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(Communicated by Peter Li)

Abstract. Let (Mn , o) be a pointed open complete manifold with Ricci cur-

vature bounded from below by —(n - 1)A2 (for A > 0) and nonnegative

outside the ball B(o, a). It has recently been shown that there is an upper

bound for the number of ends of such a manifold which depends only on Aa

and the dimension 71 of the manifold M" . We will give a gap theorem in this

paper which shows that there exists an e = e(n) > 0 such that M" has at

most two ends if Aa < e(n). We also give examples to show that, in dimen-

sion 7i > 4, such manifolds in general do not carry any complete metric with

nonnegative Ricci Curvature for any Aa > 0 .

1. Introduction

The Cheeger-Gromoll splitting theorem states that in a complete manifold

of nonnegative Ricci curvature, a line splits off isometrically, i.e., any nonneg-
atively Ricci curved M" is isometric to a Riemannian product Nk x Rn~k,

where yV does not contain a line (cf. [CG]). In particular, such a manifold has

at most two ends. Recently, the first-named author and independently Li and

Tarn have shown that a complete manifold with nonnegative Ricci curvature

outside a compact set has at most finitely many ends [C, LT]. At about the same
time, Liu has also given a proof of the same theorem with an additional condi-

tion that there is a lower bound on sectional curvature [L], which was removed

shortly after the appearance of [C]. In this paper, we consider manifolds with
nonnegative Ricci curvature outside a compact set and prove the following gap

theorem.

Theorem. Given n > 0, there exists an e = e(n) > 0 such that for all pointed

open complete manifolds (Mn , 0) with Ricci curvature bounded from below by

-(« -1 )A2 (for A > 0 ) and nonnegative outside the ball B(o, a), if Aa < e(n),
then Mn has at most two ends.

A natural question one would like to ask is whether this theorem can be

improved so that M" must carry a complete metric with nonnegative Ricci

curvature. Indeed, it is easy to see by volume comparison that the answer to
the above question is affirmative in dimension 2 since the Euler number of such
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a 2-dimensional complete manifold is an upper bound for the total curvature

integral. However, such a gap theorem is the best one can have in dimensions

higher than 3 as illustrated by the following examples.
For any e > 0, by gluing two sharp cones together at the singular point, it is

easy to construct a complete metric on RxSn~2, n > 4, with Ricci curvature

bounded from below by -e and with nonnegative sectional curvature away

from a metric ball of radius 1. By applying the metric surgery techniques as in

[SY] to the manifold Sx x R x S"~2, one obtains an «-dimensional complete

manifold M of infinite homotopy type with exactly two ends and with Ricci

curvature bounded from below by -e and with nonnegative Ricci curvature

outside a metric ball of radius 1. M certainly cannot carry any complete metric

with nonnegative Ricci curvature since the Cheeger-Gromoll splitting theorem

implies that a nonnegatively Ricci curved manifold with exactly two ends must

split isometrically into the product of R with a closed manifold and therefore

has finite homotopy type.
The above examples are not valid in dimension 3 since the kind of met-

ric surgery lemmas are not available. Therefore, the following problem is of

particular interest:

Does there exist an e > 0 such that if (M, o) is a pointed noncompact

complete 3-dimensional manifold with Ricci curvature bounded from below by

-e and nonnegative outside the unit metric ball B(o, 1), then M carries a
complete metric with nonnegative Ricci curvature?

2. Proof of the theorem

There are various (but equivalent) definitions of an end of a manifold. For

the sake of our argument, we use the following (compare with [A]).

Definition 2.1. Two rays yx and y2 starting at the base point o are called cofi-
nal, if for any r > 0 and all t > r, yx(t) and y2(t) lie in the same component

of M - B(o, r). An equivalence class of cofinal rays is called an end of M.

We will denote by [y] the equivalence class of y.

Notice that the above definition does not depend on the base point o and

the particular complete metric on M. Thus the number of ends of M is a

topological invariant of M.

The following lemma is a refined version of Proposition 2.2 in [C] and can

be proved by the same argument.

Lemma 2.2. Let M be as in the theorem. If [yx] and [y2] are two different ends

of M, then for any tx, t2 >0, d(yx(tx), y2(t2)) >tx+t2-2a.

In what follows, let Mn be as in the theorem. By scaling, we may assume

that Ric(M") >-(« - 1).
Following Abresch and Gromoll in [AG], let 4>(x) be the function defined

on ß_i(o, 1) - {o}, the truncated unit ball in the hyperbolic space H", with

the following property:

A<t> = 2(n-1),

^laß_l(i) = 0-
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It is easy to see that <j>(x) = G(d(o, x)), where

Given a continuous function u: M —> R and x £ M, a continuous function

ux: M —> R is called an upper barrier of u at x if ux(x) = u(x) and u <ux .

The following lemma is a slight generalization of Theorem 2.1 in [AG].

Lemma 2.3. Let M" be a complete Riemannian manifold with Ricci curvature

bounded from below by -(« - 1). Then there exist an e = e(n) > 0 and a

S = S(n) > 0 such that
u(x) <2-2S-4e

for all x £ S(o, 1 - ô) if u: M" —> R is a continuous function which satisfies
the following properties:

(1) u(o) = 0,

(2) u>-2e,

(3) dil(w)<2,

(4) Am < 2(n - 1),

where dil(u) = supx_^ \u(x) - u(y)\/d(x, y) and the last inequality is in the

barrier sense, that is, for any x £ M and a > 0, there is an upper barrier of u

at x, uXta, such that ux<a is smooth near x and Aux,a(x) < 2(n - 1) + a.

Proof. Consider H(r) = 2r + G(r). Notice that G(l) = 0 and G'(l) = 0.
Hence H(l) = 2 and H'(r) > 0 for r close to 1, and therefore there exists a c

such that 0 < c < 1 and H(c) < 2. Now choose ô = ô(n) and e = e(n) such

that

(5) 0 < S < \ min{2 - H(c), 1 - c}

and

(6) 0<e< imin{C7(l-r5),2-//(c)-2á}.

Consider the function v(y) = u(y) - G(d(x,y)) on the annulus B(x, 1)\

B(x, c). The well-known Laplacian comparison theorem for distance functions

(cf. [EH]) implies that Av < 0 (in the barrier sense). By the maximum principle

[EH], v achieves its minimum on the boundary of the annulus. Since o is an

interior point of the domain by (5) and v(o) = u(o)-G(d(o, x)) = -G(l-ô) <

-2e by (6), there exists a point z on the boundary of the domain such that

v(z) < -2e. But on S(x, 1), v = u - G(l) = u > -2e by (2). Hence
z £ S(x, c). Combining this with (3) and (6), we conclude that

u(x) < u(z) + 2c = v(z) + H(c) < 2 - 20 - 4e.

This proves Lemma 2.3.

Remark 2.4. For a ray y in M, let by be the associated Busemann function,
i.e.,

by(x)= lim(d(y(t),x)-t).
I—>oo

It is well known (e.g., see [EH]) that, in the barrier sense, Aby < n - 1 . We are

now in position to prove the theorem.
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Proof of the theorem. Let M" be as in the theorem with A = 1. Let e = e(n)
be as in Lemma 2.3. We need to show that when a < e, Mn has at most two

ends. Suppose not. Let [yx], [y2], and [73] be three different ends. Consider

u := byx + by2. We claim that u satisfies the conditions in Lemma 2.3. As

a matter of fact, (1) and (3) are clear, (4) is by Remark 2.4, and (2) is a
consequence of the triangle inequality and Lemma 2.2. From Lemma 2.3, we

conclude that

(7) u(y3(l - S)) < 2 - 20 - 4s.

On the other hand, it follows from Lemma 2.2 that for any r > 0,

"(73(0) > 2t-4a.

In particular,
u(Yi(l - ô)) >2(1 - Ô) - 4a>2 - 20 - 4e.

This clearly contradicts (7) and hence completes the proof of the theorem.
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