
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 122, Number 1, September 1994

THE STRUCTURE OF MEASURABLE MAPPINGS
ON METRIC SPACES

ANDRZEJ WISNIEWSKI

(Communicated by Andrew Bruckner)

Abstract. The purpose of this paper is to investigate the conditions under

which every measurable mapping on a metric space X with the measure p is

a limit of a sequence of continuous mappings, with respect to the convergence

/¿-almost everywhere.

1. Introduction

It is well known that if / is a function on a finite interval which is measurable

with respect to the Lebesgue measure, then / is the limit almost everywhere

of a sequence of continuous functions (see, e.g., [4, Theorem 5, p. 104]). This

paper is devoted to the generalization of the above fact.

Let X and Y be metric spaces. Denote by *B(X) and 23(T) respectively
the Borel er-algebras on these spaces. Let p be a finite Borel measure on X.

By ,&ß(X) we shall denote the completion in the measure p of the a -algebra

<B(X). A mapping / from X into Y is called ¿/-measurable if it is measur-

able with respect to (*Bß(X), 53(T)). The simplest example of a //-measurable

mapping is a continuous mapping from X into Y.
In [3, p. 544] Gihman and Skorohod proved the theorem which shows the

connection between continuous and /¿-measurable mappings on Hubert spaces.

Namely, they proved that if X and Y are separable Hubert spaces and p is

a probability Borel measure on X, then for every //-measurable mapping /
from X into Y there exists a sequence of {f„} of continuous mappings from

X into Y such that fn-* f p-a.e.
In the present paper we shall consider the following problem: is the above

theorem of Gihman and Skorohod true for arbitrary metric spaces X and Y

and an arbitrary finite Borel measure p on XI
It is easy to see that in general such an extension of this theorem needs

not always be true, even under the additional assumption that X and Y axe

separable and complete metric spaces.
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For example, if X — [0, 1] with the usual metric and the Lebesgue measure
and Y = {0, 1} with the discrete metric, then only the constant functions 0 and

1 are continuous from X to Y, while the set of measurable functions consists

of all functions Xa > where A is a //-measurable set.

In this paper we shall give one of the affirmative answers of the stated prob-

lem. First we show that this problem has a positive solution if X is an arbitrary

metric space and Y — R is the real line (Theorem 1). Then we extend this re-
sult to the case where Y is a separable Banach space with the approximation

property (Theorem 2).

2. Main results

Theorem 1. Let p be a finite Borel measure on a metric space X. If f is a
p-measurable mapping from X into a real line R, then there exists a sequence

{/„} of continuous mappings from X into R such that fn^f p-a.e.

Proof. To prove the theorem it suffices to show that for any e > 0 and p > 0

there exists a continuous mapping g : X —> R such that

(1) p{x:\f(x)-g(x)\>e}<p.

Indeed, if this is true, then choosing the sequences e —► 0 and p —► 0 we

can construct a sequence of continuous mappings from X into R which is
convergent in the measure p to /, and from this sequence we may choose a

subsequence which is convergent to / //-almost everywhere.

Therefore, let e > 0 and p > 0 be fixed. We must construct a continuous

mapping g : X -* R which satisfies (1). From Lusin's theorem [6, Theorem

21.4] there exists a closed subset D of X such that p(X - D) < p and the

restriction of / to D is continuous. Denote by g this restriction, i.e., g — f\o ■
Thus g is a continuous mapping from D into R. Since D is a closed subset

of X, by virtue of Tietze's theorem [5, p. 115] we can extend the mapping

g to a mapping which is continuous on the whole space X. This means that

there is a continuous mapping g : X -> R such that

(2) {x:\f(x)-g(x)\>e}cX-D.

In fact, if the inclusion is not true, then there exists x £ D such that |/(x) -

g(x)\ > e. But on the set D the mappings / and g are equal. Hence f(x) =
g(x), which contradicts the above inequality.

From the inclusion (2) and the fact that p(X - D) < p we obtain (1). The

theorem is thus proved.

Now we prove the main result of this paper which shows that Theorem 1 is

true if the range of a mapping / is a separable Banach space with the approx-

imation property.
A Banach space Y is said to be a space with the approximation property

if for every compact subset K of Y and every e > 0 there exists a finite-

dimensional continuous linear operator T on Y such that \\Ty - y\\ < e for
any y £ K. It is easy to see that each Banach space with the Schauder basis
has the approximation property (see [1, p. 514]).

Theorem 2. Let p be a finite Borel measure on a metric space X, and let Y
be a separable Banach space with the approximation property.   If f is a p-
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measurable mapping from X into Y, then there exists a sequence {f„} of

continuous mappings from X into Y such that fn-* f p-a.e.

Proof. Similarly as in the proof of Theorem 1 it is enough to show that for any

e > 0 and p > 0 there exists a continuous mapping g : X -» Y such that

(3) p{x: \\f(x) - g(x)\\ >e}<p.

Let v denote a finite Borel measure on Y given by the formula v(B) =

p(f~x(B)) for every Borel subset B of Y. Since each finite Borel measure on

Y is tight (see [2, Theorem 1.4]), there exists a compact subset K of Y such

that v(Y -K)< p/2. Put K' = f~x(K). Then

(4) p(X - K') < p/2.

Now, since Y is a Banach space with the approximation property, there

exists a finite-dimensional operator T on Y such that \\y - Ty\\ < e/2 for any
y £ K. Hence

(5) ||/(x) - T(f(x))\\ < e/2   for any x £ K'.

It is well known that each finite-dimensional operator on T can be repre-

sented in the form Ty = £)£,, fkiy)yk , where fx,... , fmtY* (7* denotes
the dual space of Y ) and {yx, ... , ym} is a basis of T(y) with ||yfc|| = 1 for
k = l,... ,m (see[l,p. 492]).

Taking into account this representation, we can write inequality (5) in the
form

f(x)-J2fk(f(x))yk
k=l

< e/2   for any x £ K'.

Hence, using (4), we infer that

(6) p < x: /(*)-£ A(/"(*))y*
k=l

>e/2}< p(X - K') < p/2.

For every k — 1, ... , m the function gk : X -* R defined by the formula

Sk(x) = fk(f(x)) isa //-measurable mapping from X into R. Then, in view of

Theorem 1, we see that for every k = I, ... , m there exists a sequence {g„ '}

of continuous mappings from X into R such that gnk^ -» gk (as n -» oo )

p-a.e.

Hence for every k = 1,... , m there exists nk > 0 such that

(7) p{x: \gk(x) - gnkk](x)\ > e/2m} < p/2m.

Let g(x) = Y,k=i SnkkHx)yk . Then g is a continuous mapping from X into
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Y. Moreover, from (6) and (7) we have

p{x: \\f(x) - g(x)\\ >e} = /Jx: f(x)-Y.S(nhx)yk
k=i

> e

< P \ x

+ p\x:

f(x)-Ytfk(f(x))yk
k=i

>e/2

E/ti/w^-E^'w^
k=l k=l

>e/2

m

<p/2 + Y,ß{x: \gk(x) - gnf>(x)\ > e/2m)
k=l

< p/2 + m • p/2m = p.

This completes the proof of the theorem.
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