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Abstract.  R" is the union of countably many sets, none containing two points

a rational distance apart.

0. Introduction

The aim of this paper is to prove that it is possible to color the points of R" ,

the «-dimensional Euclidean space, with countably many colors such that if

two points are a rational distance apart then they get different colors. This was
conjectured by Erdos. If G„ denotes the graph on R" where points a rational
distance apart are joined, then the result can be reformulated as the statement

that the chromatic number of G„ is countable. Erdos observed that the result

for G2 can be deduced from an earlier theorem by him and Hajnal [4], namely,

that a graph is countably chromatic, unless it contains K(2, ojx) , the complete

bipartite graph on classes of size 2 and <Wi , respectively. It is easy to see that
G2 does not contain this latter graph. One might be tempted to think that a
similar argument works in general. It is, however, fairly easy to find even a

K(co, 2W) in Gi: take a line, a point p outside it, and let all points on the line,

at rational distance from p, constitute one class. The other class will be the
points of a full circle, perpendicular to the line and containing p. And even

a graph omitting K(co, co) can be uncountably chromatic by an old result of
Erdos and Hajnal [4].

One of the early instances of theorems producing "paradoxical" decompo-

sitions of Euclidean spaces can be found in [1], where Ceder showed that the

plane can be colored by countably many colors so that the three corners of an
equilateral triangle never get the same color. His clever proof "defines" the
coloring from a Hamel basis. Most other proofs, however, use a different tech-
nique. In order to show that R" possesses a certain coloring, one proves, by
transfinite induction on \X\, that every ICR" does. A prime example can be

found in [2]. In another such example, see [6], we prove that R3 can be colored

with countably many colors with no monochromatic regular tetrahedron. This

has recently been extended to higher dimensions by J. Schmerl [7].
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Our present proof is even more complicated. When coloring the points of a
certain set of transfinite induction, it may happen for a point x that there is

no color left, all possible colors having been used by the points already colored

which are at a rational distance from x . To overcome this difficulty, we assign

a set of colors to sets that occur as the points in rational distance form a certain

point. For technical reasons we need the more complicated notion of configu-

ration, an intersection of finitely many such sets. By transfinite induction we

assign color sets to configurations, along a well-selected well-ordering.

Notation. We use standard axiomatic set theory notation, for example, cardinals

are identified with initial ordinals, d denotes Euclidean distance.

1. Configurations

If a, fi are real numbers, let a = B mean that a- B e Q. For the rest of

the proof, we fix n .

Definition. A set F C R" is a configuration, if F = 0, R", {a} for some
a e R", or there exist distinct points ai, ... , at e Rn and reals ai, ... , at
such that

F = {xeRn: d2(x, at) = at (all 1 < j < t)}.

Definition. If a e R" , then G(a) = {x eRn: d2(x, a) e Q} . This is clearly a
configuration.

Lemma 1.1. There are continuum many configurations.

Proof. As every configuration is determined by a finite sequence of points and
reals, there are at most continuum many of them. And the number of singletons
is already continuum.

Lemma 1.2. The intersection of two configurations is again a configuration.

Proof. Immediate from the definition.

Lemma 1.3. If Fi 3 F2 are configurations, \F2\ > 2, and Fi is determined

by a\, ... ,at and a\,... ,at, then there exist points bi, ... , bs and reals

Bx, ... , Bs, such that F2 is determined by ax,... , at, bi, ... , bs and at, ...,

ott» Pi.fis •
Proof. Simply select b\, ... ,bs, Bx, ... , Bs determining F2 as in the def-

inition of configuration. If a, = bj and a, £ Bj, then we have conflicting
demands, so F2 = 0 .

Lemma 1.4. There is no strictly decreasing sequence Fo D ■■• D Fn+s of config-
urations.

Proof. Assume that R" = F0 D ■■■ D 7n+3, with |.F„+3| > 1. We can as-
sume, by Lemma 1.3, that there are sequences oq, ..., ao, ... , such that Ft

is determined by ao, ..., a^), ao, ... , a,(I) for some natural numbers 0 <

r(0) < • • • < t(n + 2). We can assume as well that ao = 0. Using scalar prod-
ucts, the congruences on distances can be written as x2 = ao, (x - aj)2 —

x2 - 2(x, af) + a2 = aj. Using the former congruence, the latter one can be

rewritten as (x ,af) = Bj for some Bj e R calculable from oq, aj, aj (j > 0).
As there is no strictly increasing sequence of vector subspaces of length n + 2 in
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R" , there is an i such that all vectors a;, t(i- I) < j < t(i), axe linear combi-

nations of the vectors ak , k < t(i - 1). If a,■ = \^Xkak , then the equation we

have for aj is Bj = (x, aj) = £4(*, ak) = \ZhRk , so, unless Bj ?£Y,hPk
in which case Fj = 0, all the equations defining 7, relative to those defining
F,_i can be omitted, i.e., F,_i = Fj.

Lemma 1.5. The intersection of arbitrarily many configurations is again a con-
figuration.

Proof. Let 9~ be a nonempty family of configurations. Select, as long as possi-
ble, Fo,... , Fs 6 &" such that the series of intersections 7b n- • -DF; is properly
decreasing. By Lemma 1.4, the procedure must stop after finitely many steps,

and then we get an intersection Fo n • ■ • D Fs, which is the intersection of all

members of &" and is a configuration by Lemma 1.2.

Lemma 1.6. For every ICR" there is a unique least configuration F D X.

Proof. Immediate from Lemma 1.5.

Definition. If Fi, F2 are configurations, (Ft, F2) is the least configuration F D
Fi,F2.

Definition. If F is a configuration, F± = {yeR": d2(x, y) e Q (all x e F)} .

As F1- = R" n f){G(x): x e F} , it is a configuration, by Lemma 1.5.

Lemma 1.7. If F is a configuration, then F nf1 is countable.

Proof. It is a set such that the square of the distance between any two points is
in Q, so it is necessarily countable.

2. Closed and nice sets

Definition. If X C R" and !F is a set of configurations, then (X, OF) is closed
if:

(2.1) \X\ + o> = \F\ + co;
(2.2) If F e 9~ is countable, then FQX;
(2.3) 0,Rne&;

(2.4) if x e X, then G(x) e $~;
(2.5) xeX iff {jc} e&;
(2.6) if F e &~, then F±, F n F-1 € 9~; and
(2.7) if F 0 !?~, then there exist finitely many subsets Fx, ... ,Ft of F and

supersets F1, ... , F* of F, all in &, such that, for all F', F" eF,
if F' CF C F" , then there are i, j with F' C F,, FJ Q F" .

Definition. A quadruple (X, 9~, X', &') is nice iflcTCR", 9~ c &'
are sets of configurations, (X, f?) is closed, and:

(2.8) \X'-X\ + co=\Sr'-F\ + (o;
(2.9) if F e 3r' is countable, then F C X';

(2.10) if x e X', then G(x) e &';
(2.11) xeX' iff {x}eSr';
(2.12) if F € 9~', then Fx, F n F1 e &'; and
(2.13) if Fx, F2 e ^' - &, then Fj n F2, (F,, F2) e ^'.
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Lemma 2.1. // (X, &, X', Sr') is nice, then (X', Sr') is closed.

Proof. We really only have to check (2.7) for (X1,3r'). If F £ &', then, in
particular, F £ ff, so there exist Fi, ... , Ft, Fx,... , Fs, as in (2.7). Let

Ft+i be a maximal subset of F in ^"'-y (exists, by Lemma 1.4). If now
F' CF, F' e &', then either F' eF, and then F' C F, for some I < i < t,
or F' € y - &, and if we let F" = (F', F,+1), then F" € y, so either
F" eSr, and again F' C F, for some 1 < i < t, or F" e &' - &, and then
F" = F+i by maximality, so F' C Fr+). A similar argument works for the

upper approximations.

Lemma 2.2. // X is a limit ordinal, {Xa: a < X}, {^a: a < X} are continu-

ous, increasing sequences such that (X, 9~, Xa, 5£) is nice for a < X, then

(X, 9~, Xx, &x) is nice, too.

Proof. (2.8) is an easy computation, using the assumption that the sequences are

continuous and increasing. Of the other clauses, only (2.13) needs explanation.

If Fi, F2 e Pi - y, then F., F2 e Fa - & for some a < X, so F, n F2,

(Fi,F2)e^ac9x-.

Lemma 2.3. If (X, F, X', 9~') is nice, k = \X' - X\ > \F' -9T\ > ©, then
there exist continuous, increasing sequences {Xa: a < k}, {J?£: a < k} such

that XK = X', 9K = FI, \Xa-X\<K, \Sra-Sr\<K  (a < k) , and

(2.14) (X, &, Xa, !?a) is nice (a<K);  and

(2.15) (Xa, &~a, Xa+i, S^+i) is nice (a<K).

Proof. Enumerate X' — X as {xa: a < k} and !?' -&~ as {Fa: a < k} . Let

(XQ, &a) be minimal such that Xa D {xp: B < a}, ^2 {F^: B < a}, and
(X,&~, Xa,&a) is nice. These sets exist, as we only have to close under the

algebraic operations described in (2.9)—(2.13). By a well-known Lowenheim-

Skolem type argument, in every structure with countably many finitary opera-
tions, for every subset Y of the ground set there is a set D Y of size \Y\ + a>

closed under the operations. As (Xa, !Fa) is closed, (Xa, Fa, Xa+i, «5£+i) is

nice.

3. Independent subsets

Definition.  [co]w = {A C co: \A\ = co} . AC* B iff A- B is finite.

Definition. A family {D,: i e 1} of subsets of a> is independent if

7>i n• ■ • nDin(co-Di+i)n---n(co-Ds)

is infinite for different members D\,... ,DS of the family.

Lemma 3.1. If Di, ..., Dk are independent subsets, a is a Boolean combina-

tion of the sets Di, ... , Dk_i, and DkDo is finite, then a = 0.

Proof, a can be written as ai U • • • U ov , where each o, is the intersection of
some Dj 's and some (co - Dj) 's. If Dk n o, is finite, then, by independence,
for some j, both Dj and (co - Dj) occur in cr,, so ot = 0.

Lemma 3.2 (folklore). There exists an independent family of size continuum.

Proof. It suffices to give an independent family on any other countable set; our

selection is J2", the set of all finite collections of rational intervals. If a e R,
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let
D(a) = {{/, ,...,/,}€ J?: a e /, U • ■ • U Is}.

If different real numbers ai, ... , as axe given, and 0 < i <s, then clearly there
are infinitely many sets of the form K = {/i,..., /,} such that /i U • • • U /,•

contains ax,..., at but excludes a,-+i, ... , a5, i.e., AT e 7>(ai)D• • • nZ>(a,)n

(j^-^aj+OJn.-.n^-DCa,)).

4. Colorings

Let <P be the set of all configurations. By Lemmas 1.1 and 3.2 there exists a
function tp: O —> [co]*" such that its range {<p(F): F e <P} is independent. Fix

such a (p for the rest of the proof.

Definition. If (X, F) is closed, then the pair (/, y/) of functions with /: X -»
co, y/:F ^ [co]a} is good if:

(4.1) if F, C F2) then y/(Fx) C ¥(F2);

(4.2) f(x)?ip(G(x))(xeX);
(4.3) each y/(F) is a Boolean combination of finitely many (p(Fi)(Fi e F);

and
(4.4) if yf(Fi) n • • • n y/(F) C* y/(Fx) U ■ • • u y/(F*), then F C F> for some

i, j ■

Lemma 4.1. // (X, F, X', F') is nice and (f, ip) is good with respect to

(X, F), then there exists a good extension (jf, ip') of it to (X', 9~') such
that:

(4.5) if F e&, xeFn(X'-X),then f'(x) e y/(F); and
(4.6) ifx,yeX'-X, x^y, d(x, y) e Q, then f'(x)?f'(y).

Proof. By transfinite induction on k = \X' - X\ + co.
If k = co, enumerate first &"' - & as {To, T\,...}. We are going to

define y'(T„) by induction on n , so that at every step Fn = Fu {To,..., 7„}

satisfies (4.1), (4.3), (4.4). Assume that <p'(To), ... , ip'(Tn-X) have already
been constructed. Let F, (I < i < t), Fj (1 < j < s) be finitely many
members of •F,-X such that if F € ^_i, F C 7„ , the F C F, for some 1 <
j < t, and, likewise, if F e F„-X, F D 7„ , then F D Fj for some I <j <s.
Such families exist, as (X, SF) is closed. By the inductive hypothesis on (4.1),

W'(Fi) Q <P'(FJ) whenever I < i < t, I < j < s. We need to select ip'(Tn)
such that ip'(Fi) C y/'(T„) C y/'(Fj) for all choices of i, j. We do this by
defining

v'(Tn) = C[{V'(FS) :l<j<s}n [(p(Tn) U \J{y/'(Fi): 1 < i < t}].

This choice obviously ensures (4.1) and (4.3).

We show by induction on n < co that S*~n satisfies (4.4) as well. Assume that
the statement is true for n-l, and

(4.7) y/'(Gx) n • • ■ n y/'(Gu) C* ip'(Gx) u • • • u y'(Gv)

for some Gx, ... ,GU, Gx, ... ,GV eFn. If T„ occurs on both the left-hand
side and the right-hand side, then the result is trivial, so assume first that T„
occurs on just the left-hand side, GU = T„. Then (4.7) can be rewritten as

(4.8) AnBD(<p(T„)UC)C* D
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where A = y/'(Gi) C\ ■■ ■ Dy/'(Gu-i), B = y/'(Fx) n • • • n <p'(Fs), C = y/'(Fi)\J

• • • U y/'(Ft), D = \p'(Gx) U • • • U y/'(Gv). (Notice that CCB.) A, B, C, and
Z> are Boolean combinations of tp values from Fn-i, so, by Lemma 3.1, as

(p(Tn) is independent from them, Af\BC* D holds, i.e.,

(4.9) y/'(Gi)n---ny/'(Gu-i)ny/'(Fx)n---ny/'(Fs)c* D.

By the inductive hypothesis, either G, c Gj for some i, j , or 7„ C F' c Gj,

and we are done.
A similar argument works if 7„ appears on the right-hand side of (4.7).

In order to define /', enumerate X' - X as {xo,Xi,...} . If the f'(xi) for
j < k have already been selected, we try to find a value for x = xk such that

f(x) * f(Xi) for i<k, f(x) $ y'(G(x)), but f(x) e n{^'(F,): 1 < i < t}
where F\,... ,Ft is a finite set of minimal elements of F containing x. Such

a family exists by (2.5) and (2.7). We can select f(x) unless f){y/'(Fi): 1 <
i < t} c* ip'(G(x)). But then, by (4.4), for some 1 < i < t, FtC G(x) holds,
so x e F,1-; therefore, x e F: niy1- C X, which by (2.6), Lemma 1.7, and (2.2)
is a contradiction.

If k > co, let Xa,Fa be given as in Lemma 2.3 for (X, F, X', F~'). By

transfinite recursion on a < k , let (fa, y/a) = (/, y) if a = 0, (fa+x, y/a+x)

extend (/„, y/a) according to (4.5) and (4.6), (fa, y/a) = (\J^<a fp , \Jfi<a y/p) if

a is a limit ordinal. We claim that f = \Jfa, w' = U Wa work. (4.5) is clear,

so assume that x, y e X' - X, x ^ y, d(x, y) e Q. If x, y e Xa+X - Xa

for some a < k , then f(x) # f(y) by assumption. If, however x e Xa,

y e Xa+X -Xa for some a < k , then f(x) & y/'(G(x)) and f(y) e y/'(G(x)),

so f(x) ^ f(y) again.

Theorem 4.2. There exists an f:Rn^co such that, if d(x, y) e Q and x ^ y,

then f(x) * f(y).
Proof. Apply Lemma 4.1 to (0, {0, R"} , R" , O), f = 0, and yi, where
y/(0) = (p(0) n (p(Rn) and v(R") = q>(es) U <p(R").

Theorem 4.3. If X CR" is uncountable, then there exists a Y C X, 171 = 1^1,
omitting rational distances.

Proof. The statement follows trivially from Theorem 4.2 if k = \X\ has un-
countable cofinality, for then one of the color classes has full cardinality in X.
Assume, therefore, that cf(jc) = co. Let F be a configuration such that it has

the property that \F n X\ = k but this does not hold for any proper subconfigu-

ration of F . Such an F exists by Lemma 1.4. If now x e F and x & FnF1-,
then F n G(x) is a proper subconfiguration, so \G(x) n X n F\ < k for all but
countably many x e X n F, and we may assume so for all. Decompose Xf\F
into a disjoint union X = {JXn, where \Xn\ = k„ , each k„ is an uncountable

regular cardinal, and ^k„ = k . By the trivial part of this present theorem,

we can assume that rational distances are omitted inside each X„ (by omitting
some of their points, if necessary). For every x e X„ there is a k < co such

that \G(x) n X n F\ < Kk . As k„ is uncountable and regular, we may assume,
by omitting more points, that the same k = k(n) < co works for every x e Xn,

and we may assume further that n < k(n). Letn(O) = 0, Y0 = X0. Select
«(1) = k(0), and then let Yx C X„^X) be a set of size k„i\) such that no point
in it is in rational distance from a point in Xo. This is possible, as by our con-
ditions, every point in Xq disqualifies < K„(i) points, and, as that cardinal is
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regular, only < k„(i) points must be left out together. Then let n(2) = k(n(l)),

select Y2 C Xn{2), etc. Our set will be T0 u Yx u • • • .

From Theorem 4.2 it is also easy to deduce that every set ICR" of pos-
itive outer measure has a subset of positive outer measure that omits rational

distances: one of the color classes must intersect X in positive outer measure.

We have, however, been unable to prove the existence of such a subset with the

same outer measure, even in the case n = 1. If X is Borel, a straightforward

transfinite selection gives this. We will return to this question in another paper.
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