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/^-GROUPS OF SOLENOIDAL ALGEBRAS I

BERNDT BRENKEN

(Communicated by Palle E. T. Jorgensen)

Abstract. Multiplication by x determines an automorphism of the compact

dualgroupof A^ = Z[x, x~1]/(g) for j e Z[x]. We determine the AT-groups

of the C*-algebra associated with this dynamical system if g is irreducible and

has degree one or two. Partial results are included if the degree of g is three.

To each g £ Z[x] associate a C*-algebra Bg , the crossed product C-algebra

associated to the dynamical system (Ag, a, Z). Here Ag is the dual group of

the discrete abelian group Ag = Z[x, x~l]/(g) where (g) is the principal ideal

generated by g in the ring Z[x, x~1]. The automorphism a of Ag is that

defined by multiplication by x on As. The dynamical systems (Ag, a) are

examples of (abelian) Markov groups ([8]), in particular they are generalized
solenoids ([2]).

In this note the Ä"-groups of Bg are computed for g nonconstant, irre-

ducible, and of degree one or two. Partial results for g degree three are also

obtained. This is accomplished by a straightforward (though involved) applica-

tion of the Pimsner-Voiculescu six-term exact sequence ([7]). In addition, the

range of any state on Ko(Bg) arising from a tracial state on Bg is shown to be
Z for any (nonconstant, irreducible) g.

Although of little interest in their own right, these calculations do allow a
comparison of the computed A"-groups with the known (for degree g equal to
one or two) * (or anti-*)-isomorphism classes of these algebras [1]. This yields

many examples of non- * (or anti- *)-isomorphic algebras with isomorphic K-

groups and, since both the tracial states on Kq and (at least in degree one) the
possible order structures on Kq provide no additional information, one is left

with the interesting (especially in light of the questions raised in [3]) possibility

that the A"-groups are of limited value in determining the isomorphism classes

of this family of amenable algebras. The isomorphism classification arrived at

in [1] (for degree g one or two) used a sequence of invariants related to the
entropy of the underlying dynamical system.  One can contrast this with the
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1458 BERNDT BRENKEN

family of rotation algebras, for example, where A"-theoretic means provide a

classification and the entropy of each underlying dynamical system is zero.
Admittedly the algebras Bg are not simple, however, they do possess a sep-

arating family of finite-dimensional quotients. Although the algebras are not

^F-algebras (Kx is nonzero), they are finite and embeddable in .4.F-algebras.

This follows from [5], since the finite periodic points in Ag are dense ([2], [4])

and the dynamical system (A^, a) is thus chain recurrent.

In the following, if g = Y^d=oa'x' e ZM wrtn #(0) ¥" 0, then g° denotes

the polynomial Yfi=o ad-ix' and deg(g) denotes the degree of g . The content
of g is written cont(g). For n, m £ Z, {n, m} is the least common multiple

of n and m and (n, m) is the greatest common divisor of n and m. If <p

is a Z-module map, im tp denotes the image of <p , ker (p denotes the kernel of

q> and coker <p denotes the cokernel of q>.

1

We compute the A>groups of the abelian C*-algebra C(Ag) for irreducible

nonconstant g £ Z[x] and prove some preliminary algebraic results.

For g £ Z[x] nonconstant, irreducible let a £ C\{0} denote a root of g,

so Ag ~ Z[a, a~1]. The automorphism a of Ag is dual to the Z-module

map M a (multiplication by a) in the ring A^ . Note that Ag is torsion free

if and only if cont(g) = 1. Thus, Ag is a discrete, torsion free, abelian,

rank d group where d = deg(g). Although the group Ag is not finitely gen-

erated (unless both g and g° are monic), Ag is a direct limit of its finitely

generated submodules. Since any finitely generated submodule of Ag is tor-

sion free (and thus free), write Ag as a direct limit of submodules each iso-

morphic to Zd . For example, let Jfn be the submodule of Ag generated by

{a~n , ... , 1, a, ... , ad+n) (identifying Ag with Z[a, a"1]) • Then Jfn ~ Zd

and Ag = lim^oo (.^, i„) where in: Jfn —» ̂ n+x  is the natural inclusion.

The group Kt(C*(^n)) is isomorphic to ®dj=0/\JZd (denoted by /\Zd) with

K0 corresponding to the even indices and Kx to the odd indices. The induced

map (/„)» is ©y=0A^/„ (denoted A/„). Since Ag is discrete and abelian, it is

straightforward to see that C*(Ag) ~limn(C*(J£n)) • Since K, commutes with

lim, and the wedge product of Z-modules commutes with lim, it follows that

K.(C*(Ag)) ~ ©J=1 r\JAg ~ ©J=1 A'Z'fl, a-'].

Proposition 1.1. The automorphism a of C(Ag) induces the map ©;=0A7A/a

on Kt(C*(Ag)).

Proof. Let Jfn be the submodules of Ag defined above and note that Ma(Jfn)

ç Jfn+X. The maps M„ = Ma\J+l define a homomorphism of the directed

system (Jfn, in) to (Jtn+\, in+x) and the homomorphism limAf„ of \\mJfn

= Ag to lim^+i = A^ is the map Ma. The corresponding maps Mn:

C*(Jfn) —► C*(Jfn+\) on the C* -algebra level form a map of the directed system

(C*(Jtn), in) to itself. The homomorphism HmM„ of X\mC*(Jfn) = C*(Ag)
to itself is the map a.

The functor K* commutes with direct limits, so the endomorphism a» of

the group K*(C*(Ag)) is the homomorphism (M„)t of the directed system
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{K.{C*(jr„)),(ïn*)) to (K.(C*(jfn+x)),(ïn+x)*). However, (Af„), is the map

®7=0 AjM„ . Finally, note that lim commutes with direct sums and with wedge

products.   □

Since Ag is a limit of Z-submodules isomorphic to Zd , AdAg is isomorphic

to a limit of Z-submodules isomorphic to Z. In particular, the elements a-'0 A

... Aa-to-i (with jk £ Z and jo < ••• < Jd-\) generate A^Ag as a Z-module.

Note also that f\dAg is a limit of torsion free modules, so is torsion free.

Lemma 1.2. Let g — J2i=,0aiX¡ (nonconstant, irreducible) and I = {ao, a¿} . If

e is the element 1 A a A • ■ • A ad~l of /\dAg, then l~le £ /\dAg .

Proof. Let c¡ = 1 A • • • A âJ A ■ ■ ■ A ad and b¡ = a~l A • • • A a1A ■ ■ ■ A ad~l

for 0 < j < d - 1. Since g(a) = 0, it follows that adc¡ - (-l)d~ia¡e and

aobj - (-l)j+iaj+xe for 0 < j < d - 1. If r - (ao,a¿), then Ir = aoa¿ ; so

ajOor-^e = (-l)d-jlcj and aj+xadr-xe = (-l)j+llbj for 0<j<d-l. Since

ddOor~xe = le £ I Ad Ag also, it follows that a¡aor~^e and a¡a¿r~xe £ I Ad Ag

for 0 < j < d. Since (aor~[ > ̂ dr~l) = 1, we have a¡e £ lAdAg for 0 < j < d.

However, cont(g) = 1, so (oq , ax, ... , ad) = 1 and e £ I Ad Ag . The result

follows since A¿ Ag is torsion free.   D

The elements aJo A ■ ■■ A a^-1 of AdA? are all contained in the Z-module

Z[üq1 , a^l]e = Z[l~x]e, and since they generate A^Ag as a Z-module, AdA? ç

Z[l-l]e.

Proposition 1.3. If g, e, I areas in the preceding lemma, then Z[l~l]e = A^A^ .

Proof. It is enough to show Z[l~l]e ç AdA?. Since l~le £ A^Aa, the result

will follow if AdAg is a commutative ring with unit e.

First, define a multiplication on the generators ajo A ■ ■ ■ A a-**-1, jo < ■■■ <

Jd-X, of A^A^ . Using the alternating ¿-multilinear map A of Qd (identified

with Q[a]) into Q taking the value 1 on the basis {I, a, ... , ad~1} of Q[a],

we identify A^Q^ with Q (e corresponding to 1). Let çj7o...jä_] = <p denote

the Q-linear map of Q[a] determined by mapping ak to aJk, 0 < k < d - 1.

This map is also Z-linear and maps Ag to itself. We have ajo A ■ ■ ■ A aid-x =

Ad<p(e) - (deitp)e. Define the product of ajo A ■■■ A aJd-] with a'0 A--- A

a"-> as Ad(<pj0...jd_lo<pio...¡d¡)(e) = det(p7o...,¿_, o9io...id])(e) = det(^0-.¿,_,) •

de\.((pi0...id _,)e and extend this linearly to a product on ArfA? (A¿AS is a subring
of Q).   D

The proof of the above proposition shows A^Ag is a ring isomorphic to

Z[/-1]. The endomorphism AdMa of AdA? is multiplication by det(Affl) =

(-l)da0a^ in Z[/->].

Proposition 1.4. Let g = Y^=oaix' e ^M oe nonconstant, irreducible.  Then

Ag/(l-Ma)Ag^Z/(ZiQai)Z.

Proof. Let R = Z[x]/(1 - x)Z[x]. Then R ~ Z and A¿/(1 - Ma)Ag ~ Z/gZ

where g~ = Y,1=oai *s me class of g in R (cf. [2]).   D

Definition. If n ¿ 0, / £ N, define n : I = n(n, /mo)_1 where mo is the

maximum multiplicity of any prime dividing n. Thus, n : I is formed by

removing from n any prime also dividing /.
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Lemma 1.5. Let n^O./eN. Then Z[/-1]/'nZ[l~l] ~ Z/tZ where t = n:l.

Proof. Let Hk be the subgroup of Zk ~ Z generated by « (k £ N). The
map <pk: Zk ^ Zk+X given by multiplication by / defines a map pfc: Zk/Hk

-* Zk+X/Hk+X. We have Z[/-'] ~ lim(Zk,<pk) and Z[l~x]/nZ[l~l] ~

lim(Zk/Hk ,fk). Each Zk/Hk is isomorphic to the cyclic group Z/«Z and
pfc is multiplication by /. If b is a generator of Z/nZ, then /mè has or-

der n(lm, n)~l. For m large enough (m larger than the maximum multi-

plicity of any prime dividing n) lmb has order t = n : I. It follows that

Z[/-1]/«Z[/_1] ~ lim(Z/iZ, mi) ~ Z/tZ (where mt is multiplication by /).   D

2

Let AevAg denote ©J^A^Ag and AoddAg denote ©J^21 A^'+'A^. The

maps AevMa and AoddA/a are interpreted similarly. The Pimsner-Voiculescu

six-term exact sequence for the A"-groups of the crossed product C* -algebra

Bg = C*(Ag)\ x Z is:

AevAg      1-A"^    AevA?       _L_^     K0(Bg)

|*

1. l-A^Af«Ä"j(ßg)    <-    AoddAg   <-  AoddAg

The cases deg(g-) =1,2, and 3 are dealt with separately.

The case deg(g) = 1.   The single root a of g(x) = ao + axx is -oqü^1 and

the six-term exact sequence is:

Z      —^—*   Z   —^—» A"0(5g)

i. 1 -M,
*,(*,) <- Ag <-     Ag

If a ^ 1, the map 1 - Afa is injective (Ag is an integral domain) and /'* : Z —>

A"o(5g) is an isomorphism. To compute A"i (2^), first note that ker^i = im i» ~

coker(l-Ma). Also, 0 —> kerôx —> Kx(Bg) -+ Z —► 0 splits since Z is projective.

Thus, ATi(5g) ~ Z e kertJi ~ Z © Z/(íz0 + ax)Z by Proposition 1.4.

If a= l,then Ag = Z,Bg = C(T2), K0(Bg)~Z®Z,and Kx(Bg) ~Z®Z.

Proposition 2.1. If g = ao + axx is a degree I, irreducible polynomial in Z[x],

then

Ko(Bg) = |
ifa0 + ax = 0,

otherwise

and

Kx(Bg) = Z®Z/(a0 + ax)Z.

The case deg(g) = 2.   Let g(x) = YÜi=oaixi € ZM De irreducible with a £

a root and I = {ao, a2}. The six-term exact sequence becomes:
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0®M(l-aoa-')
/-ll Ko(Bg)

1*
I. 1—M,

Ä"!(5g) <- Ag        <-     Ag

Since a ^ 1, the map l-Ma is injective and imf5o = 0. Thus, /* is surjective

and K0(Bg) ~ Z©Z[/"1]/(1 - a0a2i)Z[l-1]. To compute Kx(Bg), note that

0 -» kerr5i -» Kx(Bg) -*• imr5i -» 0 is exact and multiplication by 1 - ao^1 is

either injective (if a2 ^ ao) or zero (if a2 — ao). In the first case, im<5i = Z ;

in the second case, im<5i = Z©Z[/~']. Also note that kerái = im/'« ~

coker(l - Ma) = Z/(£2=0a;)Z by Proposition 1.4. Thus, if a2 ^ ao, then

imr5i = Z is projective and Kx(Bg) ~ Z © Z/(£2=0a,)Z.

If a2 = ao, then Kx(Bg) is an extension of Z©Z[/~1] by Z/(£2=0a«)Z. It

is still possible to determine Kx(Bg) by computing the abelian group

Ext(Z[l'1], Z/mZ) for m,l relatively prime in N.

Proposition 2.2. If m, I £ N with (m,l) = l, then Ext(Z[/_1], Z/mZ) = 0.

Proof. Let Zk ~ Z (with unit efc) for & e N0 and D the (free) submod-
ule of the free Z-module P = ©¿6N Zk generated by the independent set

{hj\hj — ei - lei+x, i £ No}. Since Z[/_1] is isomorphic to lim(Z¿, Jf{) (where

M¡ denotes multiplication by /), we obtain the projective presentation 0 -»

D A P A Z[l~l] -* 0 of Z[/->]. Thus, Ext(Z[/-'], Z/mZ) = cokerp* where
p*: Homz(P, Z/mZ) -» Homz(D, Z/mZ). We show p* is onto. Choose

<p = (<pk) £ Hom(P, Z/mZ) ~ flfceNçHom(Zfc, Z/mZ) ~ \\kmZ/mZ where
<pk £ Hom(Zyt, Z/mZ) may be identified with the element <pk(ek) of Z/mZ.

The image of p* in YlkeNoHom(Zhk, Z/mZ) consists of {y/ = (yk)\y/k =

9k - l<Pk+i > (9k) e rijtgN Z/mZ} . Since / and m are relatively prime, multi-

plication by / maps Z/mZ onto itself and the equations y/k - <pk - l(pk+x can

be solved for <pk £ Z/mZ given y/ - (y/k) £ Hom(Zhk, Z/mZ). Thus, p* is
onto and the result follows.   D

Theorem 2.3. Let g = £,_n o¡x' £ Z[x] be a degree 2 irreducible polynomial

and I = {ao, a2}. If a2 ^ ao, then K0(Bg) ~ Z © Z/tZ with t = (a2 - ao) : I

and Kx(Bg) ~ Z © Z/(£2=0a,)Z. // a2 = a0, then K0(Bg) ~ Z©Z[/_1] and

Kx(Bg)~Z®Z[l-l}®ZI(YJ2i=oai)Z.

Proof. Since a2 and a2l £ Z[l~l], the ideal generated by l-aoa2x in Z[/_1]

is the same as that generated by a2-a0. Thus, Z[l-l]/(l-aoa2x)Z[l-l]~Z/tZ

with í = («2 - ao) : / by Lemma 1.5, and the result for Ko follows. It remains

to compute Kx(Bg) when a2 = ao- In this case, I = ao and (/, Y?i=oai) =

(ao, 2oq + öi) = (ao, ax) = 1 since cont(g) = 1. Thus,

ExtlZffiZf/-1],

= Ext[Z,Z/ jj^a/jz] ©Ext   Z[/-'],Z/ Q]a,   Z   =0

by Proposition 2.2. The result for Kx follows.   D
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The case deg(g) = 3.   Let g — Y?i=oaix' e ^M be irreducible, a e C a root,

and I — {ao,a{\ . The six-term exact sequence is:

Z®A2Ag   mi-*2M°\    z®A2Ag -^-> Ko(Bg)

[s°

(l-Mami+M^)

Kx(Bg)       <—^—     Ag©Z[/-']<-— Ag®Z[l~l]

Again a ^ 1, so 1 — Ma : Ag —» Ag is injective. Thus, im¿o = kerAÍ,,    a-i,

which is either 0 (if a^ + ao ^ 0) or Z[/_1] (if a3 + a0 = 0). Since ker^o =
imi* ~ Z©coker(l - A2Ma), we have Ko(Bg) is either Z©coker(l -A2Ma) (if

a3 + ao t¿ 0) or an extension of Z[/_1] by Z©coker(l - A2Ma) (if a3+ao = 0).

The group Kx(Bg) is an extension of imáj = Zffiker(l - A2Ma) by keró]

where kerr5i = im/» ~ coker(l - Ma) ® cokerM^l+aoa-^ ~ Z/(X;.=0a,)Z ©

coker A/(1 a-K . By Lemma 1.5, coker Af(1 a-i, ~ Z/tZ with t = (a-¡ + Oq) : /

if Û3 + ao ^ 0. If a3 + ao = 0, then cokerM(X+a¡¡a-u = Z[/_1].

Proposition 2.4. Let g(x) = Y?i=oa'x' e ^M be a degree 3 irreducible polyno-

mial and I = {ao, a?,}.
If a3 + a0 t¿ 0, í/iétj K0(Bg) = Z © A2Ag/(l - A2Affl) A2 Ag ana" 0 -♦

Z/(X)f=0a;)Z©Z/rZ -+ /Ci(5g) -> Z©ker(l -A2Ma) -► 0 w/We í = (a-¡+a0) : I.
Ifa3 + a0 = 0, then 0 -♦ Z©A2Ag/(l-A2Afa)A2Ag -► ATo(^) -» Z[/->] -» 0

a/ia" 0 -► Z/(X;-=0 fl/)Z © Z[/- ' ] -» /ii (5g) -> Z © ker( 1 - A2Ma) -* 0.

It is straightforward to compute these groups if we impose the restriction that
both a3 and ao £ {1, -1} (so / = 1). In this case, Ag has a basis e¡ = a'

(i = 0, 1,2) and is isomorphic to Z3. Identifying A2Z3 with Z3 (E¡ = e¡Aek

with i, j, k £ {0, 1, 2} in cyclic order is a basis of A2Z3), the map A2M„
has matrix form

axa^x      a2a^]     1"

-aoaj"1        0        0

0        -aoaj-1    0.

The first, second, and third determinantal divisors of 1 - A2Afa , i.e., the invari-

ants of the submodule (1 - A2Ma) A2 Ag in A2Ag , are 1, 1, and aoa2 - axa^1

respectively. Thus, coker(l - A2Ma) = Z/(a2 - ax)Z if ao + a?, ^ 0, and

coker( 1 - A2Ma) = Z/(a2 + ax)Z if ao + a3 = 0. We also have, if a0 + a3 / 0,
that

ker(l-A2^     iZ   ifûl=û2'fa)^{
0    otherwise

If a0 + a3 = 0, then

ker(l-A2Ma )~\ .
L 0   otherwise.

Proposition 2.5. Let g = 5D/Lo a'x' be a degree 3 irreducible polynomial in

Z[x] with |ao| = |a3| = 1.
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If ao + a3 t¿ 0, then

K0(Bg) = Z®Z/(a2-ax)Z

and
K (B ) = iZ2®Z/(^=°a,)Z®Z/2Z   ifUx = a2'

\ Z © Z/(£-=0 a,)Z © Z/2Z     otherwise.

If ao + a3 = 0, i/zen
K0(Bg) = Z2 © Z/(a, + a2)Z

and
Kl{B) = !P® Z/(^=° fl/)Z   //fll + Ul = ° '

?      \ Z2©Z/(^=0a,)Z   otherwise.

3

Proposition 3.1. Lei g e Z[x] be nonconstant and irreducible. If x is a tracial

state on Bg, then the range of x on Ko(Bg) is Z.

Proof. Identify Ag with Z[a,a~x] for a £ <C\{0} a root of g. If a = 1,
then Bg = C(T2) and x(Ko(Bg)) = Z, so assume a =¡¿ 1. The map 1 - a, of

Kx(C(Ag)) restricts to 1 - Ma on Ag = Hl(Ag, Z) (by viewing an element

of Ag as an element of Ag one obtains a unitary in C(Ag)). Since a /
1, 1 - Ma is injective on Ag and thus A"(ker(l - a*)) = 0 where A" is the

group homomorphism from ker(l - a») to R/x(Ko(C(Ag))) described in [6].

Thus x(Ko(Bg)) = x(Ko(C(Ag))) ([6]).  Since Ag is compact and connected

(cont(g) = l), x(K0(C(Ag))) = Z.   D

We briefly consider how well the K-groups reflect the *- or anti- ^isomor-

phism classes of these algebras. Already, if deg(g) = 1, there are many exam-
ples of non- *- or anti- *-isomorphic algebras with isomorphic /í-groups (even

if we view Ko(Bg) as an ordered group). By results in [1], it is enough to

find g,h £ Z[x] irreducible of degree one with |g(l)| = |A(1)| ^ 0 and
g ^ ±h and g ^ ±h°. There are also many examples if the degree of the

polynomials are two. For example, it is enough to find g = Y^=oaix' and

h = E2=o biX' irreducible in Z[x] with a0 / a2, b0 ¿ b2, \ X)2=0 C/| = | Y,2=o bi\

and |a2 - a0| : {a0, a2) = \b2 - b0\ : {b0, b2} but g ¿ ±h and g ¿ ±h°.
Choose ao, ai, a2 e Z with a0 + a2 ^ 0, ao + ai + a2 / 0, and both a2 - 4a0a2

and (2(a0 + a2) + ai)2 - 4a0a2 not squares. Letting bo = ao, b2 = a2 , and

bx = -2(ao + a2) - ax yields one example.

References

1. B. Brenken, Isomorphism classes of solenoidal algebras I, Canad. Math. Bull. 36 (1993),

414-418.

2. B. Brenken and P. Jorgensen, A family of dilation crossed product algebras, J. Operator

Theory 25 (1991), 299-308.

3. G. Elliott, Are amenable C*-algebras classifiable!, Contemp. Math., vol. 145, Amer. Math.

Soc, Providence, RI, 1993, pp. 423-427.

4. B. Kitchens and K. Schmidt, Automorphisms of compact groups, Ergodic Theory Dynamical

Systems 9 (1989), 691-735.



1464 BERNDT BRENKEN

5. M. Pimsner, Embedding some transformation group C* -algebras into AF-algebras, Ergodic

Theory Dynamical Systems 3 (1983), 613-626.

6. _, Ranges of traces on Kq ofreduced crossed products by free groups, Operator Algebras

and their Connections with Topology and Ergodic Theory, Lecture Notes in Math., vol.

1132, Springer-Verlag, Heidelberg, 1985, pp. 374-408.

7. M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain

crossed product C-algebras, J. Operator Theory 4 (1980), 93-118.

8. K. Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conf. Ser. in Math., vol. 76,
Amer. Math. Soc, Providence, RI, 1990, p. 94.

Department of Mathematics, University of Calgary, Calgary, Alberta, Canada T2N
1N4

E-mail address : bbrenken<5acs. ucalgary. ca


