MULTIPLICATIVE SUBGROUPS OF FINITE INDEX IN A DIVISION RING

GERHARD TURNWALD

(Communicated by Maurice Auslander)

ABSTRACT. If G is a subgroup of finite index n in the multiplicative group of a division ring F then G - G = F or $|F| < (n-1)^4 + 4n$. For infinite F this is derived from the Hales-Jewett theorem. If $|F| > (n-1)^2$ and -1 is a sum of elements of G then every element of F has this property; the bound $(n-1)^2$ is optimal for infinitely many n.

INTRODUCTION

It is well known that every nonzero element of a finite field F is a sum of two nonzero nth powers if q = |F| is sufficiently large. Since F^* is cyclic, this is equivalent to the statement that, for every positive integer n, $G + G \supseteq F^*$ holds if G is a subgroup of index n of F^* provided $q \ge q_0(n)$. Leep and Shapiro gave a proof for n = 3 which also works for infinite fields; they conjectured that G + G = F holds for n = 5 if F is an infinite field [3]. Recently, Berrizbeitia proved that G - G = F if $\operatorname{char} F = 0$ or $\operatorname{char} F \ge p_0(n)$. (G - G) means $\{g_1 - g_2 \colon g_1, g_2 \in G\}$.) Thus, in particular, G + G = F if G is odd and $\operatorname{char} F = G$. (Note that G - G = G) The proof in [1] is based on Gallai's theorem (cf. 1.2) which does not give (reasonable) bounds for G in Employing the Hales-Jewett theorem, a modification of Berrizbeitia's proof allows us to prove the following result for infinite F.

Theorem 1. Let F be a division ring and G be a subgroup of F^* with finite index n. If $|F| \ge (n-1)^4 + 4n$ then G - G = F; if, in addition, n is odd then G + G = F.

Thus G-G=F holds if $|F|\geq n^4$ and |F|>2. Choosing $F=\mathbf{F}_{p^2}$ and $G=\mathbf{F}_p^*$ shows that $|F|\geq (n-1)^2$ is not sufficient if n-1 is a prime. A more elaborate example shows that, for infinitely many n, $|F|\geq (n+1)^2$ is not sufficient (see Proposition 1.6).

The notation of Theorem 1 will be kept throughout the paper except in Corollary 1.2. N denotes the set of positive integers. For every $k \in \mathbb{N}$ we put $G_k = \{g_1 + \dots + g_k \colon g_1, \dots, g_k \in G\}$ and $S_k = G_1 \cup \dots \cup G_k$. Let $S = \bigcup_{k>1} S_k$.

Received by the editors May 26, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 12E99; Secondary 05D10, 11T99, 12E15. Key words and phrases. Multiplicative subgroup, field, division ring, Hales-Jewett theorem.

Theorem 2. If $|F| > (n-1)^2$ and $-1 \in S$ then S = F.

¹ Remark 2.3 shows that the bound for |F| is optimal for infinitely many n. The proof is similar to the proof given by Leep and Shapiro for infinite F [3, Lemma 1]. The following theorem refines the results of §2 in [1].

Theorem 3. (i) If $G \subseteq G - G$ then $S_k = G_k$ for all $k \in \mathbb{N}$.

- (ii) $S_k \subseteq S_{k+1}$ for every $k \in \mathbb{N}$; $S_k = S_{k+1}$ iff $S_k = S$.
- (iii) $S_{n+1} = S$.
- (iv) If $-1 \notin S$ then n is even and $S_{n/2} = S$.

The examples given in Remark 2.5 show that the bounds in (iii) and (iv) are optimal for infinitely many n.

1. Results concerning G-G and G+G

1.1. **Theorem** (Hales-Jewett). For all $m, r \in \mathbb{N}$ there exists $N(m, r) \in \mathbb{N}$ such that, for every $N \in \mathbb{N}$ with $N \geq N(m, r)$, every function f defined on $\{0, \ldots, m\}^N$ with at most r values is constant on some line.

(A line is a set of the form $\{(k_1, \ldots, k_N): k_j = k'_j \text{ if } j \in J_0 \text{ and } k_{j_1} = k_{j_2} \text{ if } j_1, j_2 \in J_1\}$ for suitable disjoint J_0, J_1 with $\{1, \ldots, N\} = J_0 \cup J_1, J_1 \neq \emptyset$, and suitable $k'_i \in \{0, \ldots, m\}$ for $j \in J_0$.)

For a proof we refer to [2]; note that t and 0 have to be interchanged in the definition of x_{ij} , y_{si} on p. 37 in [2].

1.2. Corollary. Let S' be a finite subset of a commutative semigroup S. Then for every mapping g from S into some finite set there exist $s \in S$ and $d \in \mathbb{N}$ such that g is constant on $\{s + ds' : s' \in S'\}$.

Proof. We may assume $S' = \{s_0, \ldots, s_m\}$ with $m \ge 1$. The assertion follows by applying 1.1 to $f(k_1, \ldots, k_N) = g(\sum_{j=1}^N s_{k_j})$ $(0 \le k_j \le m)$ for suitably large N.

Gallai's theorem is the special case $S = \mathbb{R}^m$ (cf. [2, p. 38]) or $S = \mathbb{N}_0^m$ (as used in [1]). Van der Waerden's theorem on arithmetic progressions is obtained for $S = \mathbb{N}$ or $S = \mathbb{N}_0$. Corollary 1.2 is not required in the sequel.

1.3. **Proposition.** Let F be an infinite division ring and G be a subgroup of F^* of finite index n. Then for arbitrary $x_1, \ldots, x_m \in F^*$ there exists $c \in F^*$ such that $1 + cx_k \in G$ for $1 \le k \le m$.

Proof. For every $N \in \mathbb{N}$ there exist $c_1, \ldots, c_N \in F$ such that $\sum_{j \in J} c_j \neq 0$ for every nonempty $J \subseteq \{1, \ldots, N\}$. (Inductively, c_k can be chosen such that $\sum_{j \in J} c_j \neq 0$ for all $J \subseteq \{1, \ldots, k\}$.) Now let N = N(m, n+1) (according to Theorem 1.1), set $x_0 = 0$, and set $f(k_1, \ldots, k_N) = (\sum_{j=1}^N c_j x_{k_j})G$ (where $cG = \{cx : x \in G\}$) for all $k_j \in \{0, \ldots, m\}$. By Theorem 1.1 there exist disjoint J_0 , J_1 with $\{1, \ldots, N\} = J_0 \cup J_1$, $J_1 \neq \emptyset$, and $k'_j \in \{0, \ldots, m\}$ such that $aG = (a + bx_k)G$ for $1 \leq k \leq m$, where $a = \sum_{j \in J_0} c_j x_{k'_j}$ and $b = \sum_{j \in J_1} c_j$. The assertion holds with $c = a^{-1}b$. (Note that $a \neq 0$ since $b \neq 0$ and $x_k \neq 0$.)

Note that $-1 = p - 1 \in G_{p-1} \subseteq S$ if $p = \operatorname{char} F > 0$.

- 1.4. Proof of Theorem 1. If $-1 \notin G$ then G has index 2 in G(-1) and hence n is even. Thus it remains to show G G = F. If F is infinite then applying Proposition 1.3 to any left diagonal of G yields a left diagonal x_1, \ldots, x_n of G such that $1 + x_k \in G$ (and hence $x_k G \subseteq G G$) for $1 \le k \le n$; thus $F \subseteq G G$. Now let F be finite. By Wedderburn's theorem [4, 2.55] we have $F = \mathbf{F}_q$ for suitable q. Thus F^* is cyclic and $G = \{x^n : x \in F^*\}$. It is well known that the number N of solutions $(x, y) \in F \times F$ of $x^n y^n = c$ satisfies $|N q| \le (n-1)^2 \sqrt{q}$ if $c \in F^*$ [4, 6.37]. Let $q = (n-1)^4 + d$ with $d \ge 4n$. If n > 1 then $(n-1)^2 + (n-1)^{-2}(d-2n) > \sqrt{q}$ and thus $N \ge q (n-1)^2 \sqrt{q} > 2n$. If n = 1 then $N = q \ge 4$. Since the number of solutions with x = 0 or y = 0 is at most 2n, this shows that $c \in G G$.
- 1.5. Remark. If n = 2 then G G = F unless $|F| \in \{3, 5\}$ in which case $G G = F \setminus \{1, -1\}$. If n = 3 then G G = F unless $|F| \in \{4, 7, 13, 16\}$. The exceptional cases are $G G = \{0\}$ for |F| = 4, $G G = \{0, 2, -2\}$ for |F| = 7, and $G G = F \setminus G$ for $|F| \in \{13, 16\}$.

By using Theorem 1 and the fact that n divides |F|-1 it only remains to check three cases for n=2 and six cases for n=3. We omit the details. A self-contained proof of (the first part of) the assertion for n=3 can be found in [3].

- 1.6. **Proposition.** There are infinitely many n such that $|F| = (n+1)^2$ and $G G \neq F$.
- *Proof.* Let p > 3 be a prime such that -3 is a square mod p. By the quadratic reciprocity law this holds for every prime $p \equiv 1 \pmod{12}$ and by Dirichlet's theorem there exist infinitely many such p. Let $F = \mathbf{F}_{p^2}$ and $G = \{x \in F \colon x^{p+1} = 1\}$; then G has index n = p 1 in F^* . Assume that $-1 \in G G$, i.e., there exists $x \in F^*$ with $x^{p+1} = (x-1)^{p+1} = 1$. Taking into account that $(x-1)^p = x^p 1$ this yields $(x^{-1}-1)(x-1) = 1$. Hence $x^2 x + 1 = 0$ which gives x = (1+a)/2, where $a^2 = -3$. By assumption we have $a \in \mathbf{F}_p$; hence $x \in \mathbf{F}_p$ and $x^{p-1} = 1$. From $x^{p+1} = 1$ and $x^2 x + 1 = 0$ we thus deduce x = 2 and x = 3. Clearly, this is impossible.
- 1.7. Remark. If |F| is finite then in Theorem 1 one gets $G+G\supseteq F^*$. This is proved by an obvious modification of the proof of G-G=F. If $G+G\supseteq F^*$ then G+G=F holds iff $-1\in G$, i.e., iff $(-1)^{(|F|-1)/n}=1$.

For infinite F the situation is different since $G = \{2^k \frac{a}{b} : k \equiv 0 \pmod{\frac{n}{2}}\}$; $a, b \in \mathbb{N}$; a, b odd $\}$ is a subgroup of (even) index n in \mathbb{Q}^* and G + G is a proper subset of \mathbb{Q}^* (by positivity). Hence for infinite F we cannot conclude $F^* \subseteq G + G$. We do have $G \subseteq G + G$, however, since $G \subseteq G - G$ (and hence some element of G belongs to G + G).

- 1.8. Remark. Let (*) denote the statement $(G \cap \mathbf{Z}) (G \cap \mathbf{Z}) = \mathbf{Z}$. The following examples show that (*) holds in several cases but does not hold in general (for $F = \mathbf{Q}$).
- (i) Let p be prime. Then $G = \{p^k \frac{a}{b} : k, a, b \in \mathbb{Z}, a \equiv b \not\equiv 0 \pmod{p}\}$ is a subgroup of finite index of \mathbb{Q}^* (cf. Remark 2.5). Clearly, $x \in G \cap \mathbb{Z}$ implies $x \equiv 0, 1 \pmod{p}$ and hence (*) does not hold if p > 3.
- (ii) $G = \{(-2)^k 9^l \frac{a}{b} : k, l \in \mathbb{Z}; a, b \in \mathbb{N} \text{ with } (ab, 6) = 1\}$ has index 4 in \mathbb{Q}^* . Note that $\mathbb{Z} \subseteq \{1, -1, 3, -3\} \cdot (G \cap \mathbb{Z})$. Hence (*) holds since 1 = 5 4, 3 = 7 4, and $4, 5, 7 \in G \cap \mathbb{Z}$.

- (iii) $G = \{\prod_{p \text{ prime}} p^{k_p} \colon k_p \in \mathbb{Z}, \ k_p = 0 \text{ for large } p, \sum k_p \text{ even} \}$ has index 4 in \mathbb{Q}^* . For every prime p, $\{1, -1, p, -p\}$ is a diagonal of G. It is, however, easy to see that there exists no finite set $M \subseteq \mathbb{Z}$ with $\mathbb{Z} \subseteq M \cdot (G \cap \mathbb{Z})$. In order to prove (*) it is sufficent to show that $(G \cap \mathbb{Z}) (G \cap \mathbb{Z})$ contains 1 and all primes p. Now note that 1 = 10 9, 2 = 6 4, and $2j 1 = j^2 (j 1)^2$ (for j > 1).
- (iv) Choose $m \in \mathbb{N}$ and $c_p \in \mathbb{Z}$ (for every prime p), where $c_p = 0$ for large p. Then $G = \{ \pm \prod_{p \text{ primes}} p^{k_p} \colon k_p \in \mathbb{Z} \ , \ k_p = 0 \ \text{for large} \ p \ , \ \sum c_p k_p \equiv 0 \ \text{(mod } m) \}$ has index $\leq m$. Consider nonnegative integers l_p such that $l_p = 0$ for large p. Set $k_p = m$ if $c_p \neq 0$, $l_p = 0$; set $k_p = 0$ in all other cases. It is then easy to see that $\prod p^{k_p}$ and $\prod p^{k_p} \prod p^{l_p}$ both belong to $G \cap \mathbb{Z}$ which proves (*) since $-1 \in G \cap \mathbb{Z}$.
 - 2. Results concerning G_k , S_k , and S
- 2.1. **Proposition.** $S + S \subseteq S$ and $S^* = S \setminus \{0\}$ is a group.
- *Proof.* Obviously, $S + S \subseteq S$ and $S \cdot S \subseteq S$. If $x \in F^*$ then $x^m \in G$ for some $m \in \mathbb{N}$ since otherwise all cosets $x^k G$ $(k \in \mathbb{Z})$ are distinct. Thus $x^{-1} = x^{m-1}x^{-m} \in S$ if $x \in S^*$.
- 2.2. Proof of Theorem 2. Let $-1 \in S$ and assume that there exists $x \in F \setminus S$. The cosets (a+x)G with $a \in G \cup \{0\} \subseteq S$ are distinct since $a+x=(a_1+x)a_2$ with a, a_1 , $a_2 \in S$ yields $x(a_2-1)=a-a_1a_2 \in S$ and hence (by Proposition 2.1) $a_2-1=0$, $a=a_1$. Moreover, $a+x \neq 0$ and $(a+x)G \neq G$. Hence $|G|+2 \leq n$ and $|F|=n|G|+1 \leq (n-1)^2$.
- 2.3. Remark. Let $F = \mathbf{F}_{q^2}$ and $G = \mathbf{F}_q^*$. Then n = q + 1 and $-1 \in S \subseteq \mathbf{F}_q \neq F$. Since $|F| = (n-1)^2$, this shows that the bound in Theorem 2 is optimal for infinitely many n.
- 2.4. Proof of Theorem 3. (i) Some element of G belongs to G+G and thus $G \subseteq G+G$. Inductively, $S_k \subseteq G_k$ for all k and hence $S_k = G_k$.
 - (ii) This is evident from the definitions.
- (iii) For every $k \in \mathbb{N}$, S_k is a union of cosets of G possibly together with $\{0\}$. Thus the assertion follows from (ii).
- (iv) n is even since $-1 \notin G$ (cf. Proof 1.4). We have $0 \notin S$ since otherwise $0 \in G_k$ for some $k \ge 2$ and hence $-1 \in G_{k-1} \subseteq S$. Thus (by 2.1) S is a subgroup of F^* . Since $G \le S \ne F^*$, we obtain $(S:G) \le n/2$ and thus (ii) yields $S_{n/2} = S$ (since each S_k is a union of cosets of G).
- 2.5. Remark. It is easy to see that $G \subseteq G G$ is equivalent to $G \subseteq G + G$. According to Theorem 1, the hypothesis $G \subseteq G G$ may be omitted in (i) if $|F| \ge (n-1)^4 + 4n$. Choosing $G = \{1\}$ shows that some additional assumption is required in general.

Now let $F = \mathbb{Q}$ and define G as in Remark 1.8(i). Note that G has index p-1 and $1, \ldots, p-1$ is a diagonal. If $1 \le k < p$ then, putting l = p-1-k and $G_0 = \{0\}$, we have $k = (1-lp)+k-1+lp \in G+G_{k-1}+G_l=G_{p-1}$. Hence $F^* \subseteq G_{p-1}$ and S = F. It is easy to see that $0 \notin G_{p-1}$ and thus, since $S_k = G_k$ for all k, $S_{p-1} \ne S$. Consequently, the index n+1 in (iii) is optimal if n+1 is a prime (cf. $[1, \S 3]$). Since G contains negative elements (e.g., 1-p), the subgroup G_+ of positive elements of G has index G in G

- and hence $(F^*: G_+) = 2(p-1)$. We have $p-1 \notin S_{p-2}$ since otherwise $0 = (p-1) + (1-p) \in S_{p-1} = G_{p-1}$. Since every positive integer is a sum of elements of any given subgroup, this shows that the index $\frac{n}{2}$ in (iv) is optimal if n = 2(p-1) for some prime p.
- 2.6. Remark. In Proposition 2.1(b) of [1] it is stated that $-1 \in S$ implies $S_{n+1} = F$. (The notation $k \times G$, P_k , P in [1] corresponds to G_k , S_k , S used in this paper.) This is correct if F is infinite (cf. Theorem 2) but may fail for finite fields (cf. Remark 2.3). (In [1] a result is quoted from [3] without the hypothesis on |F| made there.) Theorem 3(iv) improves the second part of Proposition 2.1(b) of [1]; thus the title of §3 in [1] is misleading.
- 2.7. Remark. Let k > 1. It is easy to see that $0 \in G_k$ holds iff $-1 \in G_{k-1}$. If $-1 \in G_{k-1}$ and G G = F then $F \subseteq G + G_{k-1} = G_k$ (cf. [1, 1.2]). Thus the following three statements are equivalent if $G G = F : G_k = F$, $0 \in G_k$, $-1 \in G_{k-1}$; moreover, $G_k = S_k$ (by Theorem 3(i)).

NOTE ADDED IN PROOF

For infinite F Theorem 1 is a special case of the results in a recently published paper by V. Bergelson and D. B. Shapiro (Multiplicative subgroups of finite index in a ring, Proc. Amer. Math. Soc. 116 (1992), 885–896). Their proof is based on the amenability of abelian groups and a simple version of Ramsey's Theorem.

REFERENCES

- 1. P. Berrizbeitia, Additive properties of multiplicative subgroups of finite index in fields, Proc. Amer. Math. Soc. 112 (1991), 365-369.
- 2. R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, Wiley, New York, 1980.
- 3. D. B. Leep and D. B. Shapiro, Multiplicative subgroups of index three in a field, Proc. Amer. Math. Soc. 105 (1989), 802-807.
- 4. R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983.

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Federal Republic of Germany

E-mail address: turnwald@mailserv.zdv.uni-tuebingen.de