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ABSTRACT. If a category B with Yoneda embedding Y: B — CAT(BP, set)
has an adjoint string, U4V AW 4 X 4Y, then B is equivalent to set.

1. INTRODUCTION

The statement of the abstract was implicitly conjectured in [9]. Here we
establish the conjecture. We will see that it suffices to assume that B has an
adjoint string V 4 W 4 X 4Y with V pullback preserving.

A word on foundations and our notation is necessary. We write set for the
category of small sets and assume that there is a Grothendieck topos, SET,
of sets which contains the set of arrows of set as an object. The 2-category
of category objects in SET, which we write CAT, is cartesian closed, and
set is an object of CAT. Thus, for C a category in CAT, CAT(C°?, set)
is also an object of CAT, and we abbreviate it by .#C (it was written #C
in [8]). Substitution gives a 2-functor .#: CAT®® — CAT, where CAT®%®
is the dual which reverses both arrows of CAT (functors) and 2-cells (natural
transformations). A category B in CAT is said to be locally small if it has a
hom functor B°? x B — set or equivalently a Yoneda embedding ¥ = Y3: B —
A'B. We say that a category A is small if the set of arrows of A is an object of
set. All categories under consideration, other than SET and CAT, are objects
of CAT.

A functor F: A — B is said to be Kan if #F: #B — .# A has a left
adjoint, denoted 3F . if A is small and B is locally small, then F is Kan [8],
but neither condition is necessary; if, say, we have L 4 F ,then # L 4 # F and
JF = # L. Smallness of A and local smallness of B also ensure that .# F has
a right adjoint, which we denote by VF . In particular, for small A the Yoneda
embedding Y,: A — AA yields 3(Yy) 4 A (Ya) 4 V(Ya): LA - AHA,
and it is shown in [8] that V(Y,) is isomorphic to Y, . We can apply these
considerations to A = 0, the empty category, which is the initial object of
CAT. The unique functor 0 — .#0 = 1 is necessarily Yy and gives rise to
I(Yy) 1 #(Yy) 1Yy:1 - #1. But 41 is isomorphic to set and 1 is terminal
in CAT, so the adjoint string is more conveniently labelled 0 ! 41: 1 — set.
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A further application of the result quoted from [8] gives an adjoint string of the
kind mentioned in the abstract, namely,

30440 M A M1 Yo : set — A set.

We recall from [8] or [9] that a locally small category B is said to be total
(abbreviating totally cocomplete) if Y: B — .#B has a left adjoint, X. Con-
siderable motivation for the terminology is given in either reference. Examples
include categories of algebras, categories of spaces, and categories of sheaves on
a Grothendieck site. The reader is advised to keep in mind the situation when
B is an ordered set and Y is replaced by its counterpart | in the 2-category,
ord, of ordered sets, order-preserving functions, and transformations. There
|: B — 2B sends an element b to the down-closed subset of B consisting
of all x such that x < b. (ZB is the lattice of all down-closed subsets of
B ordered by inclusion.) This functor has a left adjoint, namely, supremum,
V, precisely when B is (co)complete. It is helpful to think of X above as a
generalization of \/. Continuing the analogy, we recall from [1] that \/ has a
left adjoint precisely when B is (constructively) completely distributive. With
this in mind we say that a total category is totally distributive when it has an
adjoint string, W 4 X 4 Y: B — .#B. The considerations in the previous
paragraph show that .Z A is totally distributive for small A.

In the ord case a left adjoint for \/ classifies the <, or “totally below”,
relation defined by b < b’ if and only if, for any D in 2B, b’ <\/ D implies
b € D. A similar interpretation is possible for W . Its transpose, B°? xB — set,
is in some respects like another hom functor. At least it makes good sense to
think of its values as sets of “arrows”, a priori distinct from the arrows of B. A
left adjoint, V', for W expresses a universal property with respect to the new
arrows, and if this colimit-like functor itself has a left adjoint, then ordinary
limits also distribute over these colimit-like universals.

The point of the heuristics of the preceding paragraph is that the adjoint
strings we are considering are manifestations of “exactness”. Given a suitably
complete and cocomplete category B, it seems possible, ab initio, that B is
more distributive than set. The theorem of this paper shows that this is not the
case. Exactness of a locally small category is strictly bounded by the exactness of
set. Note further that while total categories B can fail to be cototal (that is, B°P
can fail to be total), totally distributive categories are always cototal. This and
a detailed study of the heuristics above will appear in a separate forthcoming

paper.
2. THE ADJOINT CHARACTERIZATION

Let B be a totally distributive category with adjoint string W 4 X 4Y: B —
AB. We write a, f: X 4 Y to indicate that o is the unit and S is the
counit for the adjunction. Since Y is fully faithful, f is an isomorphism and
X is cofully faithful; i.e., CAT(X, C) is fully faithful for all C. We write
y,0: W 4 X for the other adjunction. Cofully faithfulness of X implies that
the unit, y, is an isomorphism, so W is fully faithful. We define 6: W — Y
to be the unique natural transformation satisfying Xo -y = f~!. Equivalently,
o is the unique solution of f-Xo = y~!. We write I: E — B for the inverter
of 6: W - Y:B — #B; ie., E is the full subcategory of B determined
by those B for which op is an isomorphism. [ is the resulting inclusion.
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For any functor F: C — D with D(FC, D) in set for all C, D and for any
G: K — D, we follow Street and Walters [8] in writing D(F, G): K —» #C
for the functor whose value at K in K is D(F—, GK). If D is locally small,
D(F, G) is the composite

KESpLp% #cC.
Further, still assuming that D is locally small and for any H: K — .#D, the

Yoneda Lemma gives #/D(YF, H) 2 #F - H even though .#D need not be
locally small.

Lemma 1. 4 category B is equivalent to one of the form # A with A small if
and only if B is totally distributive and the inverter I, as above, is dense and
Kan.

Proof. (only if) We have already remarked that .# A is totally distributive for
small A. Here E is the Cauchy completion of A. (Since this part of the
lemma is not central to our present concerns we leave the proof of this claim
as an exercise for the reader. In the ord case it is discussed in [5].) It is easy to
see that I is dense and Kan.

(if) Given B and I as above, consider the composite

BL #B4 #E=B(, 1p).

Since Y and #1 have left adjoints, namely, X and 3 respectively, so does
B(I, 1). We denote the left adjoint by I x —, since its value at I in .ZE,
I T, is the colimit of I weighted by I' [8]. The unit for /x— 4 B(/, 1) is an
isomorphism since I is dense. The following isomorphisms are justified by (in
order): definition of Ix—, W 4 X, o is inverted by I, the Yoneda lemma,
and fully faithfulness of 3/ (which follows from fully faithfulness of I):

B(I,I+T)=B(I, (X -3)T)) = 4BWI, 3I(T))
~ #B(YI,3I(T)) = (#I-31)T)2T.

Thus B(I, 1): B— ZE is an equivalence. Since both E and now .ZE are
locally small, it follows from [7] (see also [2]) that E is small as required. O

If C and D are total, then a functor F: C — D preserves all colimits if
and only if it has a right adjoint. If, moreover, F is Kan, then preservation of
all colimits is equivalent to invertibility of the canonical natural transformation
Xp3F — FXc as shown in the following left-hand diagram:

2C 2, 40 wCc Z2E. #w#D

Xcl > lxp Xcl ¥ llYD

C — D C — #D
F F

Again, the reader is advised to think of “ X ” as a general counterpart of the
supremum arrow for a complete ordered set. Now replace D in the immediately
preceding discussion by .#D, where D is an arbitrary locally small category.
According to our definition of total category and again invoking [7] (or [2]),
AD is total if and only if D is small. But we do have .#Yp assuming only
that D is locally small. If F is both Kan and a left adjoint, then a canonical
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isomorphism as in the above right-hand diagram is produced by a modification
of the calculations which establish that the canonical arrow in the left-hand
diagram is an isomorphism. Of course, we implicitly noted in the introduction
that if D is small then .#Yp = X,p. The point is that for D locally small
A'D has the requisite weighted colimits, and they are provided by .#Yp.

Let B be a totally distributive category with V' 4 W . Then W:B — .#B
is both Kan and a left adjoint. The considerations of the previous paragraph
show that WX = #£Y .3W . Since W is fully faithful, XW = 1g and we have
HAY -3IW - W = W . (This is a formulation for totally distributive categories
of the “Interpolation Lemma” for constructively completely distributive lattices
as in [5].) Now a calculation shows that the natural isomorphism above, .£Y -

Iw . W S W, admits description by both
Y AW . w EXV, gy.y . wew

and

AY-IW W EXEV, gy AW YW XYW,
where both the first and last unnamed isomorphisms express the fully faithful-
ness of Y and the second unnamed isomorphism is an instance of .£Y -3W =
WX . These descriptions show that the profunctor B -+ B determined by

W:B — #B carries an idempotent comonad structure, with counit deter-
mined by o: W — Y. It is convenient to define T =VY: B — B. Then

MHY -IW.c=2HY - HV-c2HVY) 0 =HT-o0,
which shows that .# T coinverts ¢ . By Lemma 4.3 of [4], T inverts o.
Lemma 2. A category B is equivalent to one of the form .# A with A a small,
complete ordered set if and only if B is totally distributive with V A W .
Proof. (only if) A small, complete ordered set, A, is a total category. Indeed, by
definition |5: A — ZA has a left adjoint. So does the inclusion A — #ZA,
and its composite with |, is Y: A — #Z A, which therefore has a left adjoint.
It follows that .# A has the required adjoint string.
(if) We saw above that T = V'Y inverts o: W — Y . We denote the inverter
I: E — B as above, so there exists a unique functor H: B — E such that
IH =T. We show H 41 by showing that E(H, 1) @ B(1, I). Now
B(l,)=2YI=WI=#B(Y, WI)=B(VY,I)
~B(T,])=B(IH,I)=EH, 1),
where we have the last isomorphism because I is fully faithful. From H 41
we have I Kan (with 3] = # H). To see that I is dense consider
Ix—-B(I,)2X-3I- #I-Y=X-#H- HI-Y=X-#(IH)-Y
=X-#(T)- Y2X-B(T,1)=X-B(VY, 1)
*X-#B(Y, W)= X -W 1.

By (the proof of) Lemma 1, B is equivalent to .#E and the equivalence
B(I, 1) identifies I and Yg. Thus H -4 I shows that E is total (directly,
although that was already clear above since a full reflective subcategory of a
total is total) and hence complete in the usual sense. But from Lemma 1 we
also have E small so, by [3, Exercise 3D], E is an ordered set. O
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Theorem 3. A category B is equivalent to set if and only if B is totally distribu-
tive with V AW and V preserves pullbacks.

Proof. (only if) This follows from the introduction, for if we have U 4 V' then
certainly V' preserves pullbacks.

(if) Now T = V'Y preserves pullbacks. It follows from the construction of
H in Lemma 2 that H preserves pullbacks, so E is “lex total”, meaning that
the defining left adjoint for totality is left exact. (It necessarily preserves the
terminal object.) By [6] E is a Grothendieck topos (for since E is small the
size requirement in [6] is trivially satisfied). But since by Lemma 2, E is also
an ordered set, it must therefore be 1. Indeed, we have true = false: 1 — Q
imnE. O

Corollary 4. The category set is characterized by UV AW 4X Y.
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