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Abstract. If G is a subgroup of finite index n in the multiplicative group of

a division ring F then G - G = F or \F\ < (n - l)4 + 4n . For infinite F

this is derived from the Hales-Jewett theorem. If \F\ > (n - l)2 and -1 is a

sum of elements of G then every element of F has this property; the bound

(n - 1 )2 is optimal for infinitely many n .

Introduction

It is well known that every nonzero element of a finite field F is a sum of

two nonzero «th powers if q = \F\ is sufficiently large. Since F* is cyclic,

this is equivalent to the statement that, for every positive integer n , G + G D

F* holds if G is a subgroup of index n of F* provided q > qo(n). Leep

and Shapiro gave a proof for n — 3 which also works for infinite fields; they

conjectured that G + G = F holds for n - 5 if F is an infinite field [3].
. Recently, Berrizbeitia proved that G-G - F if charT7 = 0 or charT7 > po(n).

(G - G means {gx - gi: gx, g2 £ G) .) Thus, in particular, G + G - F if n

is odd and charF = 0. (Note that -1 = (-1)" £ G.) The proof in [1] is
based on Gallai's theorem (cf. 1.2) which does not give (reasonable) bounds for

Po(n). Employing the Hales-Jewett theorem, a modification of Berrizbeitia's
proof allows us to prove the following result for infinite F .

Theorem 1. Let F be a division ring and G be a subgroup of F* with finite

index n . If \F\ > (n - l)4 + 4n then G- G = F; if, in addition, n is odd then
G+G=F.

Thus G-G = F holds if \F\ > nA and \F\ > 2. Choosing F = Fp2 and

G = F* shows that \F\ > (n - I)2 is not sufficient if" « — 1 is a prime. A

more elaborate example shows that, for infinitely many n, \F\ > (n + I)2 is

not sufficient (see Proposition 1.6).

The notation of Theorem 1 will be kept throughout the paper except in Corol-

lary 1.2. N denotes the set of positive integers. For every k £ N we put

Gk = {gi + --- + gk'-gi,---,gk£G} and Sk = GxU---uGk . Let S = \Jk>lSk.
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Theorem 2. If \F\ > (n - \)2 and -1 e S then S = F.

1 Remark 2.3 shows that the bound for \F\ is optimal for infinitely many

n . The proof is similar to the proof given by Leep and Shapiro for infinite F

[3, Lemma 1]. The following theorem refines the results of §2 in [1].

Theorem 3. (i) If G C G - G then Sk = Gk for all A: e N.
(ii) Sk C Sk+X for every k£N; Sk = Sk+x iff Sk = S.
(iii) Sn+x=S.
(iv) If -1 ^ S then n is even and Sn/2 — S.

The examples given in Remark 2.5 show that the bounds in (iii) and (iv) are

optimal for infinitely many n .

1. Results concerning G-G and G + G

1.1. Theorem (Hales-Jewett). For all m, r £ N there exists N(m, r) £ N

such that, for every N £ N with N > N(m, r), every function f defined on

{0, ... , m}N with at most r values is constant on some line.

(A line is a set of the form {(kx, ... , kff): kj = k'j if j £ Jo and fc/, = kj2 if
h , h € J\) for suitable disjoint J0, Jx with {I, ... , N} = J0U Jx, Jx ^ 0,
and suitable k'j £ {0,... , m} for j £ Jo.)

For a proof we refer to [2]; note that t and 0 have to be interchanged in the

definition of Xjj, ySj on p. 37 in [2].

1.2. Corollary. Let S' be a finite subset of a commutative semigroup S. Then

for every mapping g from S into some finite set there exist s £ S and d £ N

such that g is constant on {s + ds': s' £ S'}.

Proof. We may assume S' = {sq , ■ ■ ■ , sm} with m > 1 . The assertion follows

by applying 1.1 to f(kx, ... ,kN) = g{T!J=xskj) (° < kj < m) for suitably
large N.

Gallai's theorem is the special case S = Rm (cf. [2, p. 38]) or S = N™ (as

used in [1]). Van der Waerden's theorem on arithmetic progressions is obtained

for S = N or S = N0 . Corollary 1.2 is not required in the sequel.

1.3. Proposition. Let F be an infinite division ring and G be a subgroup of F*

of finite index n . Then for arbitrary xx, ... , xm £ F* there exists c £ F* such

that 1 + cxk £ G for 1 < k < m .

Proof. For every N £~N there exist cx, ... , Cn £ F such that ^2j€J Cj ̂  0 for

every nonempty J C {I, ... , N} . (Inductively, ck can be chosen such that

E/€y ^ ^0 for all J C {1, ... , k} .) Now let JV = N(m, n + 1) (according

to Theorem 1.1), set x0 = 0, and set f(kx, ... , /c^) = (]C/=i cjXkj)G (where

cG = {ex: x £ G}) for all kj £ {0, ... , m]. By Theorem 1.1 there exist
disjoint J0 , Jx with {1, ... , N} = J0 U Jx , Jx ^ 0 , and k'j £ {0, ... , m}

such that aG = (a + bxk)G for 1 < k < m, where a = Y,jej0CjXk> and

b = ]C/ey, c) ■ The assertion holds with c = a~xb. (Note that a ^ 0 since

b^O and xk # 0.)

1 Note that -1 = p - 1 € Gp_x CS if p = charF > 0 .
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1.4. Proof of Theorem 1. If -1 £ G then G has index 2 in C7(-l) and hence
n is even. Thus it remains to show G - G = F . If F is infinite then applying

Proposition 1.3 to any left diagonal of G yields a left diagonal xx, ... , xn of

G such that 1 + xk £ G (and hence xkG C G - G) for 1 < k < n; thus
F CG - G. Now let F be finite. By Wedderburn's theorem [4, 2.55] we have
F = Fq for suitable q . Thus F* is cyclic and G = {xn: x £ F*} . It is well
known that the number N of solutions (x, y) £ F x F of xn -y" = c satisfies

\N-q\ <(n-l)2Jq if c £ F* [4,6.37]. Let q = (n-l)4 + d with d > 4n . If
n > 1 then (n-l)2 + (n-l)~2(d-2n) > Jq and thus N > q-(n-l)2^/q > 2n .
If n - 1 then N = q >4. Since the number of solutions with x = 0 or y = 0

is at most 2n , this shows that c £ G - G.

1.5. Remark. If n = 2 then G - G = F unless |F| €{3,5} in which case
G-G = F\{1, -1}. If « = 3 then G-G = F unless |F| e {4, 7, 13, 16}.
The exceptional cases are G - G = {0} for \F\ = 4, G - G = {0, 2, -2} for
|F| = 7,and <J - G = 7^(7 for |F|e{13, 16}.

By using Theorem 1 and the fact that n divides |.F| - 1 it only remains to

check three cases for n = 2 and six cases for n = 3. We omit the details. A

self-contained proof of (the first part of) the assertion for n = 3 can be found

in [3].

1.6. Proposition. There are infinitely many n such that \F\ = (n + I)2 and
G-G+F.

Proof. Let p > 3 be a prime such that -3 is a square mod p . By the quadratic
reciprocity law this holds for every prime p = 1 (mod 12) and by Dirichlet's
theorem there exist infinitely many such p. Let F = Fp2 and G = {x £

F: xp+l = 1} ; then G has index n = p - 1 in F*. Assume that -1 £ G - G,
i.e., there exists x £ F* with xp+l = (x - l)p+l = 1. Taking into account that

(x-l)p = xp-l this yields (x~l - l)(x - I) = 1. Hence x2-x+l =0 which

gives x = (1 + a)/2, where a2 = -3. By assumption we have a £¥p; hence

x £FP and xp~l = 1. From xp+l = 1 and x2 - x + 1 = 0 we thus deduce
x = 2 and a = 3 . Clearly, this is impossible.

1.7. Remark. If \F\ is finite then in Theorem 1 one gets G + G D F*. This is
proved by an obvious modification of the proof of G- G = F . If G + G 2 F*
then G + G = F holds iff -1 eC,i.e,iff (-l)(|f"l-1)/" = 1.

For infinite F the situation is different since G = {2kf: k = 0(modf);

a, b £ N; a, bodd} is a subgroup of (even) index n in Q* and G + G is a

proper subset of Q* (by positivity). Hence for infinite F we cannot conclude

F* Q G + G. We do have G c G + G, however, since G c G - G (and hence

some element of G belongs to G + G).

1.8. Remark. Let (*) denote the statement (GnZ)-(GnZ) = Z. The following

examples show that (*) holds in several cases but does not hold in general (for
F = Q).

(i) Let p be prime. Then G = {pkf:k,a,b£Z,a = b^ 0(mod/?)} is a
subgroup of finite index of Q* (cf. Remark 2.5). Clearly, xgGnZ implies

x = 0, 1 (mod/?) and hence (*) does not hold if p > 3.
(ii) G = {(-2)*9'§: fc, / £Z;a,b € N with (a/5, 6) = 1} has index 4 in

Q*. Note that ZC {1, -1, 3, -3}-(C7nZ). Hence (*) holds since 1 = 5-4,
3 = 7-4, and 4,5,7eC7nZ.
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(iii) G = {T[p prime Pkp '■ kp £ Z, kp = 0 for large p,Y.K even} has index 4

in Q*. For every prime p , {1, -1, p, -p} is a diagonal of G. It is, however,

easy to see that there exists no finite set M CZ with Z c Af-(GnZ). In order

to prove (*) it is sufficent to show that (GflZ) - (G n Z) contains 1 and all

primes p . Now note that 1 = 10-9, 2 = 6-4, and 2j - 1 = j2 - (j - I)2

(for j>l).
(iv) Choose m £ N and cp £ Z (for every prime p), where cp = 0 for

large p. Then G = {± Y[p pTimesPkp: kp £Z, kp = 0 for large p, £t>/cp =

0(modw)} has index < m . Consider nonnegative integers /p such that lp = 0

for large />. Set kp = m if cp ^ 0, lp = 0; set /cp = 0 in all other cases. It

is then easy to see that YlPkp an^ riP^" ~~ YiPlp D°th belong to GnZ which
proves (*) since -1 € GnZ.

2. Results concerning Gk, Sk , and S

2.1. Proposition. S + S CS and S* = S\{0} is a group.

Proof. Obviously, S + S C S and S • S C S. If x £ F* then x* 6 G
for some w £ N since otherwise all cosets xkG  (k £ Z) are distinct. Thus
x-\ =xm-\x-m gS  if X£S".

2.2. Proof of Theorem 2. Let -1 65 and assume that there exists x £ F\S.

The cosets (a + x)G with a e Gu{0} C 5 are distinct since a + x = (#i +x)a2

with <2, «i, a2 £ S yields x(a2 - I) = a - axa2 £ S and hence (by Proposition

2.1) #2 - 1 = 0, a = ai . Moreover, a + x ^ 0 and (a + x)G ^ G. Hence

\G\ + 2<n and \F\ = n\G\ + 1 < (n - l)2.

2.3. Remark. Let 7^ = F?2 and G = F*. Then « = q + 1 and -1 £S CFq^

F. Since 17^1 = (n - I)2, this shows that the bound in Theorem 2 is optimal
for infinitely many n .

2.4. Proof of Theorem 3. (i) Some element of G belongs to G + G and thus

G C G + G. Inductively, Sk c Gk for all k and hence Sk — Gk.
(ii) This is evident from the definitions.

(iii) For every k £ N, Sk is a union of cosets of G possibly together with

{0} . Thus the assertion follows from (ii).

(iv) n is even since -1 ^ G (cf. Proof 1.4). We have 0^5 since

otherwise 0 6 Gk for some k > 2 and hence -1 £ Gk_x C S\ Thus (by 2.1)
S is a subgroup of F*. Since G < S ^ F*, we obtain (5: G) < «/2 and thus

(ii) yields Sn/2 = S (since each S^ is a union of cosets of G).

2.5. Remark. It is easy to see that G c G - G is equivalent to G C G + G.

According to Theorem 1, the hypothesis G c G - G may be omitted in (i) if

l-FI > («- l)4 + 4« . Choosing G = {1} shows that some additional assumption

is required in general.

Now let F = Q and define G as in Remark 1.8(i). Note that G has index

p - 1 and I,... , p — l is a diagonal. If 1 < k < p then, putting / = p - 1 - k

and Go = {0} , we have k = (I - lp) + k - I + lp £ G + Gk_x + G/ = Gp_i .
Hence F* C Gp_i and S = F. It is easy to see that 0 £ Gp_i and thus,

since S^ = Gj. for all k , Sp-X ̂  S\ Consequently, the index n + 1 in (iii) is

optimal if n + 1 is a prime (cf. [1, §3]). Since G contains negative elements

(e.g.,  I - p), the subgroup G+ of positive elements of G has index 2 in G
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and hence (F*: G+) = 2(p -I). We have p - 1 $ Sp-2 since otherwise

0 = (p - 1) + (1 - p) £ Sp^x = Gp-\ . Since every positive integer is a sum of

elements of any given subgroup, this shows that the index | in (iv) is optimal

if n = 2(p - 1) for some prime p .

2.6. Remark. In Proposition 2.1(b) of [1] it is stated that -1 £ S implies
Sn+X - F. (The notation k x G, Pk , P in [1] corresponds to Gk , Sk , S

used in this paper.) This is correct if F is infinite (cf. Theorem 2) but may

fail for finite fields (cf. Remark 2.3). (In [1] a result is quoted from [3] without

the hypothesis on \F\ made there.) Theorem 3(iv) improves the second part of

Proposition 2.1(b) of [1]; thus the title of §3 in [1] is misleading.

2.7. Remark. Let k > 1 . It is easy to see that 0 e Gk holds iff -1 e Gk^x .
If -1 £ Gfc_i and G-G = F then F c G + Gfc_i = Gk (cf. [1, 1.2]). Thus
the following three statements are equivalent if G - G = F': Gk = F, 0 £ Gk,

-1 e G*_i; moreover, Gk — Sk (by Theorem 3(i)).

Note added in proof

For infinite F Theorem 1 is a special case of the results in a recently pub-

lished paper by V. Bergelson and D. B. Shapiro (Multiplicative subgroups of

finite index in a ring, Proc. Amer. Math. Soc. 116 (1992), 885-896). Their
proof is based on the amenability of abelian groups and a simple version of

Ramsey's Theorem.
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