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ON A CONJECTURE OF REVESZ

QI-MAN SHAO

(Communicated by Rick Durrett)

Abstract. Let {Xn, n > 1} be i.i.d. random variables with P(X¡ = ±1) =

i . Révész (1990) proved

1 < liminf max     max   (2/clog«)_1/2(5,+i. - S¡)
- n-oo o<y<n i<k<«-y ' '

< lim sup max      max   (2klogn)~x^2(Si,ic - Si) < K    a.s.
- „^oo   0<j<n l<k<n-j ' '   ~

and conjectured K = 1 , where Sn = X)i=i %i ■ In tnis note we show that

Révész's conjecture is true but the conclusion is not valid for general i.i.d.

random variables with finite moment generating function.

1. Introduction

There has been a great amount of work on increments of partial sums for

independent, identically or not necessarily identically distributed random vari-
ables during the last two decades. One can refer to Csörgö and Révész [2],

Hanson and Russo [5, 6], Shao [9 -11], and the references therein. Lately, for

i.i.d. random variables {Xn , n > 1} with P(Xn = ±1) = \ , Révész [8] studied

the limit behavior of the sequence

Ln= max    max   k  xl2(Si+k- S¡)
0<j<n l<k<n-j '

and proved

1 < liminf-——^—T75- < limsup 7^—^-¡7? - K < 00    a.s.,
-  n-00  (21ogn)'/2 -   „^00^(21ogn)1/2

where the exact value of AT is unknown (cf. [8, p. 171]). Révész [8] conjectured

that K = 1. This conjecture is related with the well-known Darling and Erdös

(1956) theorem as well as the law of the iterated logarithm

lim (21oglogn)-I/2 max k~x/2Sk = 1    a.s.
n->oo l<k<n

The aim of this note is to give an affirmative answer to the Révész conjecture.

Indeed, we obtain the following more general result, which, in turn, shows that
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the conclusion is not valid for general i.i.d. random variables with mean zero,

variance one, and finite moment generating function.

In what follows we will use the following notation: x+ = max(0, x), logx =

In max(x, e), where In is the natural logarithm, and [x] denotes the integer

part of x.

Theorem 1. Let {X„, n > 1} be a sequence of i.i.d. random variables with

EXn = 0 and EX2 = 1. Put S0 = 0 and S(n) = £,<,-<„X¡. Assume

(1.1) EeSolx>l < oo   for some s0 > 0.

Let p(x) = inf(>o e~'xEe'x' be the Chernofffunction of Xx. Define

a(c) = sup{;c : p(x) > e~x/c} ,        a* =   sup  -^=M.
0<c<oo      v2

Then we have

Y — 9
(1.2) lim   max    max   -t^tt-rh; = a*   a.s.

n—oo 0<j<n l<k<n-j (2/clogn)1/2

Corollary 1. Let {X„, n > 1} be a sequence of i.i.d. random variables with

P(Xn = ±1) = \ . Then we have

(1.3) lim  max    max   ttt/t-rfrr = 1   a.s.
n-*oo 0<j<n l<k<n-j (2klOgn)x>2

From Theorem 1 and Lemma 1, in the next section, one can obtain imme-

diately

Corollary 2. Let {Xn, n > 1} be a sequence of i.i.d. random variables satisfying
EXn = 0, EXl = 1, and EeSo^X[^ < oo for some So > 0. Assume that

(1.4) Ee'xî2 =oo   for every t > 0.

Then
O _   Ç.

(1.5) lim   max    max   -~7--^-= oo   a.s.
n—oo 0</<n  1 <k<n-j (2/clOgn)1/2

2. Proof

We start with a preliminary lemma.

Lemma 1. Let Xx be a random variable with EXX = 0, EX2 = 1, and

£>-sol*il < oo for some So > 0. Let to = sup{Z > 0 : Ee'x> < oo}, p(x)

be the Chernoff function of Xx, and a* be as in Theorem 1. Then

(2.1) a->max(l,^=).

Proof. From the proof of Theorem 1 (cf. (2.25)) one can see that a* > 1 . So

it suffices to show that

<2'2' "• >- 7K
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Obviously, (2.2) is trivial if a* = oo. When a* < oo, we have

[2
a(c) <a* \l -    for any c> 0.

From the definition of p(x) it follows that for any c > 0 and 0 < e < 1

e~l/c >p((l+ e)a*)ß) = inf£í>'(X'-(1+£>a*v/2^

> infEe'M-V+^'y/W)!¡Xx > (1 +e)a*t/?l

(2.3)

= p{xx>(l+e)a*sj-c

p^exp ^(1 ;wO-exK(iT^)<
which yields immediately

X+2

Thus, by the definition of to

Eexv I -., "'..—r I < oo.
1 2(1 +e)3a*2 '

1

2(l+e)*a*2'

This proves (2.2), by the arbitrariness of e .

We give a general result on the increment of a Wiener process, which is of

independent interest.

Theorem 2. Let {W(t), t >0} be a standard Wiener process. Then

,,.*        ,. _\W(t + s)-W(t)\
(2.4) hm sup sup sup-      ,,—-——¡-— = 1    a.s.
V       ' a^ooP  ,>0   í>0(25(logíf+lOglOg(uV(S+i))))'/2

Proof. From the well-known law of the iterated logarithm it is obvious that the

left-hand side of (2.4) is greater than or equal to 1 almost surely. Noting that

\W(t + s)-W(t)\SUD SUD -!-—-;-

(>o 5>o (2i(log^ + loglog(a V (s + i))))1/2

is a nonincreasing function of a , we only need to show that

(2.5) P (sup sup_mt + s)-W(t)\    _>02\
\t>o s>o (2s(\og*±* + loglog(a V (s + 1))))»/* "     J

as a —y oo for every 6 > 1. We have

(2.6)
\W(t + s)-W(t)\

sup sup
(¿s(iog *f- + iogiog(a v [s + -s)))yi'

W(t + s)-W(t

7>o 7>o (2i(log^ + loglog(a V (s + }))))'/2

< SUP SUP SUP SUP       j^r ,.       ,,,      , -, .,,.,.,,
-oo<><oo -oo«<oo e'-'<t<6' ei-^<s<ei (2s(logífí + loglog(<2 V 9\J\)))X'2

all! \W(t + s)-W(t)\< sup      sup    sup     sup  6l,¿-
-oc<j<oo j<i<oo o<t<6* o<*<»>       (20;(log0<w + loglog(a v 6\J\)))X'2 ■
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Applying Lemma 1.2.1 of Csörgö and Révész (1981), we get that there is a

positive constant K depending only on 6 such that for each -oo < j <i < oo,

a> 1

(27)       p(sur>    sup  _W(t + s)-W(t)\_      \
1    ' {¿S?» oS<» (2dJ(log6'-J + loglog(aVd\J\)))x/2 ~   j

< Kd'-J exp(-ö(logö,w + loglog(a V 6^)))

(2.8) < K0V-lW-fl([j\ + a)~e.

Now (2.5) follows from (2.6) and (2.8) immediately. This completes the proof
of the theorem.

We are now ready to prove our main result.

Proof of Theorem 1. We first prove

v     — Ç-
(2.9) liminf max    max   ——--¡^ > a*    a.s.

n—oo    0<j<n l<k<n-j (2k log n)1'2

We have, for every c > 0,

Sj+k ~ Sj
liminf max    max

n—oo    0<j<n l<k<n-j (2kl0gn)il2

Sj+[c log n] ~ Sj(2.10) > liminf       max
n^oo    0<j<n-{clogn] (2[clog«] -logn)1/2

(I)1/2 r    • ,                      Sj+[cXosn]-Sj     cx'2a(c)
liminf       max ' \ ,   ' ,—'- =-—■    a.s.

n-y oo    0<j<n-[clo%n]        [clogn] y/2

by (1.1) and the Erdös-Renyi law of large numbers (cf. [2, p. 98]). (2.9) follows
now from (2.10) immediately.

We next show that
o        _ o.

(2.11) lim sup max    max   -r^P;-hL- < a*    a.s.
«-►oo    0<j<n l<k<n-j (2k log n)xI2

which together with (2.9) will imply (1.2).
If a* = oo, (2.11) holds obviously. So we only need to consider the case

of a* < oo which, by Lemma 1, also implies irj > 0. Let {W(t), t > 0}

be a standard Wiener process. Using Theorem 2 and Erdös-Renyi law of large
numbers, one has

,»,*s      ,■ W(j + k)-W(j)\     ,
2.12       hm        max max      ¡—y,, , ;   „,,    ' = 1    a.s.,

«-►oo o</<K-[ciogn] ciog«<fc<«-y      (2k log ny'2

(2.13) lin,       max      ^f"0»?" ^ - ■    -.
«^oo o<y<«-[ciog«]     (2[ciog n] log n)1/2

for each c > 0. Hence, for any fixed 0 < e < \ , by (2.12), (2.13), and the well-
known Komlos-Major-Tusnàdy [7] strong approximation theorem, there exists

a positive cx = cx(e) such that

I Ç _  CM

(2.14) lim sup        max max       .-/tfc—-jj^<l+e    a.s.,
„^oo    0<j<n-[c¡ log«] c, logn<k<n-j (2klOgn)1'2

(2.15) liminf       max       ,Jj,c> log1"1 ~ S(.., > 1 - e    a.s.
n—oo    0<j<n-[c, log«] (2[Ci log n] logn)1/2
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For 0 < c < cx, using the Cauchy-Schwarz inequality, we obtain

i • *^ i+k        ̂  i
hm sup max max        —f---¡^

o</<« i<fc<(n-i)Aciog« (2klogny/2«—►CO

< lim sup max max

Ej+k      Y+
i=l+jAi

Â—"oo"*' 6<J<n l<*:<(n-7)Aelogn (2/clOgn)1/2

(2.16) (E^A72)'/2
< hm sup max max —      J

n—>oo o<;<« i<A:<(«-;)Aciog«     (21ogn)1/2

v^;+[clog«W+2

..m sup       max      -^——¡-i—
2 «—oo    0<;'<«-[clog«] 2l0gn /

/ 2X^^(xr2-Exr2)\l/2
<    x + hm sup       max      ——^—„, —— |

Set

p(x) = infe-'xEe'^2-EX^ , à(c) = sup{x : p(x) > <r1/c}.

Since to > 0,

Effifr^Xp-EZf*) _cä(c)(2.17) lim sup       max '~l+J   „, '-— = ^P    a.s.
„-.oo    0<j<n-[clogn] 2 log« 2

by the Erdös-Renyi law of large numbers.

From the definition of to it follows that for every 0 < t < t0

e~l/c < p(&(c)) < e-t*fi)Ee4X*-sx*).

that is,

cà(c) <- + cln(Eel^-EX*\

Therefore, we can take 0 < c2 = c2(e) < cx such that

fc2     c2a(c2)\i/2        1
(2.18) (j + H11)     <Wo+e<a* + a.

By (2.16)-(2.18), we conclude

o       _ o.

(2.19) lim sup max max -—p--~r < a* + e    a.s.
0<j<n l<k<{n-j)Ac2logn (2klOgn)1/2n—>oo

We show below that

Sj+k — Sj
lim sup max max

«—oo    0<;<« c2log«<i<Cilogn (2klOgn)xl2

yZ.ZKJ) _

< (1 + 3«)    sup     VC(*1C) <(l + 3e)a*    a.s.
c2<c<l+ci      v2

Let t] > 0 such that (1 + w)(l + 2e) < 1 + 3e and c2n < 1.   Write d¡ =
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c2(l + (l+l)n), l>-l. We have

(2.21)
Sj+k ~ Sj

lim sup max max
„^oo   o<j<n c2iog«<Ä<c,iog« (2klogn)1'2

Sj+k ~ Sj
< lim sup     max      max max

«¡-►oo    em<n<em+i 0<7<« c2 log«<£<<?, log« (2klOgn)Xl2

O i+k        »J /'
< hm sup   max max       -j-—-¡-^

m—oo    0<_/«""+1 c2m<k<Ci{m+l) (2km)1'2

o       _ o.

< lim sup    max max max /Jf* s..l
m—oo    0<;<<""+' 0</<(c,-c2)/(«c2) c2m(l+/«)<fc<c2m(l+(/+l)«) (2km)1'2

s y c2(l + (I + l)r¡)   Sj+k-Sj
< hm sup   max max max   ,.    .,     , ..,'.' • -J2-—-.—-

m—oo    0</<e""+i 0</<(c,-c2)/(«c2) l<k<md, (2c2(l + lt]))x'2 md¡

^ i,      \ i • \fd¡   Sj+k — S j
< (1 + w) hm sup   max max max   ^-¡^ • -^——-—-.

m—oo    0<j<em+l 0</<(ci-c2)/(«c2) l<k<md,   V2 m d¡

Since p(x) is continuous and strictly decreasing for x with p(x) >0 (cf. [1]),

we have

p((l+e)a(d¡))<e-x/dl    for any 0 < / < (cx -c2)/(nc2),

and hence, we can take a ô > 0 such that

(2.22)        p((l + e)a(di)) < e-{X+S)/d'    for any 0 < I < (cx -c2)/(nc2).

Applying the well-known Ottaviani maximum inequality, the Chernoff theorem

in [1], and (2.22), we arrive at

(2.23)
D I \Jdi   Sj+k - Sj
P      max max max   -^-¡J- • -^—-.—'-

\0<j<em+l 0</<(C|-c2)/(«c2) l<k<md,   V2 mdj

yjca(c)\
> ( 1 -(- 2e)    sup

C2<c<i+ci     v2

[(C|-C2)/(C2)1

<2e^x      V      P      max   ^ . -%- > 0 + 2e)    sup     ^^
^ \l<*<m¿,   v^2      ™«/ c2<C<l+c,      \/2

[(Cl-C2)/('/i'2)] /      /j"  O /-     /    \\

<2^+1       V      />    V^^d>(i+e)    sup     ^1)
f-¿ \ yf2   md,   -v        'c2<c<l+c,     72    j

< 4em+x       Y,      p(Sl*>d,l ^ MK1 + e)Q(^/))
/=o

[(Cl-C2)/(^2)l

<4<?m+1       £      (p((l+e)a(¿/)))[ma''1

/=o

[(C|-C2)/('?C2)] j. / J  \

<4em+x       Yl      e\p(-(l+ô)[mdi]/di)<^^-exp(-\e-Sm,
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provided that m is sufficiently large. This proves (2.20), by (2.21), (2.23), and
the Borel-Cantelli lemma.

Putting (2.14), (2.19), and (2.20) together, we obtain

(2.24) lim sup max    max    .. j+tk—-L- < max(l + e, (1 + 3e)a*).
„-.oo   o<j<n i<k<n-j (2klogny'2 ~

On the other hand, a combination of (2.15) with the Erdös-Renyi law of large

numbers yields
a* > 1 -e,

and hence

(2.25) a* > 1

by the arbitrariness of e.   (2.11) now follows from (2.24), (2.25), and the
arbitrariness of e , as desired. The proof of Theorem 1 is now complete.

Proof of Corollary 1. By Theorem 1 and Lemma 1, it suffices to show that

(2.26) a* < 1.

It is known that (cf. [2, p. 98])

(2.27) a(c) = 1    for 0 < c < 1,

and if c > 1 , then a(c) is the only solution of the equation

(2.28) (1 + a(c)) ln(l + a(c)) + (1 - a(c))ln(l - a(c)) = -.

An elementary calculation yields

(1 +x)ln(l +x) + (l - x)ln(l -x) > x2

for each 0 < x < 1, which implies

(2.29) ca2(c)<2    for each c> 1

by (2.28). This proves (2.26), as desired.

Remark 1. From the proof of Theorem 1, one can see that a* < oo if io > 0.

Remark 2. Corollary 2 tells us that the necessary and actually sufficient condi-

tion for
lim max    max   (Si+k - S¡)/(2klogn)x/2 < oo   a.s.

n-oo0</<nl<*<«-/   J+ ' '

is Ee'xi   < oo for some t > 0.

Remark 3. It also looks interesting to study the limit behaviour of the sequence

, ,+*      * 1/2

K"=0mîïnl<mïln+k-Sj)/[^X>
-  -     J \l=j+l

We conjecture that

Kn
1 < Hm -7T-,-TT7T - K <oo    a.s.

«-oo (21ogn)1/2

as long as {Xn , n > 1} are i.i.d. random variables with EXX - 0 and EX2 <

oo .

f\      ,       « = 1,2,
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