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Abstract. It is well known that a generic compact Riemann surface of genus

greater than two admits only the identity automorphism; however, examples of

such Riemann surfaces with their defining algebraic equations have not appeared

in the literature. In this paper we give the defining equations of a doubly infinite,

two-parameter family of projective curves (Riemann surfaces if defined over the

complex numbers), whose members admit only the identity automorphism.

It is well known that a generic curve of genus greater than two admits only

the identity automorphism. Although this result was probably known by the

turn of the century, the first published proof was given by Bailey in 1961 [1].

To obtain the strongest results, Bailey's method is necessarily nonconstructive;
it does not yield an example of a defining algebraic equation for a curve with
no nontrivial automorphisms. Similarly a proof by Greenberg [4], using tech-
niques of Teichmüller theory, does not yield an explicit example of a Riemann

surface with a trivial automorphism group. Much of the subsequent work on

automorphisms of Riemann surfaces, including the author's, has relied on the

representation of a given Riemann surface as the upper half plane under the

action of a Fuchsian group. This again has the disadvantage of rarely yielding a
defining algebraic equation for the given Riemann surface. Indeed, in the pref-
ace to his book, The complex analytic theory of Teichmüller spaces, Subhashis

Nag exclaimed, "Almost every compact Riemann surface of genus g > 3 allows

only the identity automorphism. (I don't know, though, of even a single explicit

such algebraic curve whose automorphism group is demonstrably trivial!)."
The author believes that examples pertinent to famous theorems should be

readily at hand. Therefore, in this paper we give the defining equations of a

doubly infinite, two-parameter family of curves which admit only the identity

automorphism (see equation (1) below). The curves in this family have genus

(n - l)(m - I)/2 for relatively prime integers m and n which satisfy n >
m+l>3.

Let C be a curve defined by ( 1 ) and let C be a nonsingular projective model

for C. The proof that C admits only the trivial automorphism depends on the
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following salient property. If we exclude one exceptional case, C contains a

point Q with a gap sequence distinct from the gap sequence at any other point.
Thus any automorphism of C must fix Q. It is easily shown that only the

identity automorphism fixes Q, thus C has no nontrivial automorphisms.

I. Definition of C and preliminary properties

Let k be an algebraically closed field and let k* denote the nonzero elements
of k. We assume the characteristic of k is either 0 or p > 2. We denote two-
dimensional affine space over k with coordinates (x, y) by A2. Let m and

n be fixed positive integers such that (m, n) = I and n > m + 1 > 3. If the

characteristic of k is p > 2, we also assume that p does not divide (m-l)mn.

Let C = Cm¡n,A,B denote the locus in A2 of the equation

(1) f(x, y) = xn + ym + Axy + Bx = 0

for suitably chosen elements A and B in k*. Let C = C'm n A B be a non-

singular projective model for Cmt„tAtB. We will prove that each member of

the family {C'mnAiB} admits only the trivial automorphism group.

The only restriction required is that the choice of A and B makes the affine

curve C = Cmt„tAtB nonsingular. We note that (1) will be nonsingular in A2
if and only if ( 1 ) and its partial derivatives

(2) fx = nx"-x+Ay + B,    fy = mym~x+Ax

have no simultaneous zero in A2. To see this always can be accomplished, we

first choose an arbitrary value for A. If fix, y) = fxix, y) = fyix, y) = 0,

then

(3) 0 = xfx-f=in-l)xn-ym   and   x = '^^ ,

so

(4) (n-l)(~myAm~X)n -ym = 0.

Let {y,}-=1 be the distinct roots of (4). Choose B such that for each /',

(5) tÇZSl,»)^

Then C is nonsingular in A2. We shall henceforth assume that A and B are
thus chosen. In the appendix we will determine explicit examples of A and B.

Let K(C) = k(x, y) denote the function field of C. Note that / is the
irreducible polynomial for y over k(x). To see this, we apply Eisenstein's
criterion to ym+Axy+x"+Bx. Observe that x divides both Ax and x"+Bx,

while x2 does not divide x" + Bx. Thus / is irreducible over k[x], and so
over k(x).

If h £ K(C) and P £ C, we let ordP(h) denote the order of h at P.
We denote the divisor of h by (h) and the pole divisor of h by (/i)oo ; its

support consists of the points where the order of h is negative. If P £ C and

ordp(h) = 1, we say A is a local parameter at P. We let fí(0) denote the

holomorphic differentials of C. If D is a divisor, we let L(D) denote those

elements h £ K(C) such that (h) + D> 0. We let 1(D) denote the dimension,
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over k, of L(D). The automorphism group of C is denoted by Aut(C'). If

a £ Aut(C'), then a induces an automorphism of k(x, y), denoted by a*,

which satisfies o*(h) = h o o for all h £ k(x, y).
Let P2 = Y2(k) denote two-dimensional projective space with coordinates

denoted by (X, Y, Z). We consider the homogenization of ( 1 ) above, namely,

(6) F(X ,Y,Z) = X" + YmZ"-m + AXYZ"-2 + BXZn~x = 0.

We denote the locus of (6) in P2 by C. Note that C and C have the same

nonsingular model C. Let x and y denote X/Z and Y/Z respectively. The
only point at infinity (i.e., point with Z = 0) on C is the singular point

(0, 1,0). The following argument shows there is only one point on C, which

lies over (0, 1,0). Let Q be any point on C which lies over (0, 1,0). Both

x and y must have a pole at Q. From (1) we obtain «(ordß(x)) = m(ordQ(y)).
Since (m, n) = 1, we have n divides ordg(y) and m divides ordg(x). But

the degree of (x)^ and (y)^ are m and n respectively. Thus jc and y have

orders -m and -« respectively at Q. This implies that Q is the unique point

on C lying over (0, 1,0). Recall that we defined C to be the affine locus of
(1). Thus we may view C as {Q} union C.

Lemma 1.1. Let co = dx/fy. Then co £ fí(0) and the genus of C is

(m-l)(n-l)/2.

Proof. Let P — (a, b) £ C. Recall that (x -a) is a local parameter if and

only if fy(a, b) ¿ 0. Thus, if (jc - a) is a local parameter, then co - dx/fy -

d(x - a)/fy has order 0 since fy(a ,b)j^0. If on the other hand x - a is not
a local parameter, then y - b is a local parameter, so the same argument can

be used on co — -d(y -b)/fx. Thus at each point of the affine plane co has
order 0. Since the degree of a differential is 2g - 2, where g is the genus of
C, we obtain ordg((y) = (2g - 2)Q.

To determine the genus of the curve we first observe that ordß(x) = -m
and ordç2(dx) = -m - I. From (2) we obtain ordQ(fy) = «(1 - m). Thus
ordß(<y) = n(m - 1) - m - 1. Upon equating this to 2g - 2 we obtain g =

(n-l)(m-l)/2.

Recall that t is said to be a gap at P £ C if there exists no function / such
that (/)oo = tP. A simple consequence of the Riemann Roch theorem [2], [3]

is that t is not a gap at P if t > 2g, and there are g positive integers which
are gaps at P. Thus to each point P £ C we can associate its (increasing) gap

sequence (tx, ... , t¡... , tg), where each /, is a gap at P and 1 < tg < 2g-l.
Let W denote the divisor (2g - 2)Q. Thus W + Q = (2g - l)Q. The

Riemann Roch Theorem yields that l(W + Q) = 2g - 1 + 1 - g = g.

Lemma 1.2. Let P £ C. Then t is a gap at P if and only if there exists an
h £ L(W) such that ordP(h) = t - I.

Proof. Apply the Riemann Roch theorem to L((t - l)P) and L(tP). Observe

that t is a gap at P <=> l((t-l)P) = l(tP) *=> l(W-tP) <l(W-(t-l)P).

II. THE GAP SEQUENCE AT  Q

In this section we construct a basis for L(W + Q) and use it to examine the
gap sequence at Q. To do this we need a preliminary lemma on the greatest

integer function.
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Proposition II.l. Let N and M denote positive integers, and let (N, M) - I.
Then

(N-l)(M-l)

2

Proof. See [6].

Proposition II.2. Let M and N be arbitrary positive integers, such that N > M

and M does not divide N. Then [N/M] equals the number of nonnegative
integers less than N which are congruent to N mod M.

Proof. Assume 7Y = Mq + r, with 0 < r < M. Then [N/M] = q. In addition,
the q integers: r, M+r, 2M+r, ..., iq-l)M+r, are the nonnegative integers

which are both congruent to N and less than N. This proves the proposition.

Lemma II.3. L((m - l)nQ) is spanned by the set T = {x'yj : i > 0, j >
0, mi + nj <(m- l)n}.

Proof. Let U — {0, 1, 2, ..., (m - 1)«} and S = {c : c £ U and c — mi +
nj for some nonnegative integers /' and j}. Each c £ U corresponds to the

order of a pole of an element x'yj £ T. We determine the cardinality of S
by determining the elements of U which are in Sc, the complement of S.

Since (m, n) = 1, the integers 0, n, 2n, ... , im-l)n form a complete set of
residues mod m. Thus a given element of U is congruent to kn for a unique

k with 0 < k < m. Let a £ U. A little thought shows that a ^ S if and
only if a = kn (mod m ) and a < kn. From Proposition II.2 the number of
nonnegative integers congruent to kn and less than kn is [kn/m]. Thus, from
Proposition II. 1, there are

m ï:'[^]-"-'>'-"->
k=l

elements in U n Sc. Thus there are im - l)n + 1 - g elements is S and thus

in T. Since (m, n) = 1, ord(x'yfc) ^ ord^'y*') for 0 < k < m - 1 and

0 < k' < m - 1 unless i = i' and k = k'. Thus the elements of T are linearly

independent over k. To show they span L((m - l)nQ), we appeal to the

Riemann Roch theorem:

(9) ¡Urn - l)nQ) = im - l)n + 1 - g + /(W7 - (w - l)nQ) = (m-l)n+l-g.

Thus we see that T spans L((m - l)nQ).

Corollary II.4. L(W) and L(W + Q) are spanned by

(10) T' = {xiyj : mi+nj <(2g-2)}   and   T" = {x'yJ' : mi + nj < (2g-l)}

respectively.

Proof. This follows directly from the facts that L(W) and L(Q + W) are
subsets of L((m - l)nQ) and the orders of elements of T are distinct.

For the purpose of later comparing Q with points of C we note the following

corollaries.

(7)
kN

M
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Corollary II.5. Let n = mq-r with 0 < r < m. Then m is not a gap at Q.

However n + r - 1 is a gap at Q if r ¿ 1.

Proof. Follows directly from (10). Since (jc)«, = mQ, m is not a gap at Q.
To prove the second statement we note that n + r - 1 < 2n and n + r - I is
not a multiple of m. The only nongaps less than 2« which are not multiples

of m are congruent to n mod m. Thus n + r - 1 is a gap if r # 1.

Corollary II.6. If P is a point of C and there exist functions h and g such

that Aoo = mP and goo = nP, a basis for L((2g - l)P) is given by 7> =

{hlg> : mi + nj <2g-l}.

Proof. ordp(h'gj) = ord^jc'y7) for all nonnegative i and j. Thus there are

g elements in 7>. Since elements in 7> have distinct orders at P, they form

a linearly independent set over k. Thus 7> is a basis for L((2g - l)P).

III. THE GAP SEQUENCE AT POINTS OF  C

We first turn our attention to the gap sequences of points on P £ C with
P ¿(0,0).

Lemma III.l. Let P = (a,b)¿(0, 0). Then ord/>(jc - a) = 1 or 2.

Proof. Consider the curve G = mYm~x + AXZm~2 and let F be defined

as in (6). By Bezout's theorem [3], F = 0 and G = 0 intersect at ex-

actly n(m - I) points in P2 counting multiplicities. Since G(0, 1,0) ¿ 0,

all points of intersection lie in A2. However, G(a, b, 1) - 0 if and only if

fy(a, b) = 0. Thus the points of intersection of F and G are the points

(a, b) on C where jc - a is not a local parameter. These are the points where

h(y) = f(-mym~x/A, y) = 0. This is a polynomial in y of degree n(m - 1).
From elementary algebra, h(y) will have multiple roots only at points where the

formal derivative of h has a root in common with h . But the formal derivative
of A is (fx)(-m(m-l)ym'2/A) + fy evaluated at the point (-mym~x/A, y).

Since fy = 0 at this point, fxJ^0 there. By our assumptions on the character-
istic of k, m(m -1)^0. Thus y = 0 is the only multiple root of h(y). Since
y = 0 is a root of order m - 1, we see that h(y) has (n - l)(m - 1) = 2g dis-

tinct, nonzero roots, say bx, ...big. Let a¡ — -mb™~x/A and let P¡ = (a¡, b¡)
for i = 1,2, ... ,2g. Then (0, 0) and the points (a,-, b¡) are the points where

x - a¡ is not a local parameter. Thus at these places, ordpfdx) > 1. But the

degree of dx is 2g - 2, ordQ(dx) = -m - 1, and ord(0,o)(¿Jc) - m - I.
This forces ordpfdx) - I for i - 1, 2, ... ,2g. Thus if jc - a is not a local
parameter and a ¿ 0, then jc - a has order 2.

Lemma III.2. Let P = (a, b) ± (0, 0). Then m is a gap at the point P.

Proof. From Lemma 1.2 it suffices to show there exists an h £ L(W) with
oxdp(h) — m — 1. Assume first that (jc - a) is a local parameter. Then
ordp(x - a)m~x = m - 1. In addition, since n > m + 1, we see from (10)

after a short calculation that (jc-a)m_1 £ L(W). Thus mP isa gap. If

x - a is not a local parameter, Lemma III.l yields that ordp(x - a) - 2. If

m - 1 = 2t + s with j = 0 or 1, then ord/>(jc - a)'ys = m — 1, and from (10),
after a short calculation, we see (x - a)'ys £ L(W). Thus in either case m is

a gap at P.
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Lemma III.3. If (0, 0) ¿ P £ C, then P and Q have différent gap sequences.

Proof. From the above lemma and Corollary II.5, m is a gap at P, but m is
not a gap at Q.

We now consider.the gap sequence at P — (0,0).

Lemma III.4. Let P — (0,0) and n = mq -r with 0 < r < m. Then n + r-l
is not a gap at P.

Proof. The function y/x9 has order 1 - mq at P. Since the function is defined

at every other point, we see mq - 1 = n + r - 1 is not a gap at P.

Lemma III.5. Let P = (0, 0). If n = mq - r for nonnegative integers q and

r,  with 1 <r < m, then Q and P have different gap sequences.

Proof. Lemma III.4 and Corollary II.5 yield that n + r-l is not a gap at P
but is a gap at Q.

Corollary III.6. If n = mq - 1, then the gap sequences for Q and P - (0,0)
are identical. In addition, a basis for L((2g-l)P) is {x~'(y/xq)~j : mi + nj <

(2g- 1)}.

Proof. (1/jc)oo = mP. In addition, (y/xq)oo = nP. Thus Corollaries II.4 and

II.6 yield that Q and P have the same gap sequences and that the stated set is

a basis.

IV. The automorphism group of C

Proposition IV.l. If n ^ -1 mod m, any automorphism of C must fix Q.
If n = -I mod m, any automorphism of C must either fix Q or map Q to

(0,0).
Proof. A point and its image under an automorphism must have the same gap
sequence. Thus the proposition follows from Lemmas III.3, III.5, and III.6.

Theorem IV.2. The curve C has no nontrivial automorphisms.

Proof. From the proposition, it suffices to prove the following two lemmas.

Lemma IV.3. There is no nontrivial automorphism of C which fixes Q.

Proof. Let n = mq + r with 0 < r < m. Let a £ Aut(C') such that o(Q) = Q.

Thus a induces a map a* on the function field KiC). Since a fixes Q, a

must map jc and y to functions with poles of order m and n respectively at

Q. From (10) we obtain ct*(jc) = axx + oq and c*(y) — by + h(x), where h

is a polynomial of degree at most q,   ao £k, and ax, b £ k*. From

(11) (T*(jc',+ym + ^jcy + 5x) = 0,

we obtain

(12) (a0 + axx)n + (h(x) + by)m + A(a0 + axx)(h(x) + by) + B(oq + axx) = 0.

By the uniqueness of the irreducible polynomial (1) we see that h(x) is iden-

tically 0. Thus, again by the uniqueness of the irreducible polynomial (1) we

obtain an = 0. Thus

(13) (axx)n + iby)m + A(axx)(by) + B(axx) = 0.

This forces ax — bax, so b = 1. Thus ax = 1. Thus a is the identity.
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Lemma IV.4. There is no automorphism mapping Q to P = (0, 0).

Proof. From Proposition IV. 1 we may assume n = mq - 1. Let o £ Aut(C')
with a(P) = Q. P is the unique point of C with the same gap sequence
as Q. From Lemma IV. 3, it is clear that a must have order two, and must

interchange P and Q. Thus o*(x) and o*(y) must have poles of order m

and n at P respectively. Corollary III.6 yields that o*(x) = ax/x + oq and

o*(y) - h(l/x) + by/xq, where a$ £ k, ax, b £ k*, and « is a polynomial

of degree at most q—\. Since a* has order 2, this yields

(14) x = o*(ax/x + a0) =► jc = —r—-I-an =>■ ßo = 0.
Û1/JC + üto

Thus

(15) <7*(x"+ym-Mjcy + .Bjc) = 0

yields

(16) (ax/x)n + (h(l/x) + by/x")"1 + A(ax/x)(h(l/x) + by/xq) + B(ax/x) = 0.

By the uniqueness of the irreducible polynomial ( 1 ), we see h(l/x) is identically

0. Thus,

(17) (ax/x)n + (by/xq)m + A(ax/x)(by/xq) + B(ax/x) = 0.

Multiplying (17) by xqm = xn+x we obtain

(18) of jc + (by)m + Aaxbyx"-q + Baxxn = 0.

This forces n - q + 1, which contradicts n — mq - 1 > m + 1 > 3.

This completes the proof of the theorem.

Appendix

We now restrict our field k to be the complex numbers. Recall that A and

B are required to be chosen to insure that (1) is nonsingular in A2. From (4)
and (5) we observe that for each choice of A at most (m — 1)(« - 1) choices
of B will be unsuitable. The following lemma states a sufficient (but by no

means necessary) condition for A and B to make (1) nonsingular. We leave

the proof, which uses elementary properties of integral ring extensions, as an

exercise.

Lemma. If A and B are nonzero integers such that either nm-m-n does not
divide B or A does not divide Bm2(n - 1),  then (I) is nonsingular in A2.

As a simple consequence, we note that for arbitrary n and m, if B = 1,

then A can be chosen to be any nonzero integer.
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