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ON THE NUMBER OF OPERATIONS IN A CLONE

JOEL BERMAN AND ANDRZEJ KISIELEWICZ

(Communicated by Jeffry N. Kahn)

Abstract. A clone C on a set A is a set of operations on A containing the

projection operations and closed under composition. A combinatorial invariant

of a clone is its /^-sequence {pn{C), px(C), ...), where pn{C) is the number

of essentially n-ary operations in C. We investigate the links between this

invariant and structural properties of clones. It has been conjectured that the

pn -sequence of a clone on a finite set is either eventually strictly increasing or is

bounded above by a finite constant. We verify this conjecture for a large family

of clones. A special role in our work is played by totally symmetric operations

and totally symmetric clones. We show that every totally symmetric clone on a

finite set has a bounded pn -sequence and that it is decidable if a clone is totally

symmetric.

1. Introduction

A clone on a nonvoid set A is a set of operations on A that contains all

the projection operations and is closed under composition. Clones are common
structures that appear in various contexts in discrete mathematics and alge-
bra, e.g., the survey paper by Rosenberg [R] and the monograph by Szendrei

[S] give some indication of the role of clones within these areas. An opera-

tion fixx, ..., xn) on A is said to depend on the variable x¡ if there exist

ax, ... , an, b in A such that

fiax, ... , an) / f(ax, ... , a,_i, b, ai+x, ... , a„).

An /i-ary operation / is called essentially n-ary (or essential) if it depends
on all n of its variables. For a clone C we denote by E„(C) the set of all

essentially n-ary operations in C. By EoiC) we denote the set of constant

unary operations in C. We follow the notation in [G] and write p„iC) for
\E„(C)\, and call the sequence of cardinals (pn(C)) the p„-sequence of the
clone C. The essential operations in a clone determine the entire clone since
any other operation in the clone can be obtained by adding one or more fictitious

(i.e., not essential) variables to an essential operation. The p„-sequence of a
clone may therefore be viewed as an indication of the size of the clone. Our
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paper investigates a general conjecture that the pn-sequence of a clone on a finite

set is eventually strictly increasing or is bounded above by a finite constant.

An algebra A = (A, F) consists of a nonvoid set A, called the universe

of A, together with a set F of operations on A. The smallest clone on A
that contains F is denoted CloA and an element of CloA is called a term

operation of A. We write En(A) for the essentially «-ary term operations of
the algebra A and we denote |£n(A)| by pn(A). Note that every clone C on

a set A is the clone of all term operations of an algebra with universe A, for

example, C = Clo(A, C). So without loss of generality we can restrict ourselves

to clones of algebras.
The sequence pn(A) determines many algebraic properties of the algebra A.

In particular, it determines the cardinality of the free algebras in the equational

class V generated by the algebra A. Finitely generated algebras in V are all

finite if and only if pn(A) is finite for all n . In this case the equational class

V and the algebra A are called locally finite. Of course, every finite algebra
(i.e., with finite universe) is locally finite. An algebra A is idempotent if every
subalgebra of A generated by a single element is a one-element algebra, and for

nontrivial algebras this is equivalent to the condition that Po = 0 and px = 1.
For these and other less straightforward connections between the numerical

properties of /?„-sequences and algebraic properties of algebras consult [Bl,
HM, T].

The following conjecture is presented in [GP]: Let A be an idempotent alge-

bra that is different from the idempotent reduct of a Boolean group (Example

2.2, below). Then there exists an integer m such that pn(A) < /?„+<. (A) when-

ever n > m and 1 < p„iA) < co. This conjecture was settled in the affirmative

in [Ki, Kil]. In particular, if an idempotent algebra A is locally finite, then

there exists an integer m such that for all n > m,p„(A) < pn+x(A) or for

all n > m, pn(A) < 1, i.e., the pn-secpience of A is either eventually strictly
increasing or is eventually bounded by the constant 1. This result in [Ki] and

some other results concerning finite algebras prompted the following conjecture

in [B]: If A = (A, F) is a finite algebra, then the sequence pn(A) is either

eventually strictly increasing or is bounded above by a finite constant. We ver-

ify this conjecture in the case that the algebra has a binary term operation that
is strongly onto (Definition 3.1). As we point out in §3, the class of algebras

having a strongly onto binary term operation is fairly robust and includes many

familiar algebras.
A special role in our paper is played by totally symmetric algebras. Let

f(x\,... , x„) be an n-ary operation on a set A. A permutation a of

{1, ... ,n} is said to preserve f if fixx, ... ,x„) = fixa(X), ... , xa(n)). The

group of all permutations of {I,... ,n} that preserve / is denoted G(f).
An n-ary operation is called totally symmetric if G(f) is the full symmetric
group on {1, ... , n} . Note that if an n-ary operation is totally symmetric,
then either it is a constant operation or it depends on all n of its variables.

An algebra A is called totally symmetric if every / in every En(A) is totally
symmetric. In §2 we show that if A is a finite algebra that is totally symmetric,

then PniA) < \A\2lA¡ . The hypothesis that the algebra be finite is crucial here

since [GPS] contains a construction that shows, for any sequence of cardinals
c = (cq, cx, ...) with Co > 0 and cx > 0, there is a totally symmetric algebra
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whose pn -sequence is c. In §2 we also show that a rc-element algebra is totally

symmetric provided every essentially «-ary term operation for n < k + 3 is
totally symmetric. It follows that there is an algorithm to decide if a finite set
of operations on a finite set generates a totally symmetric clone.

In §3 we investigate algebras that possess a strongly onto term operation. Our

main result is that if A is a finite algebra having a binary term operation that

is strongly onto, then either p„(A) is strictly increasing for all n > \A\ + 2 or
A is totally symmetric.

We use the following notation and terminology. Let A be a nonvoid set and

let a~ = iax, ... , a„) e A". Then supp(ä) = {a¡: 1 < i < n} and for b in A,

wX(b, ä) = \{i: a¡ = b, 1 < i < n}\. We let oddsupp(â) = {a,-: wt(a,, a) is
odd}. An «-ary operation / on A is called onto if for every b in A there is

an â such that f(a) = b . For an algebra A, the «-ary term operations of A
are denoted by Clo„ A.

Additional background on clones and algebras can be found in [MMT, S].
The papers [G, GK] survey the literature of /?„-sequences. Totally symmetric

operations on a finite set A have been the focus of much research. We mention

the texts [H, W] for the case \A\ = 2 and [DDT] for the general case. The
survey paper [SM] contains a bibliography of over 200 items pertaining to totally

symmetric operations. However, since the composition of totally symmetric
operations need not be totally symmetric, there is little in the literature on the
general study of clones that have only totally symmetric essential operations.

2. Totally symmetric algebras

We first motivate our results by some examples of totally symmetric algebras.
Examples 2.1 and 2.2 are from [U] and Example 2.3 is from [DK].

Example 2.1. Let S = (S, A) be a nontrivial semilattice. It is known that

En(S) = {xx A---AX„}

so pn = 1 for all n > 1. More generally, let U = {cx,... , cm} be any finite

subuniverse of S and consider Si/ = (S, A, cx, ... , cm) in which each c,
denotes a constant term operation. For Sa we have po = m, and for n > 0 the

value of p„ is m or m+1 depending on whether or not l\S elf. We note that

if fixx,..., xn) e E„iSu), then fixx,...,x„-2,x„.x,xn-X)eEn-XiSu).

Example 2.2. Let G = (G, +, 0) be a Boolean group, i.e., a group satisfying
the identity x+x = 0. The algebra M = (G, x+y + z) has p„ = 0 for n even

and p„ = 1 for n odd. The algebra M is called the idempotent reduct of G,
i.e., CloM consists of all idempotent term operations of G. If H is a finite

subuniverse of G and if M# is the algebra (G, c + x + y + z)c€n, then p„ = 0

for n even and pn = \H\ for n odd. In contrast to Example 2.1 we note that

if f(xx,... ,xn)e E„(MH), then f(xx, ... , xn-2, xn-\, xn-X) e En-2(MH).

Example 2.3. In [DK] it is shown that if a semigroup S = (S, •) satisfies

f(x\, x2) = f(x2,xx) for all / e E2(S), then S is totally symmetric. A
complete characterization of the equational classes of totally symmetric semi-
groups is given in [DK] and the p„ -sequence for each such equational class is
provided. For each equational class of totally symmetric semigroups there exists
an integer m such that for all n > m either p„ = 1 or for all n > m , p„ = 0.
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Example 2.4. It is possible to describe all totally symmetric clones on a two-
element set. Let A = {0, 1} and let xx A x2 = min{x», x2}, xx V x2 =

max{xi, X2} and xx © x2 = xx + x2 (mod 2). Each of the three clones on

A generated by the two constant operations together with one of A, V, or ©

is totally symmetric as are all subclones of these three clones. These are the
only totally symmetric clones on A since from Post's classification [P] (e.g., [S]
or [R]) any other clone on A contains at least one of the ternary operations
xx A ix2 V X3), xx V (X2 A X3), or (xi A X2) v (xi a X3) v (X2 A X3). Each of

these operations generates a clone that is not totally symmetric. Note that in
the clone generated by (xx A X2) V (xi A X3) V (x2 A X3) every essentially m-ary
operation, for m < 3, is totally symmetric.

In [Ko] there is a construction for every positive integer m, of an (m +

2)-element idempotent algebra Am, for which pniAm) = 1 for n < m and

p„+i(Am) > PniAm) for n > m. So every / e E„iAm) is totally symmetric for

n < m . However, the algebra Am is not totally symmetric as the next lemma
shows.

Lemma 2.5. Let A be a finite algebra of cardinality k. Suppose n > 1 and that

E„iA) and En-XiA) contain only totally symmetric terms. Then \E„(A)\ < k2 .

Proof. We may assume k > 2 and that A = {I, ... , k} . We first let n > 3 and

we consider an arbitrary f(xx,... , x„) e E„iA). Let g(xx, ... , xn-X) denote

the term obtained from / by replacing x„ by xn-X, i.e., /(xi, ..., x„_2,

xn-i , xn-X).

Case 1. g depends on all n - 1 of its variables: By hypothesis ge£„.i(A)
is totally symmetric so gixx,... , x„-2, xn-\) = g(xx, ... , x„_i, x„_2) and
hence

/(Xi , ... , X„_2, X„_i , X„_i) = f(xX , ... , X„_i , X„_2, X„_2)

— fixl , ••• , X„_2 , X„_2 , X„_i).

For ïï e An and a, b e supp(ïï) with wt(a, ïï) > 2, if v is obtained from

ïï by replacing one instance of a by b, then /(ïï) = f(v) since / is totally
symmetric and f(xx, ... , x„_2, x„_i, x„_i) = f(xx, ... , x„_2, x„_2, xn-X).
From this it follows that if supp(ïï) = {ax, ... , am} with ax < a2 < ■ • • < am ,

then for w = (a., a2, ... , am, am, ... , am) e An , we have /(ïï) = /(W), i.e.,

/(ïï) is determined by supp(ïï). So the number of / e E„iA) for which g

depends on all « - 1 of its variables is bounded above by k2 ~x.

Case 2. g(xx, ... , xn-i) does not depend on x„_» : In this case /(ïï, a, a)
= /(ïï, b, b) for all ïï e An~2 and all a, b e A . From the total symmetry of
/ we see that for every v e A" the value of f(v) is completely determined
by oddsupp(F). For every n and every v e A" the parity of n is always the
same as the parity of the cardinality of oddsupp(F). So for a given n there

are at most 2k~x possible choices for oddsupp(F). Therefore the number of
nit —I

f e E„(A) for which g does not depend on x„_i is bounded above by k2

which is less than k2 ~x.

Case 3. g(xx,... , xn-X) depends on x„_i but does not depend on at least

one x,, 1 < /" < n - 2 : In this case g must depend only on x„-X since /

is totally symmetric. So f(xx,... , x„_2, xn-X, x„-X) = h(xn-X) for a unary

term operation h . If n > 4, then let a ^ b in A and c e An~4 and consider
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ü = (c, a, a, b, b). Let v = (c, b, b, a, a). We have h(b) = /(ïï) = f(v) =
h(a). This shows « is a constant function, contradicting the assumption that

g depends on xn-i. So for n > 4, Case 3 is vacuous. For n = 3 each / is
determined by h and f(a, b, c) for a < b < c. So the contribution of Case

3 for n = 3 is at most kk+(^ .

For n > 4 the first two cases contribute at most 2k2 ~x to \E„(A)\ and this

is less than k2 for k > 2. For n = 2, there are kk{-k+x^2 totally symmetric

binary operations on A and this value is less than k2   for all k. For n = 3,

the three cases contribute 2k2 ~x + kk+(>>, which is less than k?k for k > 3.

For n = 3 and k = 2 an examination of all the possible two-element algebras

completes the proof.

In the proof of Lemma 2.5, Case 1 and Case 2 are illustrated by Examples

2.1 and 2.2, respectively.

Corollary 2.6. If A is a totally symmetric algebra of cardinality k, then pn(A) <

k2  for all n.

Another upper bound for p„(A) is given in Theorem 2.8.

Lemma 2.7. Let A be a finite, totally symmetric algebra and let f e En(A) with

n > \A\. If g(xx,... , x„_i) denotes f(xx ,x2, ... , x„_2, xn-\, xn_0, then

g depends on all of xx, ... , xn-2, and

(i) g depends on xn-X if and only if for all v e An , f(v) is determined by

supp(tJ) ;
(ii) g does not depend on x„-\ if and only if for all v e A", f(v) is

determined by oddsupp(tJ).

Proof. If \A\ = 2 then the remarks in Example 2.4 suffice. So we assume

n > \A\ > 3 . The argument in Lemma 2.5 applies. Case 3 in that argument does
not hold for / so either g depends on all its variables (Case 1) or g does not
depend on x„_i (Case 2). If g does not depend on x,, for an i < n-l, then
g depends on no variable, since / is totally symmetric. Thus g is a constant,
say c. Since n > \A\, every v e A" has at least one repeated coordinate.
Thus f(v) = c by the total symmetry of /. This contradicts f e E„(A),

and hence g depends on every x,, 1 < i < n — 2. One direction of (i) and
(ii) is contained in the proof of Case 1 and Case 2 of Lemma 2.5. For the

other direction it suffices to show that no / e En (A) has the property that for

all v e A" , the value f(v) is determined by both supp(v) and oddsupp(v).
This is true since n > \A\ so for every v and w e A" there is a sequence

w°, ïï1,... , ïïm e A" such that ïï° = v , um = w and for every i = 1,..., m

either supp(ïï,_1) = supp(ïï') or oddsupp(ïï'_1) = oddsupp(ïï').

Theorem 2.8. Let A be a finite totally symmetric algebra with \A\ = k and let

n > k. Ifn-k is odd, then pn(A) < Pk+\(A) and if n - k is even, then

Pn(A-) < pk+2(A).

Proof. For k = 2 the result is true by inspection of the algebras in Example 2.4.

We may assume n > k > 3 and that Lemma 2.7 applies. We say / e E„(A) is
of type i if (i) of Lemma 2.7 holds, and / is of type ii, otherwise.

Let n - k be odd. Define pf e Cl0fc+1 A by

(pf)(xx , ... , Xfc+1) = f(xx, X2, ... , Xk, Xic+X , ■■■ , Xk+X).
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Note that every variable appears an odd number of times in f(xx, x2, ..., xk,

xk+x, ..., xk+x). Hence pf e Ek+X(A). We show p is one-to-one. We see
that pf is of type i if and only if (pf)(xx, x2, ... , xk, xk) depends on xk if
and only if f(xx, x2, ... , xk_x, xk, ..., xk) depends on xk if and only if /
is of type i. So / and pf are always of the same type. Let / ^ g in E„(A).
If / and g are of different types then pf and pg are also of different types,

so pf ^ pg. We may assume / and g are both of type i or both of type
ii. Let ïï e A" with /(ïï) ^ g(ïi). If / and g are both of type i, then let
{b\,...,bm} = supp(ïï). Consider ü' = ibx,b2, ..., 6m_., bm,... , bm) e A"

and ÏÏ" = ibx,b2, ... , bm-ubm,..., bm) e Ak+X. Then /(ïï) = /(ïï') =
(pf)(ü") ; so u" witnesses pfjt pg. If / and g are both of type ii, then let

{bx, ... ,bm} = oddsupp(ïï). Consider ÏÏ = (bx, b2, ..., bm-X ,bm, ... ,bm)e
A" and ü" = ibx, b2, ... , bm-X ,bm, ..., bm) e Ak+X. Since m is the cardi-
nality of oddsupp(ïï), the difference n - m is even. Hence bm appears an odd

number of times in ïï'. Since n - k is odd, we have /(ïï) = /(ïï') = (pf)(ü")

and again ïï" witnesses that pf ^ pg.
If n - k is even then a similar argument applies with

ßf = f(X\ , x2,... , xk, xk+x, xk+2,... , xk+2).

As we already remarked, the composition of totally symmetric operations
need not be totally symmetric. In contrast to the bound obtained in Corollary
2.6 the next result shows that the number of totally symmetric w-ary operations
grows exponentially as n increases.

Proposition 2.9 (see, e.g., [LL]). The number of totally symmetric n-ary opera-

tions on a k-element set is fe' *-■ ).

Proof. Let A = {1,... , k} and consider « > 0. Define an equivalence rela-
tion ~ on A" by ïï ~ v if and only if wt(6, ïï) = wt(¿, v) for all b e A.
It is easily verified that /: A" —► A is totally symmetric if and only if / is
constant on each equivalence class of ~. There exists a bijection between the

equivalence classes of ~ and the set of all fc-tuples of nonnegative integers

(«i, ... , nk) with £ n, = n , given by ïï/ ~ •-> (wt( 1,5),..., wt(/c, ïï)) for

every ïï e A" . A standard combinational result states that there are (fc£"7')

such fc-tuples.

Each totally symmetric algebra A described in Examples 2.1, 2.2, 2.3, and
2.4 has a p„-sequence that is eventually bounded by \A\. The bound given in

Corollary 2.6 is \A\2 . We do not know if there exists a finite totally symmetric
algebra whose p„-sequence realizes the bound in Corollary 2.6. Our final ex-

ample in this section provides an example of a finite totally symmetric algebra
with a p„-sequence that is close to the bound in Corollary 2.6.

Example 2.10. Let 1 < r < k be arbitrary integers and let A = {I, ... , k}.
For each n > 0 let Fn denote the set of all n-ary operations f on A such that

for every ïï e A", fia) < r and /(ïï) is uniquely determined by supp(ïï) n

{r + 1, ... , k} . Every member of F„ is totally symmetric and \Fn\ = r2 ",

for n > k - r. For f e Fn and g e Fm the operation f(xx, ... , x„-X,

g(x„,..., xn+m-\)) does not depend on Xj forj>n.LeXF = IJ„>» Fn and

let A = (A, F). Then for n > 1, E„(A) consists of the nonconstant members

of F„ so Pn(A) = r2 " - r, for n > k - r.
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We conclude this section by showing that a finite algebra A is totally symmet-

ric if and only if for every m < \A\ + 4 every essentially m-ary term operation
of A is totally symmetric. Thus there is an algorithm to decide if a finite set
of operations on a finite set A generates a totally symmetric clone on A, since

for any m the set of all m-ary operations on A generated by a given finite set

of operations is readily computable.

Lemma 2.11. Let A be a finite algebra,  \A\ = k.  Let n > k + 4 and sup-
pose that for every m < n all members of EmiA) are totally symmetric.  If

fiy, z, xx, ... , xn-2) e E„iA) and if 1 < r < n - 2, then there exists s -^ r,

1 <s<n-2, such that the term operation obtained from f by replacing xr by

xs depends on z. A similar statement is true for y as well.

Proof. If A is trivial, then there is nothing to prove, so we assume k > 2.
For 1 < i, j < n - 2 leX flj denote the (n - l)-ary term operation obtained

from / by replacing Xj by x,. There exist a, b, b' e A and c e An~2 such

that f(a, b,c) -^ f(a,b',c). It suffices to show that c can be chosen so that

cr = cs for an s ^ r. Since n - 2 > k + 2 there exists i # / with c, = Cj.

If r e{i, f} we are done. If f'j does not depend on xr, then we can replace

cr by c¡, say, and we are done. If f'j does not depend on an xs for s # r,

then we can replace cs by cr. Therefore, we may assume f'j depends on

all xs, s $ {i, j}, and that /'-' is totally symmetric with respect to all these
variables. Let 1 < j , t < n - 2 be such that cs = ct and {s, t} ^ {i, j} with,
say, t $ {i, j} . We have n - 2 > k + 2 and k + 2 > 4, so such a choice

is possible. Let d be obtained from c by interchanging cr and ct. Then

f(a,b,c) = f(a,b,d) and f(a,b',c) = f(a,b',d), which shows that /"
depends on z.

Theorem 2.12. If A is a k-element algebra such that, for every m < k + 4, all
members of Em(A) are totally symmetric, then A is totally symmetric.

Proof. If Ac = 1 the claim is immediate and if k = 2 the remarks in Example

2.4 suffice. So we assume k > 3. We induct on n for n > k + 4. So assume

that for all m < n every member of Em(A) is totally symmetric. We prove
that every / e E„(A) is totally symmetric. Let / e E„(A) and c e An~2 be

arbitrary. It suffices to show that f(y, z,c) = f(z,y ,c). We write / as
fiy, z,xx,... , x„_2) and we denote fiy, z, c) by giy, z). The (« - l)-ary

term operation obtained from / by replacing Xj by x, is denoted f'j. By the

induction hypothesis f'-> is totally symmetric in all of its essential variables.
If giy, z) depends on neither v nor z, then we are done since g(y, z) =

g(z, y). So we may assume that g depends on at least one of its variables.

Suppose 1 < i < j < n - 2 and c, = c¡. Note that if fl> does not depend on y

then g does not either. A similar remark holds for z. If f'j depends on both

y and z, then g(y, z) = g(z, y) and we are done. So suppose /'; depends

on y and not z . In this case g depends on y and not z, as well. Moreover,

by_a similar argument, we may assume this is tru£for any /'-' provided there is

a d with di = dj such that g(y, z) = f(y, z, d) for all y and z . We show
this leads to a contradiction.

First suppose c, = c¡ and there is an r, 1 <r <«-2, r# i, j, such that

f'j does not depend on xr. We apply Lemma 2.11 to / and r to find an
index 5 such that the term operation frs depends on z . (Note that s e{i, j}
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is possible.) Let d e A" 2 be obtained from c by replacing cr by cs. Then

giy, z) = fiy, z ,c) = fiy, z, d). Since dr = ds we see that /" depends on

y and not z, but this contradicts the choice of s. So we conclude that fiJ
depends on all xr, r ^ i, j.

We next apply Lemma 2.11 to find an index 5 for which f's depends on

z. We complete the proof by showing no such s exists. From the remarks

above we cannot have c¡ = cs else /" would depend on y and not z. So

•* Í- {ii J) • We choose indices u and w so that cu = cw and j $ {u, w}.

Since n-2>k + 2>5 this is possible. If s € {u, w}, with s = w say, then
choose t £ {i, j, u,w} . Use the induction hypothesis on /'-' to interchange

x, and xw. Let d e An~-2_ be obtained from c by interchanging ct and cw.

Then giy, z) = f(y, z, d), d¡ =dj, du = d,, and s i {i, j,u,t} . So we
may as well assume s £ {i, j, u, w} , c¡ = Cj, and cu = cw at the outset. Let 1

be obtained from c by interchanging c¡ and cs. Note g(y, z) = fiy, z ,c) =

fiy, z, e). From <?, = es we see that f's depends on y and not z, but this

contradicts our original choice of s.

3. Strictly increasing /?„-sequences

In this section we define strongly onto binary operations and we show that
if a finite algebra A has a strongly onto term operation and if A is not totally

symmetric, then there exists an m such that the sequence pn(A) is strictly
increasing for n > m.

Definition 3.1. A binary operation x • y on a set A is strongly onto if both of
the following conditions hold for the elements of A :

(Cl) Va3bx,b2ia = bxb2 = b2bx).
(C2) V<2, ¿»(3c, dx,d2ia = cdx and b = cd2) if and only if 3d, cx,c2ia = cxd

and b = c2d)).

Strongly onto binary operations occur frequently as the term operations of

algebras. Any commutative binary operation that is onto is strongly onto. Every

binary operation on A that has an identity element e (i.e., a = ae = ea for
all a e A) is strongly onto. Thus groups, rings, lattices, and monoids all have
strongly onto binary term operations.

The main result in [GP] is that if an idempotent algebra A has a commuta-
tive binary term operation, then p„iA) ^ 1 implies p„+xiA) > PniA) + in - I).

In particular, the p„ -sequence of A is strictly increasing. Note that every idem-
potent operation is onto, and hence the commutative operation in question is
strongly onto.

Definition 3.2. Let A be a binary term operation on an algebra A. For 1 < n
and 1 <i <n define the function A(/z, n, i): E„iA) —► Clo„+i A by

f(xx,... , x„) i-+ f(xx, ..., x._i, n(xn+i, x,), xI+i,... , x„).

If h and n are clear from the context we write X¡ instead of A(A, n, i). The
definition of pih, n, i) is analogous, using «(x,, xn+x ) in place of /z(x„+i, x,).

In the literature on the pn -sequences of idempotent algebras, the A, and p¡
have been used in various ways. For example, the function pih, n, i) appears
in §3 of [GP] for a term operation h that is commutative and associative in an
idempotent algebra.
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We collect in the next lemma some facts about k(h, n, i) and pih, n, i)

for arbitrary algebras in which h is strongly onto.

Lemma 3.3. Let h be a strongly onto, binary term operation in an algebra A.

Let 1 < i < n be arbitrary and let Á¡ and p¡ denote X(h, n, i) and p(h ,n,i),
respectively. All of the following are true.

(i) The functions l¡ and p¡ are one-to-one from En(A) to En+X(A).

(ii) For all f,ge En(A), if X¡(f) = Pi(g), then f=g.
(iii) For n > 3, if f e En(A) is such that p„(f) and px(f) are totally

symmetric, then f is totally symmetric.

Proof. For notational convenience we let i = n and we denote h(x, y) by xy.

Let f(xx,... , xn) e En(A) be arbitrary. The term operation p„if) depends

on every x,, 1 < i < n, by virtue of condition (Cl) of Definition 3.1. From

condition (C2) we see that pn(f) depends on x„ if and only if it depends

on x„+i. So pn(f) either depends on both xn and x„+i or p„(f) depends

on neither of these two variables. If pn(f) were to depend on neither x„ nor

x„+i, then for all bx, b2, cx, c2 e A and ïï e An~ ' we would have /(ïï, bxb2) =

/(ïï, cxc2). This is impossible since / depends on x„ and for every d e A
there exist bx,b2e A such that d = bxb2. Hence p„(f) is in £„+1(A). Let
/, g e En(A) and suppose ä = iax,..., an) e A" is such that /(ïï) ^ g(a).
There exist b, c e A such that be = a„ and thus f(ax,..., an-X, be) ^
g(ax, ..., a„-X, be). Thus p„ is one-to-one. A similar argument that uses the

full strength of condition (Cl) shows pn(f) ¥" ̂ n(g) ■

In order to prove (iii), let n > 3 and assume / G E„(A) is such that pn(f)

and />.(/) are totally symmetric. So pn(f) = f(xx ,x2,..., x„_», x„xn+i) =
/(x2, Xi,..., x„_i, x„x„+i). Since • is onto it follows that the transposition
(1,2) is in G(f). Similarly, for every 1 < i < j < n the transposition

(i, j) e G(f). The transpositions (i, n) for i > 2 are in G(f) since px(f) is
totally symmetric. It follows that G(f) contains all the transpositions.

Lemma 3.4. Let A be an algebra having a binary term operation that is strongly

onto. If n > 1 is such that |£n(A)| = l^+^A)! < co, then every g e En+X(A)
is totally symmetric.

Proof. From Lemma 3.3(i) and the finiteness of En+X(A) it follows that for

every g e En+X(A) and for every 1 < i < n, there exist fx,f2e E„(A) such

that g = A,(/i) = Pi(f2). Thus, for each i, fx=f2 by Lemma 3.3(ii). So
G(g) contains all transpositions (/', n + 1), for 1 < i < n + 1, and hence Gig)
is the full symmetric group.

Lemma 3.5. Let - be an onto binary operation on a set A. If the operations

(xjX2)x3 and xxix2x-¡) are totally symmetric, then • is commutative and asso-

ciative.

Proof. From the total symmetry of (x»X2)x3 and X1XX2X3) we see that
(X1X2XX3X4) = (xi(x3x4))X2 = (X3(xix4))x2 = (x3X2)(x!X4). By repeating

this argument in order to interchange X2 and X4 we see that (X1X2XX3X4) =

(X3X4XX1X2). If a, b e A are arbitrary with a = axa2 and b = bxb2, then

we see that ab = iaxa2)ibxb2) = ibxb2)iaxa2) = ba. For associativity, we
have by the total symmetry of Xi(x2X3) and the commutativity of X1X2 , that

Xxix2Xi) = X3(XiX2) — (X]X2)X3 .
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Theorem 3.6. If A is a locally finite algebra that has a strongly onto binary term

operation, then p„(A) is monotonically nondecreasing for n > 1. Moreover,
either A is totally symmetric or there exists an m > 1 suchthat pn+x(A) > p„(A)

for all n > m and for every 1 < n < m every essentially n-ary term operation

of A is totally symmetric.

Proof. The p„ -sequence of A is monotonically nondecreasing for n > 1 by

Lemma 3.3(i). Let k > 2 be such that pk_x(A) = pk(A). For every n with
3 < n and n < k we have that every / e En(A) is totally symmetric by
virtue of Lemmas 3.4 and 3.3(iii). We show that every member of E2iA) is

totally symmetric. If k = 2, then it suffices to apply Lemma 3.4. Otherwise let
n(xi, X2) be a strongly onto term operation of A. The term operations p2ih) =

h(xx, h(x2, X3)) and pxih) = /z(/z(xi, x3), x2) are in £3(A) and are totally
symmetric. From Lemma 3.5 it follows that« is commutative and associative.

Let / e E2iA) be arbitrary. Then p2if) = f(xx, hix2, X3)) e £3(A) is totally
symmetric. Thus

f(h(xx, x2), h(x3, x4)) = /(x4, n(x3, h(xx, x2)))

= /(x4, h(x2, h(xx, Xi))) = f(x2, h(x4, h(xx, x3)))

= /(x2, h(xx, h(x3, x4))) = f(h(x3, x4), h(xx, x2)).

This shows / is commutative since h is onto A .

If there exist infinitely many k with pk_x(A) = pk(A), then A is totally
symmetric by the remarks in the previous paragraph. If there is at least one but
only finitely many such k, then let m be the largest such. If there are no such

k, then we let m = 1.

Now, combining Theorem 3.6 with the results of §2, we obtain the following

result for finite algebras.

Corollary 3.7. Let A be a k-element algebra having a strongly onto binary term

operation. Then either pn+x(A) > pn(A) for all n > k + 2 or A is totally

symmetric in which case pn(A) < k2  for all n.

Proof. If A is totally symmetric, then the bound on pn(A) is from Corollary

2.6. If A is not totally symmetric, then by Theorem 2.12 there is a q < k + 3
and an essentially <7-ary operation that is not totally symmetric. Thus the m
in Theorem 3.6 is less than k + 3 .

In August, 1992, Ross Willard presented at the Alan Day Conference in
Hamilton, Ontario, an example of a finite algebra A for which pn(A) is neither
bounded nor strictly increasing, thereby settling the conjecture in [B]. He also

has proved that for any Ac-element algebra A, either the sequence pn(A) is

bounded above by a finite constant or p„(A) > n for all n > max{Ac -t- 1, 5} .

One ingredient in Willard's proof is our result in §2 that a totally symmetric

algebra has a bounded /»„-sequence.
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