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ABSTRACT. If G is a subgroup of finite index n in the multiplicative group of
a division ring F then G — G = F or |F| < (n— 1)* + 4n. For infinite F
this is derived from the Hales-Jewett theorem. If |F|> (n— 1)2 and -1 isa
sum of elements of G then every element of F has this property; the bound
(n — 1)? is optimal for infinitely many n .

INTRODUCTION

It is well known that every nonzero element of a finite field F is a sum of
two nonzero nth powers if g = |F| is sufficiently large. Since F* is cyclic,
this is equivalent to the statement that, for every positive integer n, G+ G D
F* holds if G is a subgroup of index n of F* provided g > go(n). Leep
and Shapiro gave a proof for n = 3 which also works for infinite fields; they
conjectured that G+ G = F holds for n = 5 if F is an infinite field [3].

. Recently, Berrizbeitia proved that G—G = F if char F = 0 or char F > py(n).
(G— G means {g — &: &1, & € G}.) Thus, in particular, G+ G =F if n
is odd and charF = 0. (Note that —1 = (-1)" € G.) The proof in [1] is
based on Gallai’s theorem (cf. 1.2) which does not give (reasonable) bounds for
po(n). Employing the Hales-Jewett theorem, a modification of Berrizbeitia’s
proof allows us to prove the following result for infinite F .

Theorem 1. Let F be a division ring and G be a subgroup of F* with finite
index n. If |[F| > (n—1)*+4n then G- G = F; if, in addition, n is odd then
G+G=F.

Thus G— G = F holds if |F| > n* and |F| > 2. Choosing F = F, and
G = F; shows that |F| > (n — 1) is not sufficient if n — 1 is a prime. A
more elaborate example shows that, for infinitely many n, |F| > (n+ 1)? is
not sufficient (see Proposition 1.6).

The notation of Theorem 1 will be kept throughout the paper except in Corol-
lary 1.2. N denotes the set of positive integers. For every k € N we put
Ge={&1+ +8:8,---, 8 € G} and S = G;U---UGy . Let S=Uk21Sk.
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Theorem 2. If |F|> (n—1)? and —1€ S then S=F.

! Remark 2.3 shows that the bound for |F| is optimal for infinitely many
n. The proof is similar to the proof given by Leep and Shapiro for infinite F
[3, Lemma 1]. The following theorem refines the results of §2 in [1].

Theorem 3. (i) If GC G — G then S = Gy forall k e N.
(i1) Sy C Sy41 forevery k e N; S =Sk iff Sk =S.
(ili) Syp1 =S.

(iv)If -1 ¢ S then n isevenand S,;, =S.

The examples given in Remark 2.5 show that the bounds in (iii) and (iv) are
optimal for infinitely many 7.

1. RESULTS CONCERNING G- G AND G+ G

1.1. Theorem (Hales-Jewett). For all m,r € N there exists N(m,r) € N
such that, for every N € N with N > N(m, r), every function f defined on
{0, ..., m}? with at most r values is constant on some line.

(4 line is a set of the form {(ki, ..., kn): kj =kj if j € Jo and kj, = k;, if
J1, J» € L1} for suitable disjoint Jy, J; with {1,...,N}=JoUJ,, J) # @,
and suitable kj’. €{0,...,m} for jeJp.)

For a proof we refer to [2]; note that ¢ and 0 have to be interchanged in the
definition of x;;, ys; on p. 37 in [2].

1.2. Corollary. Let S’ be a finite subset of a commutative semigroup S. Then
for every mapping g from S into some finite set there exist s € S and d € N
such that g is constant on {s+ds':s' € S'}.

Proof. We may assume S’ = {sp, ..., Sm} with m > 1. The assertion follows
by applying 1.1 to f(ky, ..., ky) = g(zy:,skj) (0 < kj < m) for suitably
large N.

Gallai’s theorem is the special case S = R™ (cf. [2, p. 38]) or S = Nf' (as
used in [1]). Van der Waerden’s theorem on arithmetic progressions is obtained
for § =N or § = Nj. Corollary 1.2 is not required in the sequel.

1.3. Proposition. Let F be an infinite division ring and G be a subgroup of F*

of finite index n. Then for arbitrary x, ..., Xm € F* there exists ¢ € F* such
that 1 +cx, €G for 1 <k<m.

Proof. For every N € N there exist ¢, ..., cy € F such that Zjej cj #0 for
every nonempty J C {1,..., N}. (Inductively, ¢, can be chosen such that
Yjesci#0 forall JC{l,...,k}.) Nowlet N=N(m,n+1) (according
to Theorem 1.1), set xo = 0, and set f(k;,..., ky) = (Z?’:, ¢jXy;)G (where
¢G = {cx:x € G}) for all k; € {0,..., m}. By Theorem 1.1 there exist
disjoint Jo, J; with {1,..., N} = JHLUJ;, J; # &, and kj’. € {0,...,m}

such that aG = (a + bx;)G for 1 < k < m, where a = 3, Cj Xk and
b =Y ;c; ¢cj- The assertion holds with ¢ = a~'b. (Note that a # 0 since
b#0 and x;, #0.)

"'Note that —1=p—1€ G, CS if p=charF >0.
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1.4. Proof of Theorem 1. If —1 ¢ G then G has index 2 in G(—1) and hence
n is even. Thus it remains to show G — G = F. If F is infinite then applying
Proposition 1.3 to any left diagonal of G yields a left diagonal x;, ..., x, of
G such that 1 + x, € G (and hence x,G C G- G) for 1 < k < n; thus
F CG-G. Nowlet F be finite. By Wedderburn’s theorem [4, 2.55] we have
F =F, for suitable g. Thus F* is cyclicand G = {x": x € F*}. It is well
known that the number N of solutions (x, y) € F x F of x"—y" = ¢ satisfies
IN—g|<(n-12/q if c€ F* [4,6.37]. Let g = (n—1)*+d with d > 4n. If
n>1 then (n—1)2+(n-1)"2(d-2n) > /g and thus N > g—(n—-1)2,/g > 2n.
If n=1 then N =g > 4. Since the number of solutions with x =0 or y =0
is at most 2n, this shows that ce G- G.

1.5. Remark. If n =2 then G— G = F unless |F| € {3, 5} in which case
G-G=F\{1,-1}. If n=3 then G- G =F unless |F| € {4,7, 13, 16}.
The exceptional cases are G — G = {0} for |F|=4, G- G ={0, 2, -2} for
|F|=7,and G- G = F\G for |F| € {13, 16}.

By using Theorem 1 and the fact that n divides |F|— 1 it only remains to
check three cases for n = 2 and six cases for » = 3. We omit the details. A
self-contained proof of (the first part of) the assertion for n = 3 can be found
in [3].

1.6. Proposition. There are infinitely many n such that |F| = (n + 1)? and
G-G#F.

Proof. Let p > 3 be a prime such that —3 is a square mod p . By the quadratic
reciprocity law this holds for every prime p = 1 (mod 12) and by Dirichlet’s
theorem there exist infinitely many such p. Let F = F, and G = {x €
F:xP*! =1} ;then G hasindex n=p—1 in F*. Assume that -1 G- G,
i.e., there exists x € F* with xP*! = (x — 1)?*! = 1. Taking into account that
(x=1)? = xP -1 thisyields (x~'=1)(x—1)=1. Hence x*—x+1 =0 which
gives x = (1 +a)/2, where a?* = —3. By assumption we have a € F, ; hence
x € F, and xP~! = 1. From x?*! =1 and x?> - x + 1 = 0 we thus deduce
x =2 and a = 3. Clearly, this is impossible.

1.7. Remark. If |F| is finite then in Theorem 1 one gets G+ G O F*. This is
proved by an obvious modification of the proof of G-G=F. If G+ G D F*
then G+ G = F holds iff -1 € G, i.e., iff (=1)IFI=D/n =1,

For infinite F the situation is different since G = {2"%: k = 0(mod%);
a,beN;a,bodd} is a subgroup of (even) index n in Q* and G+ G is a
proper subset of Q* (by positivity). Hence for infinite F we cannot conclude
F*C G+ G. Wedohave G C G+ G, however, since G C G — G (and hence
some element of G belongs to G+ G).

1.8. Remark. Let (x) denote the statement (GNZ)—(GNZ) = Z. The following
examples show that () holds in several cases but does not hold in general (for
F=Q).

(i) Let p be prime. Then G = {p*¢: k,a,beZ,a=b# 0(modp)} isa
subgroup of finite index of Q* (cf. Remark 2.5). Clearly, x € GNZ implies
x =0, 1 (modp) and hence (x) does not hold if p > 3.

(i) G ={(-2)%9'¢: k,l € Z;a,b € N with (ab, 6) = 1} has index 4 in
Q*. Note that ZC {1, -1, 3, —=3}:(GNZ). Hence (x) holds since 1 =5-4,
3=7-4,and 4,5,7€eGNZ.
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(iil) G = {1, prime P**: kp € Z, k, = 0 for large p, Yk, even} has index 4
in Q*. For every prime p, {1, -1, p, —p} is a diagonal of G. It is, however,
easy to see that there exists no finite set M CZ with ZC M -(GNZ). In order
to prove (x) it is sufficent to show that (GNZ) — (GNZ) contains 1 and all
primes p. Now note that 1 =10-9, 2=6—-4,and 2j -1 = j2—(j—1)2
(for j>1).

(iv) Choose m € N and c, € Z (for every prime p), where ¢, = 0 for
large p. Then G = {1, yrimes?**: kp € Z, k, = 0 for large p, Y ¢k, =
0(modm)} hasindex < m. Consider nonnegative integers /, such that /, =0
for large p. Set k, = m if ¢, #0, [, = 0; set k, = 0 in all other cases. It
is then easy to see that [[p% and [][p* — [[p» both belong to GNZ which
proves (x) since —1€ GNZ.

2. RESULTS CONCERNING Gy, Si, AND S

2.1. Proposition. S+ S C S and S* = S\{0} is a group.

Proof. Obviously, S+S C S and S-S CS. If x € F* then x” € G
for some m € N since otherwise all cosets xXG (k € Z) are distinct. Thus
xl=xmlx—meS if xeS*.

2.2. Proof of Theorem 2. Let —1 € S and assume that there exists x € F\S.
The cosets (a+x)G with a € GU{0} C S are distinct since a+x = (a; +x)a,
with a, a;, a; € S yields x(a; — 1) = a — aja; € S and hence (by Proposition
2.1) a—-1=0, a =a;. Moreover, a+x # 0 and (a + x)G # G. Hence
|G|+2<n and |F|=n|G|+1< (n-1)2.

2.3. Remark. Let F =F; and G=F;. Then n=q+1 and -1€SCF, #
F . Since |F| = (n— 1)2, this shows that the bound in Theorem 2 is optimal
for infinitely many ».

2.4. Proof of Theorem 3. (i) Some element of G belongs to G + G and thus
G C G+ G. Inductively, Sy C G, for all £ and hence S; = Gy .

(ii) This is evident from the definitions.

(iii) For every k € N, S is a union of cosets of G possibly together with
{0} . Thus the assertion follows from (ii).

(iv) n is even since —1 ¢ G (cf. Proof 1.4). We have 0 ¢ S since
otherwise 0 € G, for some k > 2 and hence —1 € G,_; C S. Thus (by 2.1)
S is a subgroup of F*. Since G < S # F*, we obtain (S: G) < n/2 and thus
(ii) yields S,/, =S (since each Sy is a union of cosets of G).

2.5. Remark. 1t is easy to see that G C G — G is equivalentto G C G+ G.
According to Theorem 1, the hypothesis G C G — G may be omitted in (i) if
|F| > (n—1)*+4n. Choosing G = {1} shows that some additional assumption
is required in general.

Now let F = Q and define G as in Remark 1.8(i). Note that G has index
p—1and 1,...,p—1 isadiagonal. If 1 <k <p then, putting /=p—-1—-k
and Gy = {0}, wehave k =(1-Ilp)+k—-1+Ilpe G+ Gy_1 +G; = Gp_;.
Hence F* C Gp,—; and S = F. It is easy to see that 0 ¢ G,_; and thus,
since Sy = Gy forall k, S,_; #S. Consequently, the index n + 1 in (iii) is
optimal if n + 1 is a prime (cf. [1, §3]). Since G contains negative elements
(e.g., 1 — p), the subgroup G, of positive elements of G has index 2 in G
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and hence (F*:G;) = 2(p—1). We have p -1 ¢ S,_, since otherwise
O0=@p-1)+(1-p)eS,—1 = G,_;. Since every positive integer is a sum of
elements of any given subgroup, this shows that the index 7 in (iv) is optimal
if n=2(p—-1) for some prime p.

2.6. Remark. In Proposition 2.1(b) of [1] it is stated that —1 € S implies
Sp+1 = F. (The notation k x G, P,, P in [1] corresponds to Gy, Sy, S
used in this paper.) This is correct if F is infinite (cf. Theorem 2) but may
fail for finite fields (cf. Remark 2.3). (In [1] a result is quoted from [3] without
the hypothesis on |F| made there.) Theorem 3(iv) improves the second part of
Proposition 2.1(b) of [1]; thus the title of §3 in [1] is misleading.

2.7. Remark. Let k > 1. It is easy to see that 0 € G, holds iff -1 € Gy_, .
If -1€Gy_; and G—G=F then F C G+ Gy_, = G (cf. [1, 1.2]). Thus
the following three statements are equivalent if G~ G=F: G, =F, 0 € Gy,
—1 € Gy_, ; moreover, G, = S; (by Theorem 3(i)).

NOTE ADDED IN PROOF

For infinite F Theorem 1 is a special case of the results in a recently pub-
lished paper by V. Bergelson and D. B. Shapiro (Multiplicative subgroups of
finite index in a ring, Proc. Amer. Math. Soc. 116 (1992), 885-896). Their
proof is based on the amenability of abelian groups and a simple version of
Ramsey’s Theorem.
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