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A UNIFIED APPROACH TO SOME PREDICTION PROBLEMS
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(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In this paper we solve a general extremal problem for a nonnega-
tive operator in Hilbert space. We show that it contains the classical infimum
problems of Szeg6 and Kolmogorov for bounded weight functions on the circle
and also prove some new prediction theorems.

1. INTRODUCTION

Let C be the complex numbers, D = {z € C: |z|] < 1}, and D = {z €
C : |z| = 1}. Define the function y on 8D by x(e'?) = ¢, and let o
be the normalized Lebesgue measure on dD. Given a nonnegative function
w(e'%) € L'[0D], we state two classical theorems from prediction theory:

(i) Szegd’s infimum:

N
inf / 1 - xpPwdo:p=> cix/ =exp(/ logwda>;
aD oD

Jj=0

(i) Kolmogorov’s infimum:

‘ 1 -1
inf / 1 -plwdo:p= c~x1,/ do=0}% = [/ —da] .
3D| | P Z ’ BDp op W

liI<N

If the function appearing on the right-hand side of either equation above is not
integrable, the infimum is understood to be zero.

We now pose an abstract problem that essentially contains both of these. Let
Z be a Hilbert space with inner product (-, -), and let & (<) be the set of
bounded operators on .. Let P be the orthogonal projection onto a closed
subspace & C .Z, and let W be a nonnegative operator in % (%). Now fix
k € # and consider

inf{(Wk—-f),(k-f)):feZ,Pf=0}
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We can recover Kolmogorov’s infimum via the identification . = L?, # =C,
k =1,and W = M, , which is multiplication by @. Note, however, that in
this formulation @ must be bounded. For Szegd’s infimum we let . be the
Hardy space H? of the circle and W be the Toeplitz operator T, , which is
multiplication by w followed by the projection onto H?. Here again @ must
be bounded for T, to be in & (H?).

In this paper we give a solution to the abstract extremal problem and then use
it to derive the two classical results mentioned above. Because the hypothesis
of the abstract result is so minimal, it is useful in solving many other prediction
problems, and we explore some applications in the second half of this paper.
For other generalizations of Szeg6’s infimum see [4, 5, 7]. Vector generalizations
of Kolmogorov’s infimum are also discussed in [7].

2. A GENERAL PREDICTION THEOREM

We will need the following fact.

Lemma 0. Let .# be a closed subspace of a Hilbert space &, and let g € &£ .
Then
inf{||g + m||: m € £} =sup{|(g, )| : [ LA, ||l|| < 1}.
Proof. Let P4 be the projection onto .# and P,. =1 - P, . Then
inf{l[g+m||:me A} =|lg— Pegll=||Prgll
= sup{|(Pgrg,)|: 1A+, |||<1}. O

To prove the main result we temporarily assume that the nonnegative oper-

ator W is invertible in & (%). If P is the projection onto a closed subspace

% of Z, then the compression 4 = PW~!P is nonnegative and invertible in
B(F) since for c € €, (Ac, c) = (W~ lc, ¢) > d]|c||? for some & > 0.

Theorem 1. Let W be nonnegative and invertible in & (<L), andlet P € (%)
be the projection onto a closed subspace € C . . Then for any k € €,

inf((W(k—f), (k—f)):Pf=0}=(PW'P]"'k, k).
Proof. Set # = {W'2f:Pf =0}. Then
inf((W(k - f), (k= f)): Pf =0} = inf{||W'?(k - f)||*: Pf = 0}
(1) =inf{||W"k —m|* :m e #}
= [sup{|(W' %k, I)| : ILA , ||I|| < 1}]
by Lemma 0. But /1.# if and only if W!/2] € &, so

1/2
sup{[(W'%k , I)| : LA, ||| < 1} = sup{“—Wmlil"—’M W € %}
@ Cw {|<W‘/2k,W-'/2c>|.Ce(g}_su { Ik, o) .cefg}
=SSP\ TR = S w1 ¢ '

Recall that the operator 4 = PW~!P is nonnegative and invertible in & (%),
and ||W~12¢|| = ||A'3¢||. Thus,

Ik, o) . _ (A4=12k, A'2c)| |
sup{—————”W_l/zcIl :ce® p =sup AV ce?

(3)

= sup {|<A-‘/2k, O:ce®, |l = 1} = ||A~2k]|.
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The last equality is true by observing that the supremum is attained when ¢ =
A2k [||A~12k|| . Putting (1)—(3) together gives

inf{(W(k - f), (k- f) :Pf=0}
=||A7V2k)? = (47 k, k) = ([PW™'P) 'k, k). O

One attack on the case where the weight W is not invertible is to consider
the weights W, = W + ¢l , where ¢ > 0 and I is the identity operator on .& .

Theorem 2. Let W € #(¥) be nonnegative, and let P € B(&¥) be a projec-
tion. If k € P, then

inf{((W(k—f),(k—f)):Pf=0}= }}_Ig([PVK"P]"k, k).
Proof. Let B =infpro(W(k—f), (k- f)) and
Be= jnf (Wolk— 1), (k= 1))
= Pi}l=fo{<W(k—f), (k= 1)) +ellk = fI17}.

The f.’s are monotone decreasing with decreasing ¢ and bounded below by

B.
Let 6 > 0 be arbitrary. Choose f’ so that Pf' = 0 and (W(k — f),
(k= f")) < B+%. Next choose & so that g||k — f’||> < §. Then

By = jnf (W (k = 1), (k= /) + ollk - A%

SOk~ 1), (k=P +aolle - 1P < (B+3) +53 = p+6

Hence, B¢, — f < J, which implies lim,_o f; = f. The theorem follows from
Theorem 1. 0O
3. APPLICATIONS

We first show that Theorem 2 implies the Szeg6 and Kolmogorov results for
bounded weight functions.

Example: Kolmogorov’s infimum. Let w(e'®) >0 bein L>°[dD], andlet Pf =
[op fdo for f € L?. Then Theorem 2 with k =1 asserts that

inf{/ 1 - flwdo: feL?, Pf= 0} = ling([PM;leP]‘ll, 1)
aD e—

-1 -1
= lim [/ l da] = [/ lda] .
e—0 | Jop W+ € oap W

The last equality is from the monotone convergence theorem. If % is not
integrable then the limit is zero.

Example: Szegi’s infimum. Let w(e'®) >3 >0 be in L>°[8D], and let

e+ z 1\'?
g(Z):CXp |:/3DZ’_‘7’_——2-10g(5) do , zeD.

Taking boundary values we get 1/w(e'®) = |g(e’?)|? a.e., where g € H® and
g isouter [2, p. 67). Let T, be the Toeplitz operator on H? with symbol w.
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Then T;! =T,T, [6, p. 64] . We continue to let P be the projection onto the
constants and employ Theorem 1 to get

inf{/ 1 - xfl’wdo: fe H2} = ([PT,T;P] "1, 1)

D
_ 1 1
(TeTel, 1) || Te1|*
But || T¢1||* = |g(0)* and 1/|g(0)|* = exp[ [y, log wda].
If w is not bounded below, then Theorem 2 implies

inf {/ 11 —xflza)da} —hmexp [/ log(w+£)da] ,

feH?

and a monotone convergence argument gives the result.

Example: The Kolmogorov and Szegé infima in two variables. Let w(e'?, e'®)
be a nonnegative bounded function on D x D . For this example let L? be
the Hilbert space of square integrable functions on 9D x 8D, and let H2 be
the analytic “quarter space” of L?. Thatis, f € H?> if f € L? and

/ £, e%)eimI+in% dg(0)da(¢) =
oD JoD

whenever n or m is positive. This is a closed subspace, and we let Py. be
the orthogonal projection from L? onto H?. Finally, let T, € & (H?) be
the Toeplitz operator taking f to Py f, and assume T, is invertible. Then
Theorem 1 implies

inf{/w/anu — fPwda(6)do(d): f € H?, /w /anda(G)da(d)) =o}
1
(L)

This is a bit unsatisfying since not much is known about 7!, but it does reduce
the task to the seemingly easier problem of evaluating (7;'1, 1).
For Kolmogorov’s infimum we have

inf{/ / 1l - fRwda(8)da(d): f € L2, /aD/ana’a(G)da(q&) =o}

[/ / = do(6)do )]_1,

and similar results hold in cases of more variables.
Example: A generalized Kolmogorov infimum. Returning to the one-variable

setting, we again consider a nonnegative bounded function @ on dD. Let N
be a nonnegative integer.

Proposition 3. If L € L!, then the matrix [am, n];’t’,,:_,v given by am n =
Jop X"~ 5 da is invertible, and for fixed p =¥ ; <y cix’

2
inf /
oD

wda: Y |¢j? < oo = ([am,n) "' D, D).
lil>N

p — Z cix’

lil>N
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Proof. Notice that ker[am, ] = {0} since for any nonzero p’ = ZI <N diy/,

d_N d—N 12
<[am,n] s > =/ |p7|d0' > 0.
dN dN D

Thus [am,n] is invertible. Let & >0, and let P be the projection in L? onto
V{x’: |j| £ N}. By Theorem 2,

2
inf / p— cix’
oD E X

wdo: Y |¢jf? < oo —hm([PMw Pl p, p).
ljI>N >N

Represent PM,;!, P with the (2N —1)x (2N —1) matrix [o}, »] where o, , =

1

Jop X" ™do. Since 1 e L', lim,oal, , = am,, and it follows that
lim,_o([a%, ,17'P, P) = {[am,n]"'P,p). O

A similar problem is discussed in [3, p. 83].
Example: A Kolmogorov infimum for 2 x 2 matrix-valued weights. Let

i0 w11(e®)  wya(e')
wie™) = [@12(8'0) wx(e')
define a bounded nonnegative weight on L? functions from 8D into C2?. For
e>0,set W, =W +el. The function det W = w;wy; —|w;2|? is nonnegative
and bounded, and the corresponding function det W, = (w;; + &)(wy + €) —
|@12|? is bounded away from zero. Thus

-1 = 1 [wzz(eia)j*'ﬁ _wIZ(eio)]
detW,(ei®) | —@12(€®®) w1 (e%) +e]"

If P is the projection onto the space of constants C2, then

Pu,;——lp= [all aciZ] ,

&
af, of,
where
wy + & / —Wi12 Wi + &
r4 e &
ot = do, af, = do, a5, = do.
1 oD det I'I/g ’ 12 9D det W 2 oD det m

Proposition 4. If 1 € L' and k € C?, then
inf{(W(k - f), (k= f)): Pf =0} = {lei ;]17'k, k),

where
W1

w7 _ —wi2 _
/ detw 99> o= / detw do, on= o detw 4°
Proof. Dominated convergence implies hme.,o af = ayj. By Theorem 2,

Anf (Wl —f), (k- f)) = li_ﬂ%([a?j]_lks k)

4 &
= 2 .
e—»O af a5, — |af,| a5, af
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We know a priori that this limit exists for all k£, but before distributing the limit
through we must make sure we do not have an indeterminate form. Choosing
k = [§] produces lim,_o(a5,/(at a5, — |a%,[?)). Since the numerator does
not go to zero, lim,_o(at;as, — |at,|?) > 0. Thus [a;j] is invertible, and
infpro(W(k - f), (k= f)) =([a;j]" 'k, k). O

Moving to the larger-dimensional case is more complicated because it is dif-
ficult to show, and may be false, that [«;;] is invertible. Before doing one last
application of Theorem 2 we state a short lemma back in the abstract Hilbert
space setting.

Lemma 5. If W € B (%) is nonnegative and P € B (L) is a projection, then
forany ke ¥

inf{(W(k - f), (k- f)): Pf=0} =inf{(W(Pk - f), (Pk - f)): Pf=0}.
Proof. Write k = Pk + k', where Pk’ =0. Then

Wik = 1), (k=1))= jnf (W(Pk = (f = K')), Pk~ (f = k))
(W(Pk-f),(Pk—f)). O

inf
Pf=0

inf
Pf=0
Example: Unbiased estimation. Let {y/j}f;o be a set of linearly independent

vectors in L2[D], and let ¢; € C for each j. Given a nonnegative function
we L>® and k € L%, we consider

inf{/ k+ fPwdo: feL?, (f, y)=c;,0< )< N}.
aD
The approximating vectors do not lie in a subspace but rather are restricted by

a set of linear functionals.

We first apply the Gram-Schmidt process to the vectors {v/j}f': o~ The algo-
rithm for computing the new vectors and new values of the c;’s is straightfor-
ward [1, p. 25], so without loss of generality we proceed under the assumption
that {'//j};i o 1s an orthonormal set.

Proposition 6. If L € L>, then
inf{/ |k + fl*wda : f e L?, (f, c//j)=cj,0SjSN}
oD

an an
where a; j = [,0(v;jWi/w)doand a; = (k, y;) +¢;.
Proof. If P is the projection onto \/{y;:0 < j < N}, then

N
Pf=3 (/. vy,
=0
for f € L?. Let # = PL?, and observe that the vector p = 3} c;y; is the

unique vector in .# satisfying (p, y;) =c; forall 0 < j < N. We now claim
that

{f:<f’ W/)=CJ,OS]SN}={p+[:1€L2,Pl=O}.
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To verify this, let f € L? satisfy (f, y;) = ¢; forall 0 < j < N. Then
Pf also satisfies this condition, so Pf = p. Thus f = p+ (I — P)f which
gives one inclusion. The reverse inclusion follows from the straightforward
calculation that (p+/, yj) =c; forall 0<j< N.

So we can rewrite the above infimum as

lnf{(ka+f (k+f> (f"//j)=cj3OSjSN}
=inf{(Mu(k+p+1), (k+p+1)): Pl =0}
=inf{(M,(Pk +p+1), (Pk+p+1)): Pl =0},

where the second equality is a consequence of Lemma 5. By Theorem 2, this
infimum is equal to

1gn<[PM;ieP]"‘(Pk +p), (Pk +p)).

Using {y;}), as an orthonormal basis for .#, we have Pk +p = ¥y =04V
where a; = (k wj)+cj. We can also represent the operator PM_!, P with the
matrix [of J], j=0° where aw faD WiVie w+£ do . Since (L € L*®, dominated
convergence implies lim,_, of = The matrix [o;, j]f‘f j=o Mmust be invert-
ible since for any nonzero g € # we have ([a; jlg, &) = [,p(|g|*/w)da > 0.
Hence

o Ao
hm([PMw PI"Y(Pk +p), (Pk +p)) = <[a, ,]‘l N I > o
an an

The assumption % € L*> ensures that the integrals appearing above are finite.
We could relax this to 1 € L! and instead assume the y;’s are bounded.
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