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INVARIANT THEORY FOR A PARABOLIC SUBGROUP

OF SL(« + 1, R)

A. ROD GOVER

(Communicated by Roe Goodman)

Abstract. For a certain maximal parabolic P of SL(n + 1, R), the complete

invariant theory is presented for a class of P-representation modules. These

modules arise naturally from the geometry of P" . In particular, a means of

listing all the exceptional invariants is described. This is a model problem for

some parabolic invariant theory problems posed by FefFerman.

1. Introduction

For his work on pseudoconvex domains in C, Fefferman was drawn to

consider the problem of listing all the scalar invariants for CR structures. This

requires an invariant theory for certain parabolic subgroups of a semisimple Lie

group analogous to Weyl's invariant theory for classical groups. Of course, there
are similar interesting problems for other parabolics and Fefferman considered

one such as a model for his original question; it turns out that this algebraic
problem arises from an interesting problem in conformai geometry (see [EG]).

Fefferman was partially successful in his endeavour [F] but he ran against serious
technical difficulties.

Since then, the scope of the investigation has been broadened to include the
parabolic invariant theory associated with a variety of geometric problems in

conformai and projective geometry (see [Gr] for a general review and a dis-

cussion of the relationship between the various geometric problems and their
algebraic counterparts). A detailed description of the problem we consider is

given in section 2, but, in brief, it is as follows. Fix some point eo of R"+1

and let P be the parabolic subgoup of SL(« + 1, R) which stabilises the ray

through <?o • The jets, at eo , of R"+1-valued divergence-free homogeneous func-

tions which vanish to some fixed order form a P-module and the object is to find

the invariants of this module, that is, the scalar-valued polynomials in these jets
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which simply scale under the P-action. These modules and invariants can also

be viewed as arising in connection with the jets of vector fields on P" (or, alter-

natively, on S" as the space of rays in R"+1). This geometrical interpretation
is discussed briefly in section 3.1. However for the purposes of our construction
the P-modules are best described algebraically in terms of tensors, which are

essentially the standard coordinate derivatives of the jets. One way to form an
invariant is to juxtapose an appropriate number of these tensors against volume

forms and then remove all indices by taking traces. Such invariants and linear
combinations thereof are called Weyl invariants while invariants which cannot

be constructed in this manner are said to be exceptional invariants. Since it

is possible to list all the Weyl invariants, a primary concern is to determine to
what extent all invariants are Weyl invariants.

Problems of the sort considered here are particularly important as guides
for the analogous problems in the conformai and CR cases. In [Go] I gave a

complete solution of the similar question where one begins with homogeneous

functions (rather than vector-valued homogeneous functions). Following this

and using some new ingredients, Bailey, Eastwood, and Graham [BEGr] com-

pletely solved the original question posed by Fefferman for CR geometry, his
model problem, and also an analogous algebraic question related to construct-

ing all invariants of conformai structures. It turns out that in the first of these

cases there are no exceptional invariants but in the other two problems there

are. Thus their results threw emphasis on the need to devise a scheme for listing

the exceptional invariants. For this question the modules considered in [Go] do
not provide a useful guide, as it is rather easy to list all the exceptionals in those

cases. On the other hand the modules considered here have interesting classes

of exceptional invariants which are closely analogous to those which arise in
Fefferman's model problem and the other conformai problem. The main result
of this article is a scheme for constructing all exceptional invariants for these

modules (see Theorem 3.1). The techniques described below adapt to the prob-

lems associated with conformai geometry and this is the subject of an article
with Toby Bailey [BGo]. They also provide a preparatory case for the algebraic

problem associated with the construction of invariants on projective geometries.
Since writing this article I have solved that problem (see [Gol]).

Although this is essentially an extension of the work in [Go], as mentioned

above one of the intentions is, along with presenting some new results which are

interesting in themselves, to provide an easy guide for the conformai case. Also
I am considering only scalar invariants (i.e., invariants taking values in a one-

dimensional P-module) whereas [Go] deals with the more general problem of
constructing tensor-valued invariants. For these reasons I have closely followed

the style and notation of Bailey, Eastwood, and Graham [BEGr]. To develop

notation and to provide a background for the discussion of the exceptional in-

variants I present first the general invariant theory of the modules concerned.

This material is new and is of interest as a further application of the techniques
developed in [Go]; see, in particular, Theorem 2.8. Nevertheless much of this

material is analogous to material in [BEGr]'s section 2 (which treats the "con-
formal scalar case"). Thus when the proofs required are simple adaptions of

those in [BEGr] they have been omitted except when they are needed for later

work.
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2. Preliminaries

Let W denote R"+1 with coordinates

and fix a volume form e e /\"+l W. Let eo e W be the vector with coordinates

fl \

\o)

Let G denote SL(« + 1, R)—we regard W as the standard representation
space of G. Define the maximal parabolic subgroup P c G by

P = {p e G:peo = Xeo, for some X > 0} ,

so that P consists of all elements of G of the form

O (omO:A>a

We note that a Levi factor L of P consists of all elements of the above form

with r.p = 0. We denote by aw the one-dimensional representation of P or L

where the element in (1) above is represented by X~w .

Let ßf(w) denote the set of jets at eo of functions positively homogeneous
of degree w ; by 'positively homogeneous' it is meant that f(XX) = Xwf(X)
for all X > 0. (In this paper, 'jets' means infinite jets.) If / were a genuine pos-

itively homogeneous function defined near t?0, then / would be automatically

defined in a positive cone around the ray through eo ■ Since P preserves the

ray through eo, it follows that P acts on the space of such functions (according

to (pf)(X) = f(p~xX) ). This action of P evidently descends to jets making
ßf(w) into a f-module. The group G does not act in this way since it does

not preserve the ray through eo. Its Lie algebra g does act, however, giving

AA(w) the structure of a (g, /^-module.

Evaluation at eo defines a homomorphism of P-modules ßA(w) —> ow . We
shall write this as

Eval : ßA(w) —> ow.

We will use indices to denote tensor-valued functions and jets. For example,

we write %?lJ(w) for the jets at eo of ®2 W-valued functions homogeneous
of degree w . A lower index represents a If*-valued object. The tenors with

both upper and lower indices can be traced or contracted and this is indicated

by repeating indices in the manner of Einstein's summation convention, for

example S7 7}. Having performed such contractions, if, as in this example, no

indices remain we shall say it is a complete contraction, otherwise we shall say

it is a partial contraction.

We can extend the ' Eval' map to tensor quantities, so that, for example,

we have Eval : ^(w) —> W ® ow . The coordinate functions X1 define a

(tautological) element of 2Al(l). Evaluation at eo gives a preferred element
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e e W <g> ox ', we write Eval(Jf7) = e1. The coordinate derivative d¡ = d/dX1

defines a map
d¡ : AAJK~M(v) -> Xi1K-M(v - 1).

The symbol O means the symmetric tensor product. Ifi<;e{0, 1,2,...},
then the G-module Qw W*, may be regarded as the polynomials on W

homogeneous of degree w. Thus, we have an inclusion of (g, P)-modules

QfW <-> &{w). Then %, := ^(w)/QwW is a (g, P)-module. As a P-
module this may be identified with the complement of QWW* in %A(w) given

by those jets which vanish to order w + 1. So

AA(w)^%3®QfW

as P-modules (but not as (g, P)-modules).

There is an analogous P-module splitting of the (g, P)-submodule of %?l(w)

defined by
3Al(w) := {vl e ßA'(w) such that djv1 = 0}.

This time Fj := JA'(w)/ Xf(Qf W* ® W) where tf(- • • ) means the totally trace
free part and the (g, P)-module t^O™ W* ® W) is interpreted in the obvious

way. Then as P-modules

JT'(w) í= %¿ e Xf(Qw W* ® W)

if S!~J is identified with the submodule of jets which vanish to order

w + 1. This splitting is also apparent from the following algebraic description of
%fl(w).

Proposition 2.1. As P-modules,

(2)       %r'(w) - i(T{0),T^,...): TW e Xf(OkW* ® W)®ow_k,\
(¿)      JZ (w)-\ejT{k+i) = {w_k)T(k) ]>

and if w e {0, 1,2, ...}, then

(tT(w+l) t j{w+2) y j(k) g xi{QkW ®W)® Ow_k , \

w "    \ejT(k+x) = (w-k)TW for k>w ande JT<-W+V = 0j '

Proof. Given v1 e J¡T'(w), define irreducible tensors

T^exf(Okw*®W)®ow-k

by

T(k) = Ttj...M := Eval {d¡dj • ■ • dMvA) .

k

The condition ej T{k+X) = (w - k)T(k) follows from Euler's equation

for homogeneous functions. The splitting is a consequence of the vanishing
of (w - k) when w = k, which 'decouples' the strings between  r(t") and
f(w+l) _     r-|

The problem we are addressing is to find the /"-invariants of ^f . By in-

variant we mean a polynomial on AA^f which is homogeneous of degree d in

&~J and which simply scales under the action of P. It is sufficient to consider

polynomials homogeneous in this way since P acts linearly on ^f and so a

general invariant polynomial consists of invariant homogeneous parts. A class



INVARIANT THEORY FOR A PARABOLIC SUBGROUP OF  SL(n + 1, R) 1547

of invariants which are easy to list are those which arise as linear combinations

of complete contractions:

Definition 2.2. A Weyl invariant is a P-invariant of ATJ constructed as a linear

combination of complete contractions of the form

(3) contr(e ® • • • ® e ® T(k^ ® ■ ■ ■ <g> T{k«]).

An invariant which cannot be written as a linear combination of complete con-
tractions in this way is called an exceptional invariant.

Our problem then is first to determine to what extent all invariants arise
as Weyl invariants and second to devise a scheme for listing the remaining
exceptional invariants. Evidently if / : &¿ —► oq is a Weyl invariant then

q = Yfi=x(w ~ b) • Furthermore it is clear that if w > 1 then a non-trivial

Weyl invariant must have d > n + 1. If to = 0 then Tg T¿ is a Weyl invariant

which fails this inequality when « > 2 .
We need to understand ¡T^ as an L-module. A tensor

J<*> € ff(Q)kW* ® W)

has as components the quantities

(4) T0...0a...d!lndT0...0a...d>   P + r = k,

P r p r

which are symmetric in the r lower case indices. The various p and r split

QkW* as an L-module (although not into irreducibles). Using that each T(fc)

is trace free and the linking between the T's as described in (2) the zeros may

be eliminated and we are led to the following result:

Proposition 2.3. The tensors w(fc) for k > w defined by

(5) u'ab...d = T'ab...d

k k

are symmetric on their lower indices and w(u,+1) is trace-free, but are otherwise

unrestricted. They form a spanning set for J¡f and split it as an L-module.

2.1. Weak Weyl invariants. There is another way in which invariants can arise

by (/-tensor operations.

Definition 2.4. Suppose

C-.ATJ ̂ OlW®ol+q

is a map obtained as a linear combination of partial contractions of tensor
products of the tensors e , T(k), and e . If

(6) C = e_

for some / : ATJ —> oq , then / is an invariant. We call an invariant of this

form a weak Weyl invariant.

With this definition we have the following useful result:
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Proposition 2.5. Every P-invariant of AC1 arises as a weak Weyl invariant.

The following proof is brief. More detailed proofs of corresponding results

may be found in [BEGr] and [Go].

Proof. A P-invariant / of &Jf is, by restriction, an invariant of the reductive
subgroup L of P. Thus by Weyl's theory for reductive groups it can be written

as a linear combination of complete contractions, over lower case indices, of
the form

(7) contr(ê ® ë • • • è <g> u{k[) <g> u(kl) ■ ■ ■ u{kd))

where € denotes the R" volume form. (Of course the dual volume form could

also be used but each of these can be removed with a matching volume form in

favour of traces. Thus we shall always assume it is not used.) Supposing then
that / is written in this form, make the following formal changes. Replace the

ris with the corresponding components of the T"s using (5) and replace each

è " with 6 °fi-'. Now replace the lower case traces by upper case traces

and zero components using the identity

Vf S = ¥a- Vo

which holds for any tensor \p e W ® W*. Next eliminate all lower zeros using

the linking condition e j r(*+1) = (w - k)T^k>> satisfied by the 2"'s. Thus our
invariant / is now written as a linear combination of complete contractions
over the upper case indices of the quantities

T° T1 and  f OFG-I1 AB-D-i    IAB-D>   dnu  c

Let I be the maximum number of superscript O's that occur in any summand
of this formula. Observe that there exists a map

(8) C:ATj ^QeW®oe+q

given by a linear combination of partial contractions of the tensors T^ and

e   and e such that

(9) C°°-° = /.

To see this note that e° = 1 and so any tensor ip may be regarded as the / = 0

component of the tensor eJ \p of one higher rank. Thus, if we replace each

superscript 0 in our expression by a free index and then juxtapose, against each
term, as many eJ,s as necessary to bring the number of free indices up to i ,
then we obtain an expression bab E such that 500 ° = /. CAB E := BiAB-E)

also has this property, i.e., (9) holds.
Finally we must show that the map

(10) C-<?®<?®<?® ■■■®el:^w1 ̂Çfw^oi+g

is the zero map. Certainly its 00 • • • 0 component vanishes. This is its compo-

nent in the L-direct summand

oq^OeW®ol+q.
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Now QeW ®C is an irreducible module for the complexified Lie algebra gc

and a-i ®CmQV®C is its highest weight space. Thus every non-zero

vector Qe W ® C may be raised to a non-zero vector in o-e ® C. Now, the

raising operators of gc are all contained in pc , the complexification of the Lie

algebra of P. Thus any non-zero vector in QlW ® o¡+q <g> C yields a non-

zero vector in aq <s> C by consecutive application of appropriate elements of
pc • The result now follows as the complexification of (10) is a pc-equivariant
polynomial map.   D

The following proposition and its proof are used later.

Proposition 2.6. In the expression for I as a weak Weyl invariant, one can take

£ to satisfy

£<-d-q.

Proof. If CAB-D = e^G*-1» for some G*-D then we can simply 'cancel' eA
from both sides of (6). Having cancelled as much as possible, we can assume

that CAB"D contains a term constructed from only the T^ , for k > w + 1,

and e . Each T^ takes values in Xf(QkW* ® W) ® o¡ for ;' < -1. Hence

qab-d takes values in QfW ® om for m < -d. On the other hand the

right-hand side of (6) takes values in Ql W ® oq+( and so q + l < -d.   D

2.2. Jets. We now return to viewing elements of ATJ as jets of W-valued

homogeneous functions on W at eo ■ We can similarly regard e IJ-M and X1

as jets on W at <?o- Also, recall that Tfj...M = Eval(d¡dj ■ ■■8mva). Thus, if

we substitute X1 for every occurrence of e1 in the formula for C, and replace
Tjj-M by 9¡dj ■ ■ ■ 8mva we obtain a map

C:ATJ ^J?AB-G(q + t),

whose image lies in the symmetric part of the right-hand side and such that

Eval(C) = C. The relationship (6) then extends away from eo in the following
sense.

Proposition 2.7. There is a Q-invariant mapping Î : ̂ f —> %A(q) with Eval(/)
= / such that

t

(11) CAB    E = XAXB-XE1.

This is an instance of Frobenius reciprocity, a general purely algebraic proof

of which may be found in [Kn, Proposition 6.3]. Otherwise this proposition

may be proved by an argument similar to that in [BEGr] for the corresponding
conformai scalar result.

To prove the next theorem we observe that if / is a tensor homogeneous of
degree u then it follows from Euler's equation that

(12) d,(XIf) = (n + u+l)f

Theorem 2.8. If w > 1 then every non-trivial P-invariant of 9A¿ has d > «.

If d = n then the invariant is exceptional. Otherwise the invariant arises as a
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Weyl invariant. If w = 0 and « = 1 the same results hold, but if w = 0 and

« > 2 then every P-invariant of AT§   arises as a Weyl invariant.

Proof. We observe, as a consequence of our being able to write an invariant in
the form (7), that any P-invariant of ^J, with w > 1, must have d > «.

On the other hand, we observed after Definition 2.2 that when w > 1 a Weyl

invariant must have d > « + 1. Thus, when w > 1, non-zero invariants with

d = « are exceptional invariants.

Now suppose w > 1, d > n and consider the relationship

ÇAB...E = XAXB . . . XE¡

It follows from (12) that the Weyl invariant obtained by expanding out

(13) dAdB-dECAB~E

is some multiple of /. We must check that it is a non-zero multiple, i.e., we are
not applying (12) to any homogeneity u with n + u+1 =0. The homogeneities

that we are applying it to are precisely

q <q+l <...<q + t-l

and recalling that I < -d - q, we see that all the coefficients are non-zero

provided d > « .
Now consider the case of w = 0. Recall that an invariant / can be written

as a linear combination of complete contractions as in (7). Suppose that for

a particular invariant only uab is involved, i.e., w(fe) where k = 1. Then the

R" volume form ë is not used in the formula for /. Thus if we replace each

uah formally with Tjj- then we obtain a new formula for / which is a linear

combination of terms of the form of (3) and so the invariant is Weyl. On the

other hand suppose that w(/c) for k > 2 are involved. Then ë is necessarily

involved in (7) and d > n . Arguing as for the above cases we see that if d > «

then the invariant must be Weyl whereas if d = « then the invariant must
be zero or exceptional. This latter case is treated below (see, in particular, the

parenthetical remark in the proof of Theorem 3.1).   D

3. Exceptional invariants

Let (¡A be a jet of homogeneity -1 satisfying XA£,A = 1 ; clearly such exist.

Then another choice £A is related to ¿^ by ^A = ÇA + TA where X^T^ = 0.
n

Let nAB " D := & 6 IAB,D. Then under £A .->• i\A the change in n is of the

form

(14) nAB-D p-* fjAB-D = nAB-D + XlAy*-D\

Recall that, in the expression for an invariant as a linear combination of

complete contractions of the form (7), if w > 1 then ë is necessarily involved.
The case when ë is not involved and w = 0 was treated above. So we assume

throughout this section that all invariants involve   ë   in this sense. There are
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two types of exceptional invariants that we can construct using nAB "D . Let

T(w+{) = T'ab    D:=dAdB---dDvA

tip+i

Let Ex be the evaluation at eo of a linear combination of complete contractions

of the form

contr(« ® • • • ® r?®f(",+1)®.--®7'<",+1)j.

w «

Then, since X j f(w+x) = 0 it follows that Ex is unchanged by ¡t,A >-> £A and

so, when w > 1, is an exceptional invariant or is zero. Note that if « = 1 the
invariants so constructed are zero. Observe also that when w = 0 we can form

invariants of type Ex, but these are not exceptional invariants.
n

Suppose now one forms LAB 'c = ïfAB'C) by contracting the n(w + 1)

lower indices of ®"7'(u'+1> into w + 1 nAB'"D,s and then symmetrising over

the free superscript indices. Note that L is unchanged under i\A i-> c\A and

therefore so is

(15) dAdB--dcLAB-c.

Let E2 be the evaluation of this at eo. Then, if non-zero, E2 is an exceptional

invariant. Note that if « > 2 and w is even then E2 vanishes. Observe also
that for each w there is at most one (up to scale) invariant of type E2 .

Theorem 3.1. In dimension « = 1 all exceptional invariants are of type E2. In

other dimensions exceptional invariants for w even are of type Ex. For each

odd w there is at most one (up to scale) exceptional invariant of type E2 and

all other exceptional invariants are of type Ex.

Proof. Recall the proof of Theorem 2.8 and notice that if the weak form CAB "D

of an invariant has £ <—n — q — 1 then the invariant is Weyl. Now recall from
the proof of Proposition 2.6 that we can assume C contains a term constructed

from only the P(fc) (for k > w + 1) and 6 ; without loss of generality we will

assume such terms are symmetric. There may be more than one such term. Let

us refer to such terms (and the corresponding terms in C) as the leading terms.

Suppose that one of the leading terms has at least one T(w+^ where j > 2.

Then CAB"D e ®eW ®om where m < —d — 1. Thus, arguing as in that proof

we now get that £ < —n — q - 1 and so the invariant is Weyl. But d = « and

so if the invariant is non-zero this is impossible and so the leading terms are

constructed from just p(u'+l)'s and e's.

Now suppose « > 2. Consider a leading term of C. Each e has « + 1

indices. Since there are « P's, at most « of these are contracted into P's. On

the other hand at least « of these are contracted into P's since the leading term

is symmetric in its free indices. Since ®"P(™'+1) has n(w + 1) lower indices it
follows that either there are w e 's or there are (w + 1) e 's (and w is odd).

(Thus, there are no exceptional invariants when w = 0 and « > 2 as claimed

in Theorem 2.8.)
Consider an exceptional invariant with w € 's. Recall the equation (6)

again. Since (at e0)  e IAB"'D = (n + l)e[lnAB-DX and e J P(,u+1) = 0 it follows
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that each leading term on the left-hand side of (6) is of the form (Ç$w e) ® Ex

where Ex is an invariant as defined above. Thus these leading terms may be

subtracted from both sides to yield a new C which must be either zero or the

weak form of another exceptional invariant. But if the latter then, removing

e's as usual, C would require leading terms. These would also each have to be

of the form ((g)"' e) ® Ex, which is impossible. So the new C is zero and the
invariant is of type Ex.

Now consider an exceptional invariant with (w + 1 ) e's. Up to scale there

is then only one way to form a leading term for C, so we assume there is just
one leading term. Since e iab~-d _ („+ x)xVnAB-DX and x j f (w+x) = 0 this

leading term is necessarily a scalar multiple of

PAXB--XCLDE"F\
*-v-'

W+l

Now the other terms of C are each of form X^AWBC'F^ where W is a linear

combination of objects constructed from the tensors T^k), X, and e . Thus an

X may be cancelled from both sides of (11) (cf. the proof of Proposition 2.6)

The 'new C" on the left-hand side then has £ < -d - q - 1 and the invariant /
may be recovered by differentiating as in (13). Thus / consists of a part which

is an invariant of type E2, arising from the leading term, and possibly another
part arising from the other terms. However the latter, by construction, would

be Weyl if non-zero. This is impossible since « = d and it follows that / is
an invariant of type E2.

The « = 1 case follows as for the « > 2 case above except now the leading
terms associated with invariants of type E2 can arise for w of either parity
whereas invariants of type £• are not involved in the leading terms of any
invariants since the P's are trace free.   D

3.1. Vectors on P" and S" . The P-modules considered above arise in a natu-
ral geometrical manner as certain jets of vectors on P" . Actually it is sufficient,
and more direct, to work on S" , the space of rays in R"+I . This avoids awk-

wardness arising from the non-orientablity of P" when « is even. Since S" is

a 2 - 1 covering space of P" and G = SL(« -l- 1, R) is a covering group for
the group of projective motions on P" it is a straightforward exercise for the

reader to adapt the discussion below to P" . The invariants of ¿AJ constructed

above correspond to (non-linear) invariant differential differential operators on

Sn . Recall that ßA(w) denotes the jets at <?o of functions positively homoge-

neous of degree w . Regard the coordinates Xa as homogeneous coordinates

on Sn . These functions may be thought of as sections of a line bundle which

we shall denote %(w). Similarly 3A\w) may be thought of as jets of vectors

in %a(w - 1) := Tf" ® %(w - 1) at the point [e0] in S" determined by e0. It

follows that &~J consists of such jets modulo the kernel of an invariant linear
operator.

Now the operator dA determines a natural family of (affine) connections

on any affine patch of S" (for details see [Go]). Writing Va to denote a
member of this family one can explicitly write down the differential invariants

on S" determined by the P-invariants constructed above. We conclude with
an example.
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Let « = 2 and w = 1. Up to scale there is then only one exceptional

invariant. This is the E2 type invariant given by

dEdF(fEBtEDnACnBD).

When expanded out it is given by a non-zero multiple of

ecd€ef((VcVeVavb)VdVfVbva+2(VcVeVbVava)VdVfvb

+ (VcVeVava)VdVfVbvb)

and so is clearly non-zero. (Thanks to Michael Eastwood for helping check this

expansion.)
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