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A UNIFIED APPROACH TO SOME PREDICTION PROBLEMS

STEPHEN D. ABBOTT

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we solve a general extremal problem for a nonnega-

tive operator in Hubert space. We show that it contains the classical infimum

problems of Szegö and Kolmogorov for bounded weight functions on the circle

and also prove some new prediction theorems.

1. Introduction

Let C be the complex numbers, D = {z G C : |z| < 1}, and dD = {z £

C : |z| = 1}. Define the function % on dD by xie'e) = e'e > and let a

be the normalized Lebesgue measure on dD. Given a nonnegative function

co(e'e) G Lx[dD], we state two classical theorems from prediction theory:

(i) Szegö's infimum:

inf < /   \l - xp\2ojdo : p = ^2cjXj \ = exp I /   logo)da j ;

(ii) Kolmogorov's infimum:

1 - p\2œda :p = y^ cix1, /   pda = 0} = \       —da
.£*» ho [      [Jor>w

-i

\J\<«

If the function appearing on the right-hand side of either equation above is not

integrable, the infimum is understood to be zero.
We now pose an abstract problem that essentially contains both of these. Let

AAf be a Hilbert space with inner product (•,•), and let ¿%(A¿A) be the set of

bounded operators on A?. Let F be the orthogonal projection onto a closed

subspace fê C 5A, and let IF be a nonnegative operator in ^(^A). Now fix

k £ %? and consider

iaf{(W(k - f), (k - f)) : f £¿f, Pf = 0}.

Received by the editors December 18, 1992 and, in revised form, May 3, 1993.

1991 Mathematics Subject Classification. Primary 47B65, 47N30, 60G25; Secondary 47B35.
Key words and phrases. Szegö's infimum, Kolmogorov's infimum, prediction theory, Hardy

space, Toeplitz operator, Hilbert space.

The author would like to acknowledge and thank his advisor, Professor Marvin Rosenblum, for

many helpful suggestions and conversations.

© 1994 American Mathematical Society
0002-9939/94 $1.00+ $.25 per page

425



426 S. D. ABBOTT

We can recover Kolmogorov's infimum via the identification Jz? = L2 , W = C,

k = 1, and W = Mm, which is multiplication by co. Note, however, that in

this formulation co must be bounded. For Szegö's infimum we let Jz? be the

Hardy space 772 of the circle and W be the Toeplitz operator Tœ , which is

multiplication by co followed by the projection onto 772 . Here again co must

be bounded for Ta to be in &(H2).
In this paper we give a solution to the abstract extremal problem and then use

it to derive the two classical results mentioned above. Because the hypothesis
of the abstract result is so minimal, it is useful in solving many other prediction

problems, and we explore some applications in the second half of this paper.

For other generalizations of Szegö's infimum see [4, 5, 7]. Vector generalizations

of Kolmogorov's infimum are also discussed in [7].

2.  A GENERAL PREDICTION THEOREM

We will need the following fact.

Lemma 0. Let JA be a closed subspace of a Hilbert space 2A, and let g £ A?.

Then

iaf{\\g + m\\:m £JA} = sup{\(g ,l)\:lLJA ,\\l\\<l}.
Proof. Let Pjg be the projection onto JA and F>± = 7 - F> . Then

inf{||s + m\\:m£JA} = \\g - Pjrg\\ = \\Pjt±g\\

= sup{|(F#xg,/)|:/G^±,||/||<l}.   D

To prove the main result we temporarily assume that the nonnegative oper-

ator W is invertible in 3ë(5A). If F is the projection onto a closed subspace

? of SC, then the compression A = PW~XP is nonnegative and invertible in

¿B{&) since for ce?, (Ac, c) = (W~xc, c) > S\\c\\2for some <5>0.

Theorem 1. Let W be nonnegative and invertible in &(A¿f), and let P £A32(Se)
be the projection onto a closed subspace ^ ç A&. Then for any k £%?,

iaf{(W(k-f),(k-f)):Pf = 0} = ([PW-xP]-xk,k).

Proof. Set JA = {Wx'2f : Pf = 0}. Then

iaf{(W(k -f),(k-f)):Pf = 0} = iaf{\\Wx'2(k - f)\\2 :Pf = 0}

(1) = inf{\\Wl'2k-m\\2:m£Jt}

= [sup{|(IF1/2fc,/)|:/±^,||/||<l}]2

by Lemma 0. But ILJA if and only if IF1/2/ g ?, so

upiKIF'^/c, />| : ILJA, \\l\\ <l} = supj1^'^'01 : IF1/2/ G i?}

í\(Wxl2k,W~xl2c)\ „\ f   |<ik,c)| &\
(   iiif-^h   :c6g}=mpln^4¡i:c€gr)-

(2)
= sup

Recall that the operator A = PW 'F is nonnegative and invertible in ^(i

and 11IF-'/^l| = \\Ax'2c\\. Thus,

f   \{k,c)\ „\ \\(A-xl2k,Axl2c)\

= sup {¡(A''l2k, c)| : c E r, ||c|| - l} = p-"2«r||.
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The last equality is true by observing that the supremum is attained when c =
^-1/2rc/p~1/2rc||. Putting (l)-(3) together gives

iaf{(W(k-f),(k-f)):Pf = 0}
= p~1/2rc||2 = (A-lk, k) = ([PW~xP]-xk,k).   D

One attack on the case where the weight IF is not invertible is to consider

the weights W£ = W + el, where e > 0 and 7 is the identity operator on A?.

Theorem 2. Let W £ £g(SA) be nonnegative, and let P £ £%(Sf) be a projec-

tion. If k £ PA?, then

iaf{(W(k-f),(k-f)):Pf=0} = lim([PW-xP}-xk,k).
s->0

Proof Let ß = iafPf=0(W(k - f), (k - /)) and

ßE=  iafo(WE(k-f),(k-f))

=  iafQ{(W(k-f),(k -f)) + e\\k -/||2}.

The ß£ 's are monotone decreasing with decreasing e and bounded below by

ß-
Let ô > 0 be arbitrary.   Choose /' so that Pf = 0 and (W(k - /'),

(k-f'))<ß + j. Next choose e0 so that e0p - /'||2 < § . Then

ßEo =  iffo{(W(k -f),(k- /)) + eollfc - /II2}

<(W(k-f'),(k-f'))+£o\\k-n2<(ß + 0^j + \ = ß + o.

Hence, ßCQ - ß < ô , which implies lim£_0 ßt-ß- The theorem follows from

Theorem 1.     D

3. Applications

We first show that Theorem 2 implies the Szegö and Kolmogorov results for
bounded weight functions.

Example: Kolmogorov's infimum. Let co(e'e) > 0 be in L°°[öD], and let Pf =

Sdo fd°~ f°r / G L2. Then Theorem 2 with k = 1 asserts that

inf {/ u -n
KJdD

= lim [ /

wda:f£L2,Pf

1

CO + E
-do

= o) = lin

I   L*°\

hmUFA/^F]-1!,!)

The last equality is from the monotone convergence theorem.   If ¿  is not
integrable then the limit is zero.

Example: Szegö's infimum. Let co(e'6) >ô>0 be in L°° [dD], and let

g(z) = exp Lw^Mh)
1/2

do ZGD.

Taking boundary values we get l/co(e'8) = \g(ei0)\2 a.e., where g £ H°° and

g is outer [2, p. 67], Let Tw be the Toeplitz operator on 772 with symbol co.
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Then Tm ' = TgTg [6, p. 64] . We continue to let F be the projection onto the
constants and employ Theorem 1 to get

iaf{j^\l-xf\2codo:f£H2} = ([PTgTgP}   'l,l

W,i,i)
But ||r?l||2 = |¿r(0)|2 and l/\g(0)\2 = exp[fdDlogcodtj].

\Tgl\\2'

If co is not bounded below, then Theorem 2 implies

inf
/etf2

ii   \l-xf\2codo
(JdD

> = lim exp   /   log(
i     «-o       [JdD

(co + e)do

and a monotone convergence argument gives the result.

Example: The Kolmogorov and Szegö Ínfima in two variables. Let co(e'e, e1^)

be a nonnegative bounded function on dD x dD. For this example let L2 be

the Hilbert space of square integrable functions on dD x dD, and let 772 be

the analytic "quarter space" of L2. That is, f £ H2 if / g L2 and

/    /   f(eie ,el*)eme+in*do(Q)do(tp) = 0,
ha ha

whenever « or m is positive. This is a closed subspace, and we let PHi be

the orthogonal projection from L2 onto 772. Finally, let Tw £ AA8(H2) be
the Toeplitz operator taking / to PHiCof, and assume Tm is invertible. Then

Theorem 1 implies

inf(/    /   \l-f\2codo(Q)da(<p):f£H2,\   [  fda(Q)da(tp) = o\
(JdD JdD JdD JdD )

1

(FJ'1, 1)

This is a bit unsatisfying since not much is known about T~x, but it does reduce

the task to the seemingly easier problem of evaluating (Fj11, 1).

For Kolmogorov's infimum we have

iafif    f   \l-f\2codo(6)do(cp):f£L2,[    [   fdo(6)do(tp) = o\
U3D JdD JdD JdD )

= \f   f   ydo(d)do(ci>)\     ,
YJdD JdD W

and similar results hold in cases of more variables.

Example: A generalized Kolmogorov infimum. Returning to the one-variable
setting, we again consider a nonnegative bounded function co on dD. Let N

be a nonnegative integer.

Proposition 3. If ¿ £ Lx, then the matrix [°<m,n]mNn=-N &ven by otm¡n =

JdD Xn~m^do is invertible, and for fixed p = T,\j\<n c)Xj >

2

'do: Y, \cj\2<
\j\>N

inf
/JdD

\J\>N

Cut 00 »  = ([am,n]    ' P,P)-
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Proof. Notice that ker[am,„] = {0} since for any nonzero p' = Y,iji<NdjXj,

[c*m,n]

d- N -N

IN

-L\p/|2
0D    <»

-do > 0.

Thus [am>„] is invertible. Let e > 0, and let F be the projection in L2 onto

\/{XJ- \J\<N}. By Theorem 2,

inf •
/JdD

p-J2 cjxj
\J\>N

COdo : £ lof <
\j\>N

OC )=lim([PMZx+EP]-xp,p).

Represent PM~\tP with the (27V-1) x(2./V-1) matrix [aem „] where oAm n =

IdD7àiXn~mdo. Since ¿ G L1, lim^o ¿4, « = <*„,,„ and it follows that

lime^o([aem,n]~lP, P) = ([am,n]~lP, P) ■   □

A similar problem is discussed in [3, p. 83].

Example: A Kolmogorov infimum for 2x2 matrix-valued weights. Let

w(j*\- I"®»(*''*)   œn(eie)'
W{e  >-[cox2(eie)   co22(eie)_

define a bounded nonnegative weight on L2 functions from dD into C2. For

e > 0, set We = W + el. The function det IF = coxxco22 - \cox2\2 is nonnegative
and bounded, and the corresponding function det We = (coxx + e)(co22 + e) -

|<yi2|2 is bounded away from zero. Thus

W~\ew)
1 co22(eie) + e     -cox2(ew)

-cox2(ew)    coxx(ew) + edetWE(eie)

If P is the projection onto the space of constants C2, then

PWrxP=   _" M2
aX2    a22

where

«îi=/ Jdi

co22 + e
do

.      "12 =   /
Jdl

-cox2
do.

«22 »   /Jd

COXX +£

öd detIFe
do.

/aDdetIF£""'     -»     JdX>detWs

Proposition 4. 7/ ¿¿^ £ Lx and k £ C2, f/ze«

inf{(IF(Ä: -f),(k- /)) : F/ = 0} = ([a,,,]-1*, fc),

where

Í        œ22     A f      -Q>12   j. f        0)XX
a" = JdDdeTwda>    ai2 = JdDdeTWd(7>    a22 = LdetWda-

Proof. Dominated convergence implies lime_o af; = «o • By Theorem 2,

inf (W(k - f), (k - /)) = Um([aU-xk, fc)
p/=o e—0

lim
£—0 Ml "22 E12l

a22       a12

—ai,    ae
M2 '11

/c, /c
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We know a priori that this limit exists for all k, but before distributing the limit

through we must make sure we do not have an indeterminate form. Choosing

k = [0] produces lime^o(a22/(o:exxa22 ~ lanl2))- Since the numerator does

not go to zero,  lim^o^n^ - Wx2\2) > 0.   Thus [a,-_,-] is invertible, and

iafPf=0(W(k -f),(k- /)) = ([au]-xk, k).   D

Moving to the larger-dimensional case is more complicated because it is dif-

ficult to show, and may be false, that [a,-;] is invertible. Before doing one last

application of Theorem 2 we state a short lemma back in the abstract Hubert
space setting.

Lemma 5. 7/ IF g 3§(S?) is nonnegative and P £ 3ë(2A) is a projection, then

for any k £5A

iaf{(W(k-f),(k-f)):Pf = 0} = iaf{(W(Pk-f),(Pk-f)):Pf = 0}.
Proof. Write k = Pk + k', where Pk' = 0. Then

f),(k-f))=  inf■(W(Pk-(f-k')),(Pk-(f-k')))iaf(W(k
Pf=0

f))=iafQ(W(Pk

=  iafo(W(Pk-f),(Pk-f)). D

Example: Unbiased estimation. Let {y/j}f=0 De a set of linearly independent

vectors in L2[9D], and let c¡ £ C for each / . Given a nonnegative function

co £ L°° and k £ L2, we consider

inf{/
(JdD

\k + f\2codo :f£L2,(f, y/j) = Cj,0<j<N

The approximating vectors do not lie in a subspace but rather are restricted by

a set of linear functionals.

We first apply the Gram-Schmidt process to the vectors {y/j}^ • ^ne a^°"

rithm for computing the new vectors and new values of the c¡ 's is straightfor-

ward [1, p. 25], so without loss of generality we proceed under the assumption

that {vo}^L0 is an orthonormal set.

Proposition 6. If ¿ G L°° , then

iafij   \k + f\2codo :f£L2,(f, y/j) = c}■■, 0 < j < n\

a0

aN

a0

aN

where a¡j = jaD(y/jiPi/co) do and a¡ = (k, y/j) + Cj.

Proof. If P is the projection onto \l{y/j : 0 < j < N} , then

Pf = ̂ f,¥j)Vj
;=0

for f £ L2 . Let JA = PL2 , and observe that the vector p = £]>=o ci Vi IS tne

unique vector in Jf satisfying (p, y/j) = Cj for all 0 < j < N. We now claim

that

{/:(/, y/j) = Cj,0<j<N} = {p + l:l£L2,Pl = 0).
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To verify this, let f £ L2 satisfy (/, y/j) = Cj for all 0 < j < N.  Then
Pf also satisfies this condition, so Pf = p. Thus / = p + (I - P)f which
gives one inclusion.   The reverse inclusion follows from the straightforward
calculation that (p +1, y/j) = c¡ for all 0 < j < N.

So we can rewrite the above infimum as

iaf{(Mw(k + f),(k + f)): (/, y/j) = c},0<j<N}

= iaf {(Mm(k +p + l),(k+p + l)):Pl = 0}

= iaf {(Mw(Pk +p + l),(Pk+p + l)):Pl = 0},

where the second equality is a consequence of Lemma 5. By Theorem 2, this
infimum is equal to

lim([PM-lPrx(Pk+p),(Pk+p)).
e—»0

Using {y/j}jL0 as an orthonormal basis for JA, we have Pk+p = Y^j^QjVj

where üj = (k, y/j) + Cj. We can also represent the operator PM~\tP with the

matrix [af j]fJ=0, where af j = ¡dD VyWs+î da ■ Since ¿ G L°° , dominated

convergence implies lime_oaf ; = otij ■ The matrix [a¡j]f =0 must be invert-

ible since for any nonzero g £ JA we have ([a¡j]g, g) = JÖD(|,?|2/<y) do >0.

Hence

lim([PM-x+tP]-x(Pk + p), (Pk+p)) = ( [atj]-1

a0

aN

ao

laN

The assumption ¿ G L°° ensures that the integrals appearing above are finite.

We could relax this to ¿ G Lx and instead assume the y/j's are bounded.
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