)vA(bi) < e(AB) + s(AC) for
any minimal basis E of Q. It follows that e(AC) < e(AB) + s(AC). As B
is a quadratic transform of C, we have d(B/C) = Q'~lB (cf. [L2]); hence
r(ABC) = vA(d(B/C)) = (t - \)vA(Q) = s(AC).

Suppose Q(A) = Q(B) and A is a discrete valuation ring. Consider the

quadratic sequence along A starting from B such that each 5, is the first

quadratic transform of Bt-i along vA (cf. [A, p. 336]):

A = Bt D ■ ■ ■ D B2 D Bi D B0 = B.

The existence of such a finite sequence is guaranteed by Lemma 3, as the length

t of any such strictly descending chain between A and B is bounded by r(AB),

because we have r(AB) = £),-=o     <-i r(^-#!+i-#i) ^ * •

Lemma 7. Suppose Q(A) = Q(B) and A is a discrete valuation ring. Then

(i) r(AB) = Ei^,...,,-iS(ABi) > e(AB) - 1.
(ii) The following assertions are equivalent:

(a) A = Z{B);
(b) r(AB) = s(AB);
(c) r(AB) = n - 1.

Proof, (i) Note that s(ABj) = r(ABi+\Bi) by Lemma 6; hence r(AB) =

Y,i=o,...,t-\r(ABi+\Bi) = E,=o,...,(-i5(^jB')-   Applying Lemma 6 and using
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induction on t we see that e(AB) is finite. Also by that lemma we ob-

tain r(AB) = £.=0 ,_, s(ABi) > £l=0 ,-i e(ABt) - e(ABi+l) = e(AB) -

e(ABt) = e(AB) - 1.
(ii) Write c = £,=i ,_, s(ABj). Then c = 0 if and only if A = Z(B).

But r(AB) = c + s(AB)>'c + n-l. Thus c = 0 if and only if r'AB) = s(AB).
Thus (a) and (b) are equivalent. If r(AB) = n-\ then c = 0; thus A = Z(B).

Clearly A = Z(B) implies r(AB) - n - 1. Thus (a) and (c) are equivalent.

Remark. The formula r(AB) = ^2i=0 ,_t s(ABj) gives another definition of

r(AB) for any birational pair (A, B) of regular local rings such that dim A = 1,

without referring to Kahler different. If A and B are regular localities of an

algebraic function field K/k then one can use this formula to prove that our

definition of r(AB) coincides with the usual one obtained by means of the

canonical divisors of K/k (see [L2]).

Lemma 8.  r(AB) = r(Z(A)B) -m + \.

Proof. We have r(AB) = r(Z(A)AB) = r(Z(A)B) - r(Z(A)A) = r(Z(A)B) -
(m - 1) by Lemmas 3, 4, and 7(ii).

Theorem 2 (Algebraic form). For any pair (A, B) of regular local rings we have

r(AB) > e(AB) - dim A > w(AB) + dim B - dim A

> s(AB) > dim B-dim A >0.

(i) Suppose A, B are discrete valuation rings; then r(AB) = e(AB) - 1 if and

only if e(AB) is not a multiple of chB/N, and A/M is a separable extension

ofB/N.
(ii) Suppose Q(A) = Q(B); then r(AB) = 0 if and only if A = B, and

r(AB) = dim B - dim A if and only if Z(A) = Z(B). If Z(A) = Z(B) then
NA = M.

Proof, (i) If A, B are discrete valuation rings, then d(AB) coincides with the

Dedekind different of A over B (see [L2]), and r(AB) is called the differential
exponent in [ZS]. Thus (i) is the content of Dedekind's theorem of different.

To prove (#) we consider r(AB) = r(Z(A)B) - m + 1 (Lemma 8). If we

can prove r(Z(A)B) > e(Z(A)B) - 1 , then, since e(Z(A)B) = e(AB), we

would obtain r(AB) > e(AB) - m . Thus we may assume that A is a discrete

valuation ring. Let Aq = A n Q(B), and put h — e(AAo). Then we have

r(AA0) >h-l by (i) and r(A0B) > e(A0B) - 1 by Lemma 7. Thus r(AB) =
r(AA0) + hr(A0B) >h-l+ h(e(A0B) - 1) = h(e(A0B)) - 1 = e(AB) - 1 . (It is
easy to see that e(AB) = h(e(A0B)).) This proves (#).

We now prove (ii). In the following we assume Q(A) = Q(B). We have

r(AB) = r(Z(A)B) - m + 1 (Lemma 8); thus r(AB) = n - m if and only if
r(Z(A)B) = n - 1, which is equivalent to Z(A) = Z(B) by Lemma 7.

Finally we assume Z(A) = Z(B). The assertion that NA = M was proved

in [S]. We give a simple algebraic proof based upon the inequality r(AB) >

e(AB) - dim A obtained above.
Let E = {b\, ... , b„} and E' = {a\, ... , am) be the minimal bases of

./V and M respectively. We can choose a, such that at, ... , am generates

NA mod M2; then NA = M if and only if t = 1. Let A' be the lo-
calization of A\a~ila\, ... , am/a\] at the maximal ideal generated by Fn =
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{a\, aija\, ... , amja\\.  Then (A, A) is a pair of regular local rings.   We

calculate r(A'B) and e(A'B).
(a) We have r(A'B) = r(A'A) + r(A'AB) = m - 1 + vA,(d(A/B)) where

d(A/B) — (a)A with t^(a) = r(AB) = n - m. It is easy to see that vA>(g) <

2vA(g) for any g e M (using the fact that F0 is a minimal basis of the

maximal ideal of A'). Thus r(A'B) < m - 1 + 2(n - m) - In - m - 1.

(b) We have vA-(a,) - 2 for any 1 < i < m. Each Z>, can be written as a

linear combination of at, ... , am mod M2. Thus if t > 1 then vAI(bt) > 2

for all /, which implies e(A'B) > 2n . Thus e(A'B)-m > 2n-m > 2n-m-\ —
r(A'B), contradicting the inequality r(A'B) > e(A'B) - m of (#). Thus t = 1,

which means NA = M. The proof of the theorem is complete.
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