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(Communicated by Andreas R. Blass)

Abstract. Necessary and sufficient conditions are given for the Eilenberg-

Moore comparison functor <1> arising from a functor U (having a left adjoint)

to be a Galois connection in the sense of J. R. Isbell, in which case the functor U

is said to be of subdescent type. These conditions, when applied to a contravari-

ant hom-functor U = C(-, B) : C°p -» Set, read like a kind of functional

completeness axiom for the object B . In order to appreciate this result, it is

useful to consider the full subcategory domfi c C of so-called B-dominions,

consisting of certain canonically arising regular subobjects of powers of the ob-

ject B . The functor U = C(-, B) is of subdescent type if and only if the

object B is a regular «¡generator for the category doing , in which case dom^

is the reflective hull of B in C and, moreover, the category doms admits a

Stone-like representation as (being contravariantly equivalent, via the compari-

son functor 4>, to) a full, reflective subcategory of the category of algebras for
the triple in Set induced by the functor U .

1. Introduction

In [MV] and [Jl] it is shown that the category Lind of completely regular
Lindelöf locales admits several characterizations of a purely category-theoretical
nature which distinguish it amongst full subcategories of the category Loc of
all locales. For one, Lind is the reflective hull of the object 1 (the locale

corresponding to the usual topology on the set of real numbers) in Loc; in

addition, Lind is the largest full subcategory of Loc for which the object R serves

as a regular cogenerator [BW]; and finally, the subcategory Lind is comprised
of precisely those objects X e |Loc| which are uniquely recoverable from the
algebraic data Loc(Jï , 1).

In this paper it is shown that the three phenomena alluded to above, about the

object R e |Loc| and the subcategory Lind c Loc, are simultaneously detectable
via a simple analysis of the descent behaviour of the contravariant hom-functor
Loc(-, R): Locop -» Set and similarly for any hom-functor C(-, B): Cop -»
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Set, assuming that the prerequisite constructions—powers of the object B and

equalizers of certain pairs of maps between these powers—exist in the category

C. In fact, as suggested in the abstract, the proposed descent analysis is carried
out for an arbitrary functor 17 having a left adjoint.

We begin with the assumption of familiarity with the rudiments of the theory

of triples as found in [BW], and all that follows is in reference to a fixed functor

£/: X -» A having a left adjoint F, with counit and unit maps e: FU -* lx

and rj: 1A -» UF, respectively, associated triple T in the category A, and
Eilenberg-Moore factorization through the comparison functor O as depicted
in the diagram of categories and functors

X     -t     AT

(U) u \ /\-\
A

where AT is the category of triple algebras and |-| : AT -» A is the functor
assigning underlying A-data.

The fundamental result of triple theory, as found in the seminal work of Beck
[B], gives necessary and sufficient conditions for the comparison functor to be a
full and faithful embedding of the category X into the category of algebras, in

which case the functor U is said to be of descent type. In practice, as we shall

see, it is possible that the functor U fails to be of descent type, yet still gives
rise to an interesting comparison of the categories X and AT. The foundations
for this work are contained in the following two lemmas.

1.1. The full isomorphism-closed image of a functor U: X -» A is denoted by

lm(U) c A, and we write Er/ c X for the subcategory consisting of all those

X-morphisms f for which 17fi is an isomorphism in A.

Lemma. An X-morphism X -^ Y satisfies /el$ if and only if the induced

natural transformation X(F-, X) -► X(F-, Y) is an isomorphism of func-

tors.

Proof. Consider the diagram of categories and functors

At   ^^x -.set^

A _-, set*"

in which the square, depicting the Yoneda embeddings of the categories X and

A, commutes up to natural isomorphism by virtue of F H U. The image in

Set* of the X-morphism / is readily seen to be /*. The result now follows

from the fact that both the Yoneda embeddings and the underlying functor
|-| : AT -> A reflect isomorphisms; that is, / e I& if and only if / e tv if and

only if /* is an isomorphism in Ser/^   .

1.2. Given e e X(Y, E), we write fRel(e) to denote the family consisting of

all those pairs of maps (a, b): FA =t Y, from free objects to Y, satisfying
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ea = eb. The diagram

(*) xi}Y-^E
g

of X-morphisms is a 17-absolute coequalizer diagram provided efi = eg and,
for every category B and functor H: A —» B, the diagram H 17(7) is a coequal-

izer in B.

Lemma. Provided the diagram (*) is a 17-absolute coequalizer diagram, maps

Y -^ T satisfying tf = tg also satisfy ta = tb for every pair (a, b) e ÍHel(e).

Proof. By hypothesis and with reference once again to the diagram of 1.1, the

diagram of natural transformations

X(F-, X) ¿ X(F-, Y) £ X(F-, E)
8"

is a coequalizer in Ser4 . If tf = tg, then X(F-, Y) -* X(F-, T) factors

through the coequalizer e*, and the result follows.

1.3. The comparison functor <ï> has a left adjoint Ô if and only if the cate-
gory X has certain coequalizers [L], which we do, indeed, assume to exist. In

particular, for each X e |X|, the diagram

FUeX fX
FUFUX   =t   FUX^X

eFUX

is a {/-absolute coequalizer diagram, and the <P-value áxpX may be taken

to be the coequalizer of the pair (FUeX, eFUX), with the counit map èX

appearing as the unique factorization of eX through the coequalizer

FUX   —   W>X
^ i

N       4,

X

Application of Lemma 1.2 now yields a new description of the counit maps for

the adjunction ÔHÎ>:

Theorem. Give« X e |X|, i«e object ÖOX is the simultaneous coequalizer of

the family 9ter(eAT) of all pairs of maps (a, b): FA=i FUX, from free objects

to FUX, satisfying eX o a = eX o b.

2. Galois connections

2.1. Given an arbitrary functor <P: X —► B having a left adjoint ö with

counit and unit maps é and r\, it is known [12] that the natural transformation

Oe : 0<Éxp -> O is an isomorphism if and only if Ô?j : Ö -» (POO is, in which
case the functors 4> and <P restrict to an equivalence of categories Im(<t>) =

Im(<I>) and the original adjunction Ö-IO (and when there is no possibility of

confusion, each of the adjoints 4> and O) is called a Galois connection. To

characterize this situation further we mention briefly that <ï> H <ï> is a Galois
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connection if and only if the induced cotriple in the category X (or the induced

triple in the category B) is idempotent. Further still, $ -I O is a Galois

connection if and only the maps {èX: ÖOX ->!} constitute a coreflection of

X into Im(<t>) or, equivalently, r) is a reflection of B into Im(O).

When <P is the comparison functor arising from the functor X —» A, we
say that U is of subdescent type provided <£> is a Galois connection, and the
characterization to follow is the main result of this paper.

Theorem 2.2. U is of subdescent type if and only if, for every X e |X|, the counit
map èX is monomorphic with respect to maps from free objects.

Proof. By IsbelFs characterization (§2.1), O is a Galois connection if and only

if ëX e I^t,, for each X e |X|. Equivalently, by 1.1, each natural transfor-

mation X(F-, dxpX) —► X(F-, X) is an isomorphism. But each èX* is a

fortiori a split epimorphism in Set* (since OèX admits a right inverse i)<bX
in any case). Hence èX* is an isomorphism if and only if it is injective at the
level of sets.

3. Application to sets

3.1. In the interest of application of the results 1.3 and 2.2 to set-valued
functors it is our tendency to prefer the contravariant case. It is well known that
a functor U : Cop —> Set has a left adjoint F if and only if it is representable,

say U = C(-, B), for some object B for which the category C has all set-

indexed powers, in which case F may be given, taking as values precisely these
powers: Fn = B", for each « € |Set|, with the familiar evaluation maps

evx : X -» BC(X'B^, for each object X e |C|, serving as the counit maps for the
adjunction. Writing B to denote the induced triple, the comparison functor
Ofi appearing in the diagram

C(-,B)

Set

assigns to each object X e |C| the usual algebra structure on the set 10^(^)1 =
C(X,B).

It is traditional to call the object B a regular cogenerator for the category C

provided that, for each object X e |C|, the evaluation map evx is a regular

monomorphism or, equivalently, that the comparison functor <Ps is full and
faithful, which is to say, that the functor U is of descent type. In lieu of this
very special situation (as suggested in the introduction) it is often possible to
extract from the ambient category C a full subcategory, admitting a nice repre-

sentation in Set" and for which the object B serves as a regular cogenerator.

In any case (as in the discussion of §1.3, suitably dualized), the functor <&b

admits a left adjoint Ö provided the category C has equalizers of certain pairs
of maps between powers of the object B . (The reader may wish to assume that
C is some favorite small-limit complete category, for example, the category
of topological spaces, locales, groups, topological groups, frames, or, in fact,

virtually any reasonably defined category, and that B is an arbitrarily chosen

\/-
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object; for our purposes we will tacitly assume that the category C admits

whatever limit constructions we may need at any moment.) It is then apparent

that, for each object X e |C|, the evaluation map evx admits a canonical
factorization

X
i
i

rX I

I

X -► flQ*,*)
c

through the object X = «POX which (in a manner reminiscent of the dominion

construction of Isbell and), employing the universal properties of products, is

the simultaneous equalizer of the family of all pairs of maps (a, b): Bc^x'c^ =$

B satisfying aoevx = b°evx . The object X is called the B-dominion of X,

and the full subcategory of all such is denoted by domB c C.

Remark. In general, by iterating this process, that is, upon considering the

comparison functor for the triple in Set1 induced by the adjunction ÔHO,
constructing dominions, etc., while passing to limits (assuming, of course, the

availability of these constructions in the category C) at limit ordinal stages,

one arrives at the description of the reflective hull of B in C which is latent in
the so-called tower of triples construction of Applegate and Tierney [AT]. It is
our goal here to characterize the situation in which this process of constructing
dominions terminates (in the precise way indicated in the theorem below) after

only one stage.

We say a morphism X —► Y in C is B-dense provided that, for every pair

of maps (a, b): Y =3 B, if aof = b°f, then a = b. Again employing the
universal properties of products, it is clear that the map / is 5-dense if and
only if it is epimorphic with respect to pairs of maps to any set-indexed power

of the object B, that is, with respect to maps to any object in |Im(F)|. The
results of §2 now, when specialized to the functor U = C(-, B) : Cop —► Set,

read as follows:

Theorem 3.2. The following statements are equivalent:

1. The functor U is of subdescent type.

2. The natural transformation r is idempotent; that is, for each object X e

Idontfl, the comparison X r-* X is an isomorphism.

3. The maps {X r-+ X: X e |C|} constitute a reflection of the category C

into dom#.

4. The object B is a regular cogenerator for the category dom^ .

5. For each object X e |C|, the map X r-* X is B-dense.

Remark. Since the reflective hull of the object B in C (were it to exist) must

in any case be closed under the formation of products and equalizers, it is

clear, given that the equivalent conditions of the theorem hold, that domB is
this reflective hull and, moreover, that the comparison functor then serves, upon

restriction, to provide a full and faithful (contravariant) representation of domfí

as a reflective subcategory of the category of algebras Set8.
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4. Examples

4.1. Rigid objects. Provided the category C satisfies some rather mild con-

dition (it is sufficient that, for each noninitial object X e |C|, the unique map

X —» 1 is an epimorphism) and the object B has at least two distinct points and
is rigid, which is to say, for every a e |Set|, each a-ary operation Ba -> B is

either constant or a projection, the functor C(-, B) : Cop -+ Set is of subdescent
type.

4.2. Groups. Where C = Gp is the category of groups, the objects (i) Z„ ,

(ii) Q, and (iii) Q/Z give rise to contravariant hom-functors Gpop -> Set of
subdescent type, with categories of dominions (i) abelian groups of bounded
exponent « , (ii) torsion-free, divisible abelian groups, and (iii) the category of
all abelian groups, respectively.

As of this writing, the case in which the interesting group is the integers Z
remains a complete mystery to this author. Here it is clearly useful to consider

the class of groups & consisting of all subgroups K cZa (for arbitrary powers

of Z) which are arbitrary intersections of kernels of group homomorphisms
17 —► Z. The class Â certainly contains the class of Z-dominions, and, by The-
orem 3.2, the functor Gp(-, Z) is of subdescent type if and only if each group

K e |£| satisfies K = K, which is to say if and only if every group K, which is
an intersection of such kernels in some power of Z, is an intersection of such
kernels in the canonical embedding evK: K —► ZGp(i:'z). It seems encouraging

to note that, since the group Z is projective, every finite intersection of kernels

(of group homomorphisms to Z) in a power of Z is (a direct summand and,
therefore) again isomorphic to a power of Z. On the other hand, it is probably
safe to say that infinite powers of Z are well known for their tendency to exhibit

pathological behavior, and indeed, if the equivalent conditions cited above in

fact do not hold, it would represent the first such counterexample arising from

a well-studied object in a familiar category known to the author.
Where C is the category of topological groups and continuous group homo-

morphisms and the object B is the circle group, Set8 is the category of abelian
groups, AomB is the category of compact Hausdorff topological groups, and the
restriction of the comparison functor to domfi is the equivalence of categories
well known as Pontryagin duality (compact/discrete case).

4.3. Topological spaces. Let C be the category of topological spaces and
continuous maps, and consider the following table:

B_Set8^_dom¿_

1 2¿     Boolean algebras Stone spaces

2 S Frames Sober spaces

3 2, CABA Set
4 [0,1]       C* -Algebras       Compact Hausdorff spaces

5 R_C-Algebras_Real-compact spaces

Exhibited are well-known examples of objects B e |C| for which the functor
U = C(-, B) : Cop -► Set is of subdescent type, where 2d , S, 2,-, and CABA
denote the two-point discrete space, Sierpinski space, two-point indiscrete space,
and the category of complete atomic Boolean algebras, respectively (and some
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liberty has been taken in presenting the category of algebras Set8 only up to

equivalence and, hopefully, in what is its most familiar conception). The astute

reader will have already noticed that, in examples 1,3, and 4 (as well as in some

of the previous examples), the functor U exhibits a stronger descent behavior

than merely being of subdescent type; in these examples the restriction of U
to the subcategory doing c C is in fact tripleable, that is, the restriction of the

comparison functor <P# to dom# is not merely full and faithful but also has

image the entire category of algebras.

4.4. Locales. Having seen the example above, the reader might be inclined

to conjecture that a class of topological spaces Co which is distinguished by
some nice separation axiom (like, for instance, complete regularity or zero-

dimensionality), in addition to some degree of compactness, may be identifiable

as the class of /^-dominions for some object B which serves as a regular cogen-

erator for the class Co = dom^ . One might also ask the analogous question for
the case in which C is the category of locales, and perhaps this is preferable,
primarily, since it has been shown [M, J2] that relative to the category of lo-
cales the K-Lindelöf property, when taken with certain nice separation axioms,

is reflective and, secondly, since the results about the category of locales (which
are briefly outlined below) generally specialize (upon taking spatial parts) to the
best possible analogous results for the category of topological spaces.

In [J2] the epireflective hull 93 of an object B e |Loc| is called a nice sep-
aration axiom provided it enjoys certain properties which are natural general-

izations of properties possessed by the classes of completely regular and zero-
dimensional locales. It is then shown that, for each (large enough) uncountable

regular cardinal k , there exists an object BK e |<B| such that

(i) Loc(-, BK): Locop —► Set is of subdescent type and, moreover,

(ii) an arbitrary locale X isa 5K-dominion if and only if X isa K-Lindelöf
locale satisfying X e |55|.
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