
PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 123, Number 5, May 1995
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Abstract. In this note we relate two notions of compactness for strongly con-

tinuous semigroups of linear operators and cosine functions of linear operators.

Specifically, if T denotes a strongly continuous semigroup of linear operators

defined on a Banach space X, we will show that T is compact if and only

if the set {(T(-)x : x £ X, \\x\\ < 1} is relatively compact in any space

LP([Q, a]) ; X) for 1 < p < oo and a > 0. We establish similar results for

(T(t) - I)n , n 6 N , and for cosine and sine functions of operators.

1. Introduction

In this note we will present another characterization for the compactness of

strongly continuous semigroups and cosine functions of linear operators. For

the necessary concepts of semigroup and cosine function of linear operators

theory we refer to Nagel [8] and Fattorini [2], respectively.

Throughout this work we will denote by X a Banach space endowed with

a norm || • || and we will represent by 38(X) the Banach algebra of bounded

linear operators defined on X.

Let A be the infinitesimal generator of a strongly continuous semigroup T

on X. A useful condition to obtain existence of mild solutions for an abstract
Cauchy problem

x(t) = Ax(t) + F(t, x(t)),        t>0,

x(0) = x0

or for an abstract functional Cauchy problem

x(t) = Ax(t) + F(t,xt),        t>0,

x0 = g>
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1418 H. R. HENRIQUEZ

is the compactness of the operator ff defined on the continuous functions by

Sr(x(-))(t) = T(t)x0+ f T(t-s)F(s,x(s))ds
Jo

in the first case and by

£T(x(-))(t) = T(t)<p(0) + f T(t - s)F(s, xs) ds
Jo

in the second one. In [5] and [6] the compactness of ST was obtained under

a compactness condition of the product T(-)F(-). This leads us to study some

weaker conditions to obtain the same result. The aim of this note is to show that

if the set {T(-)x: \\x\\ < 1} is relatively compact in the space Lp([0, a]; X),
1 < p < oo and a > 0, then T is a compact semigroup.

We will represent by Lp([0, a] ; X) the space of p-integrable functions from

[0, a] into X, a > 0, in the Bochner's sense with respect to the Lebesgue

measure, which will be designated by m. Furthermore, we will reserve the

symbol a to denote the measure of noncompactness in the sense of Kuratowskj.

We refer to Deimling [1] for the properties of the function a.

In the sequel we consider some fixed constants 1 < p < oc and a > 0.

Let d be a metric associated with the convergence in m-measure in the space

Lp([0, a]; X). It is well known (Marie [7]) that the distance d(f, g) can be

defined as follows. For each p > 0 we introduce the set

Ep = {t£[0,a]:\\f(t)-g(t)\\>p}.

Then

(1) d(f,g):=inf{p>0:m(Ep)<p}.

The following property of the metric d will be useful for us. We will use the

symbol Bx to represent the closed unit ball of X .

Lemma 1. Let u: [0,a]^>¿$(X) be a strongly continuous operator-valued func-

tion. If the bounded linear operator U: X -* Lp([0, a]; X), x —> u(-)x, is

compact, then for each e > 0 there exists a finite set {xx, ... , x„} included in
Bx such that

(2) min m({t £ [0, a] : \\u(t)x - u(t)x¡\\ > e}) < e
i</<«

for every x £ Bx.

Proof. Since U(BX) is a compact set in Lp([0, a]; X) (Marie [7]), the unifor-

mity induced by the convergence in m-measure and the uniformity induced by

the norm || • \\p coincide on U(BX). Consequently, for each e > 0 we can

choose elements x, £ Bx, i = 1, 2,..., n, for some n £ N, for which the
following property holds: For each x £ Bx there exists an index i such that

d(u(-)x, u(-)xj) < e.

Now, using the expression ( 1 ) we obtain the assertion.

2. Results for semigroups

In this section we denote by T a strongly continuous semigroup of linear

operators on the Banach space X. We remind the reader here that the semi-

group T is called compact if T(t) is a compact linear operator on X for every
i>0.
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We will introduce another concept of compactness using the ^-valued func-

tions t -» T(t)x, x £ X. In order to avoid repetitions we establish a general

definition.
Let u: [0, a] —> 38 (X) be a strongly continuous operator-valued function.

We will say that u is p-compact if the bounded linear operator U: X —>

LP([0, a] ; X), x —> u(-)x , is compact.
On the other hand, by Kolmogorov-Riesz-Weils's theorem (see Vrabie [13]) a

bounded set K C Lp([0, a] ; X) is relatively compact if and only if the following

conditions hold:
(ci) For every e > 0, there exists ô > 0 such that

(3) f\\f(t + s)-f(t)\\pdm(t)<ep
Jo

for every f £ K and every s £ R with \s\ <ô, where / denotes the extension

of / defined as f(t) = 0, when t f [0, a].
(c2) For every measurable subset E of [0, a], the set {¡Efdm : f £ K}

is relatively compact in X.
In the sequel we will compare the p-compactness of u with the compactness

of the operators u(t), for each t > 0. The following two examples show that

these two concepts are not related.

Example 1. In this example we will exhibit a strongly continuous function

u: [0, 1] —► 38 (co) which is p-compact for every 1 < p < oo, but the lin-

ear operators u(t), 0 < t < 1, are not compact. We define a sequence of

continuous functions /„ : [0, 1] —► R as follows: Let n = 2k + i, k £ No , i =
0, 1, 2,... , 2k -1, and define /„ to be linear on the intervals [(/'-1 )/2k, i/2k]

when i > 1 and[(/+ l)/2k, (i + 2)/2k] when i < 2k -2; fn(t) = 1 for

t £ [i/2k, (i + l)/^] and f„(t) = 0 otherwise. The functions fn are clearly

continuous. Now we define u(t): Co —► Co by

u(t)(a„)n = (fn(t)a„)„.

It is easy to see that u(t) £ 38(co) and u: [0, 1] -> 38(c§) is strongly continu-
ous. Furthermore, from the Kolmogorov-Riesz-Weil's theorem it follows that u

is p-compact for every 1 < p < oo. However, u(t) is not a compact operator

since there exists an increasing sequence of natural numbers («7); such that

fnj(t) = 1 for all j £ N. Hence, the set {u(t)enj : j e N} = {enj : j £ N},

where e„ denotes the unitary vector en := (ôn<k)k , is not relatively compact in

c0.

Example 2. In this example we will construct a strongly continuous function

u: [0,1] -» 38(X) for X = /' such that u(t) is a compact linear operator

for every t > 0 but u is not 1-compact. Let (/,,)„ , (g„)„ be two sequences of

continuous functions from [0,1] into R which satisfy the following conditions:

(a) There exists a constant N0> 0 such that
oo

N0<Y,\Mt)\    forall0<i<l.
n=\

(b) EZn L/K0I -> 0, as n-+oo, uniformly for 0 < t < 1.
(c) The set {gn : n £ N} is uniformly bounded and not relatively compact

in the space ¿•([O, 1];R).
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Let u(t): ll -y ll, 0 < t < 1, be the operator defined by u(t)(üj)j - (b¡)¡,
where

oo

It is well known that each operator u(t) is linear, bounded, and compact

(see Taylor [10, Example 5.5-3]). Furthermore, an elementary calculation using

the properties of functions /„ and gn shows that u(-)x is continuous for each

x £ /'. Nevertheless, the set {u(-)x: \\x\\x < 1} is not relatively compact in

L'([0, 1]; Z1). In fact, if en denotes the unitary vector e„ = (<?,,,,), in Z1 and

N, Nx are positive constants such that

\gn(t)\ < N    for every n £ N and 0 < t < 1

and
oo

£|/B(0l<#i     for every 0</<l,
n=l

then, for each h > 0, we can do the following estimations:

rl-h

\\u(t + h)e„ - u(t)en\\\ dtL0

\-h

>-l
l-h   I oo

rl-n   I   ""

=  J0 [E\Mt + ")8n(t + h)-fi(t)gn(t)\

f^\Mt)\\gn(t + h)-g„(t)\\  dt
1=1 /

- /'  " (E M« + ")- //Wl \8n(t + h)\) dt

dt

w=l

f\-h
>N0 \gn(t + h)-gn(t)\dt

Jo
r\-h  ( °o

|y;(í + /z)-y¡(0l) dt.
r\-h   / oo

Condition (b) and the continuity of the functions f, i: £ N, imply that

the second term on the right side in the above expression converges to zero

as h —y 0 but that the first term does not converge to zero as h —y 0, uni-

formly in n £ N, since the set {gn: n £ N} is not relatively compact in

L'([0, 1]; R). Consequently, the set {u(-)e„: n £ N} does not satisfy condi-

tion (c-i) of Kolmogorov-Riesz-Weil's theorem, which completes the proof.

Now we will establish our main result.

Theorem 1. A strongly continuous semigroup T is compact if and only if it is

p-compact.

Proof. Let us assume that T is a compact semigroup. This means that T(t) is a

compact operator for every t > 0. We will prove that the set K := {T(-)x: x £
B\) is relatively compact in LP([0, a]; X). Since K is a bounded set, it is

sufficient to show that K satisfies conditions (ci) and (C2) above.  In fact,
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in order to prove (cx) we observe initially that T is uniformly bounded on

[0, a]. Consequently, we may assume that ||r(i)|| < M for 0 < t < a for

some constant M > 1. Hence, for every pair of constants s, e' > 0 sufficiently

small we may write

/  \\T(t + s)x - T(t)x\\pdt
Jo

=  f   \\T(t + s)x - T(t)x\\p dt
Jo

+ Í     \\T(t + s)x - T(t)x\\pdt + [    \\T(t)x\\pdt
Je' Ja—s

<2pM»\\x\\pe' + sMp\\x\\p

+ [ \\T(t + s)T(e')x-T(t)T(s')x\\pdt.
Jo

Furthermore, since T(e')Bx is a relatively compact set, there exists a constant

ôE> > 0 such that

(4) \\T(t + s)y-T(t)y\\<e'

for all t £ [0, a], y £ T(e')(Bx), and 0 < s < ô£-. Substituting (4) into the
right-hand side of the above inequality we deduce that for every e > 0 there

exists S > 0  (S = ôe> for e' appropriate) such that

/ \\f(t + s)x-T(t)x\\pdt<e
Jo

for every x £ Bx and 0 <s <6 .
Since the proof for 5 < 0 is similar we have completed the demonstration

of our first assertion.
On the other hand, as T(-) is a strongly continuous map, Corollary 2.3 in

Weis [14] implies that for every measurable set E ç [a, b] the operator Te
defined by

TE(t)x:= [ T(t)xdm(t),        x£X,
Je

is compact. Consequently the set {¡E T(t)xdm(t) : x £ Bx) is relatively com-

pact in X. This completes the proof.

Let us assume now that T is p-compact. Since for every wêR the multi-

plication operator

Mw: Lp[(0, a);X)-y U>([0, a]; X),       f^ewtf(t),

is bounded, the semigroup emT(t) is also p-compact. Thus, choosing w ap-

propriately we may assume that T is uniformly bounded on [0, oo). Further-

more, the last property together with Lemma 1.5.1 in Pazy [9] implies that we

also may suppose that 117X011 < 1 for all t > 0.
On the other hand, using Lemma 1 we conclude that for every e > 0 there

exist k £ N and x¡ £ Bx, i = 1,2, ... , k , for which the following property

is satisfied. For each x £ Bx, there is i €{1,2,...,A:} such that

m({t£[0,a]: \\T(t)x - T(t)x¡\\ >e}<e.
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From this property we can infer that the set of all t such that

\\T(t)x-T(t)Xi\\>e

for every i = 1,2, ... , k is included in the interval [0, e]. In fact, since

117X011 < 1 for all í > 0, if \\T(t0)x - T(t0)Xj\\ > e for some i0 > 0, then
\\T(t)x - T(t)Xi\\ > e for every t £ [0, t0].

Additionally, if we suppose thata(7X0#i) > 0 for some t > 0, then there

exists no £ N such that a(T(t)Bx) > \/n for all n > no . From the definition

of the noncompactness measure a it follows that T(t)Bx. is not included in

UjLi Bi/n[T(t)Xj], where we have denoted by Br[x] the closed unit ball cen-

tered at x with radius r. Therefore, there is an element x £ Bx which satisfies

the condition

117X0*-7X0*;|| > 1/"
for every j = 1,2,..., k. Now, using the preceding property, we obtain that

t < l/n , which, in turn, implies that t — 0. Thus, from the properties of a we

infer that T(t)(Bx) is relatively compact for every t > 0.
Next we will establish a similar result for the operator-valued function u(t) —

(T(t) - I)n for n £ N. We will denote by A the infinitesimal generator of the

semigroup T.

Lemma 2. LetF: [0, a] —y 38 (X) be a strongly continuous function such that

the operator

6X0:= / F(s)ds
Jo

is compact for every t > 0. Let f: [0, a] —> C be a continuous function. Then

the operator

Gf(t):= f f(s)F(s)ds
Jo

is also compact for all t > 0.

Proof. Let us denote by 3?(X) the closed ideal of compact operators in 38 (X).
Since / is uniformly continuous, there exists a sequence (<pn)n of step functions

which converges to / uniformly. It is clear that the operator GVn(t) £ f%(X)

for each t > 0 and n £ N. Since the sequence (G9n(t))n converges to G/(t)

in the uniform topology of operators, Gf(t) £ Ji(X).

Theorem 2. The operator (T(t) -1)" is compact for each 0 < t < a and if only

if the function u is p-compact.

Proof. If u(t) is compact for 0 < t < a, then in [3] it has been proved that A is

bounded and A" is compact. Consequently, the function «(•) is continuous for

the uniform topology of operators, which easily implies that the set of functions

{u(-)x: \\x\\ < 1} satisfies conditions (ci) and (C2) of Kolomorov-Riesz-Weil's

theorem.
Conversely, if the operator-valued function u(-) is p-compact for some a >

0, then the function u:[0,b]-y 38(X) is p-compact for every b > 0. In fact,

from the expression

(5) (T(20 - /)" = (7X0 - 7)"(7X0 + 7)"
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and the uniform boundedness of (T(t) + I)n in [0, 2a] we conclude that the

set {u(')x: \\x\\ < 1} is relatively compact in LP([0, 2a]; X). Now, an easy
induction proves the assertion.

Let F„(X) be the Laplace transform of the function u('). Since

FH(X)= lim / e~x'u(t)dt
a->ooj0

and the convergence is in the uniform sense, by Lemma 2 we obtain that Fn (X)

is a compact operator for X £ R large enough. Thus, Theorem 2.4 in Henriquez
[3] implies that (T(t) - I)n is compact for all t > 0.

3. Results for cosine functions

Let us consider now a strongly continuous cosine function of linear operator

C defined on X. Let S be the sine function associated to C, which is defined

by

(6) S(t)x:= [ C(s)xds,       x£X,t£R.
Jo

For the general properties of cosine function of operators we refer to [2] and

[11].

Theorem 3. The cosine function C is p-compact if and only if X is a finite-

dimensional space.

Proof. If X is a finite-dimensional space, then the map C(«) is continuous

for the norm of operators and each C(0 is a compact operator. From Ascoli-
Arzelá's Theorem is easy to see that the set of functions {C(0* : x £ B{\ is
relatively compact in the space of continuous functions C([0, a]; X). Since

C([0, a]; X) is continuously included in LP([0, a]; X), it follows that C is

p-compact.

Conversely, if C is p-compact restricted to the interval [0, a], then C is
also p-compact on the interval [0, a/2]. Further, as C is uniformly bounded
on [0, a/2], a simple calculus shows that the map t —» C2(t) is p-compact on

[0, a/2]. These properties and the identity [2]

C(20 = 2C2(0-7,        Í6R,

allow us to conclude that the constant operator-valued map [0, a/2] -* 38 (X),
t —> I, is p-compact. From the definition of p-compactness and condition (C2)

we obtain easily that I is compact, which in turn implies that X has finite

dimension.

Next we establish the analogue of Theorem 1 for the sine function.

Theorem 4. The sine function S is p-compact if and only if S (t) is a compact

operator for every /eR.

Proof. From expression (6) it follows easily that the operator-valued function

S(-) is continuous for the norm of operators. Consequently, if S(t) is a compact
operator for each t e R, then Ascoli-Arzelá's Theorem implies that the set

{S(t)x : x £ Bx} is relatively compact in the space of continuous functions

and, proceeding as in the Theorem 3, we conclude that S is p-compact.
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Conversely, if S is a p-compact map on an interval [0, a], using the fact

that S(-) is continuous for the operator norm and the condition (c-2) we obtain

that the operator

rt+h

(s)ds,       0<t<a,h>0,
1 r+n
hi, s«

is compact and converges uniformly to S(t), as h —> 0+ . Consequently, 5(0

is compact for 0 < t < a. From the properties of cosine functions [12] we

obtain that 5(0 is compact for all t £R.

We conclude this note with the analogue of Theorem 2 for cosine functions.
Let u(t) = (C(t) - I)n, neN.

Theorem 5. The operator (C(t) - 7)" is compact for all t € R if and only if the

function «(•) is p-compact.

We omit the proof since the argument is very similar to that employed in the

demonstration of Theorem 2. We only need to use the expression

(C(20 - I)n = 2"(C(0 - 7)"(C(0 + /)"

instead of (5) and the results established in [4] instead of those in [3].
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