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UPPER BOUNDS FOR THE DERIVATIVE OF EXPONENTIAL SUMS

PETER BORWEIN AND TAMAS ERDÉLYI

(Communicated by Andrew Bruckner)

Abstract. The equality

\p'(a)\        In2
sup
P    HPUla.b]       b~a

is shown, where the supremum is taken for all exponential sums p of the form

H

p(t) = a0 + ^ajexJt,       a¡ 6 R,

with nonnegative exponents kj . The inequalities

lMU*.»-fl£4(n + 2)si-I||p||I.>«

and

\\P%**,b-t\ < */2(« + 2)3<5-3/2||p|lL2[a,6]

are also proved for all exponential sums of the above form with arbitrary real

exponents. These results improve inequalities of Lorentz and Schmidt and

partially answer a question of Lorentz.

1. Introduction and notation

Let A„ := {A, < X2 < ■ ■ ■ < X„} , Xj^O, j = 1, 2... , n ;

E(An):={f:f(t) = ao +

and

¿ aje1'', a¡ e R \ ;

>=i J

A»

We will use the norms

; := U £(A„) = if : /(í) = a0 + ¿ a^', a,, ^ € r) .
a. I i=l J

[a,b}'= max |/(x)|
xe[a,b]
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and
1/2

\\f\\L2[aM-=U   \f(x)\2dx

for functions / e C[a, b].
Schmidt [3] proved that there is a constant c(n) depending on n so that

\\p'\\[a+ô,b-S] < c(n)S-l\\p\\[atb]

for every p e En and S e (0, (b - a)/2). Lorentz [2] improved Schmidt's

result by showing that for every a > \ there is a constant c(a) depending only

on a so that c(n) in the above inequality can be replaced by c(a)naXo%n , and

he speculated that there may be an absolute constant c so that Schmidt's in-

equality holds with c(n) = en . ' Theorem 2 of this paper shows that Schmidt's

inequality holds with c(n) = 4(n + 2)3. Our first theorem establishes the sharp

inequality

for every p e En with nonnegative exponents X¡.

2. New results

Theorem 1. We have
\p'(a)\        2n2

sup
p   \\P\\[a,b]     b-a

for every a < b, where the supremum is taken for all exponential sums p e E„

with nonnegative exponents. The equality

\p'(a)\ 2n2
gyp _!i—:—LL- = -

p   \\P\\[a,b]     fl(logé-loga)

also holds for every 0 < a < b, where the supremum is taken for all Müntz

polynomials of the form

n

p(x) = a0 + ^2 a¡xx',       a¡■ e R, X¡ > 0.

;=i

Theorem 2. The inequalities

\\p'\\la+6,b-s]<4(n + 2)iô-x\\p\\[a,b]

and
Wp'W^s.b-s-i < 4>/2(« + 2)35-3/2||p||L2[a>6]

hold for every p e E„ and S e (0, (b - a)/2).

3. Proofs

To prove Theorem 1 we need some notation. If A„ :— {X\ < X2 < ■■■ < X„] is

a set of positive real numbers, then the real span of

{1 , Xkl ,XXl, ... , XA°}, X>0,

1 (Added in proof) We can now prove this with c = 2 ; the proof will appear elsewhere.
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will be denoted by M(A„). It is well known that these are Chebyshev spaces

on [0, oo) (see [1] for instance), so Af(A„) possesses a unique Chebyshev

"polynomial" TAn on [a, b], 0 < a < b , with the properties

(i)  TAiieM¡An),
(ii)   ||7A(i||rfl>i] = l,and

(iii) there are a = xo < Xi < • • • < x„ = b so that

TAn(xJ) = (-l)"-J,        > = 0,1,...,«.

It is routine to prove (see [1] again) that TA   has exactly n distinct zeros on

(a, b),

cd max JejaL.ÄWL.|Ii-(-)li

and

p, max  JeffiL-JML-i^mi.

Lemma 3. Lei

A„ :={A, <A2< •••<A„}   and  rn := {yi < y2 < ■■■ < yn}

so that 0 < Xj < y¡ for each j = 1, 2, ... , n. Then

(3) |7r»l < \TaM-
Proof. Without loss of generality we may assume that there is an index m,

1 < m < n, so that Xm < ym and Xj = y¡ if j ^ m, since repeated applications

of the result in this situation give the lemma in the general case. First we show

that

(4) |rr„(0)| < |rA„(0)|.

Indeed, let Rrn e M(Tn) interpolate TAn at the zeros of TAn and be normalized

so that Rr„ (0) = TAn (0). Then the Improvement Theorem of Pinkus and Smith

[4, Theorem 2] yields

l*r„(x)|<|rAn(x)|<l,        xe[a,b].

Hence, using (2) with A„ replaced by T„ , we obtain

|ÏÀ.(0)| = |lîr.(0)|<|7r.(D)|,

which proves (4). Using the defining properties of TAn and Tyn, we can deduce

that TAn - TTn has at least n + 1 zeros in [a, b] (we count every internal zero

without sign change twice). Now assume that (3) does not hold; then

\TAn(a)\ > \Trn(a)\.

This, together with (4), implies that TAn - Tyn has at least one zero in (0, a).

Hence TAn - Tr„ has at least « + 2 zeros in (0, b]. This is a contradiction,

since
TAn - TTn £ span{l, xk',xx\..., xk", xy-},

and every function from the above span can have only at most n + 1 zeros in

(0, oo) (see [3]).     G
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Proof of Theorem 1. It is sufficient to prove only the second statement of the
theorem, the first one can be obtained by the change of variable x = el. We

obtain from ( 1 ) and Lemma 3 that

\p\a)\ lrA„,>)l        ..     |7y    ...

[a,b]      ^0+\\TAni\\[a¡b]      <^0+'   *-■*

for every p of the form

p(x) = a0 + ^2 aJxXj '       a; e R, A, > 0,

7=1

where

A„>(5 :={<?, 20, 3<5,..., nô}

and Tn¡¿ is the Chebyshev "polynomial" of M(An>g) on [a,b]. From the

definition and uniqueness of TAn t it follows that

T    t \-t (    2      s    bâ + aô\
1K,Áx)-1"xKb-s-Zralx      bs-a?)'

where Tn(y) := cos(« arceos .y). Therefore,

\TAni(a)\ = \T'n(-l)\¥^Sa^x

2n2 s_{ 2n2

- ¿-i(bs-l)-â-x(aâ-l)a     73u7 a(logft-loga)

and the theorem is proved.     D

To prove Theorem 2 we need two lemmas.

Lemma 4. For every set A„ := {Ai < X2 < ■■■ < X„) of nonzero real numbers

there is a point y e [-1, 1] depending only on A„ so that

\p'(y)\<2(n + 2)i\\p\\Ll[-lA]

for every p eE(An).

Proof. Take the orthonormal set {Pk}k=0 on [_1> H defined by

(i)  pk Gspan{l,eA|i,^', ... , <?**<} , k = 0, 1, ... , «;

(ii)   ¿iPiPj = ¿i,j, 0<i<j<n.

Writing p e E(A„) as a linear combination of the functions pk , k - 0, 1, ... ,
n , and using the Cauchy-Schwartz inequality and the orthonormality of {Pk}k=0

on [-1, 1], we obtain in a standard fashion that

max     l*'«»>l '"

Let

Ak:={te[-l,l):\pk(t)\>(n+l)x'2},       k = 0, 1, ... , n,

and

Bk:={te[-l, l]\Ak: \pk(t)\ >2(n + 2)5'2},        k = 0, 1,...,«.
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Since ¡_xpk — 1, we have

m(Ak) < (n + l)~l,       k = 0, 1, ... , n.

Since span{l, ek{t, eklt, ... , ekkt} is a Chebyshev system, each Äk :— [-1, 1]\

Ak comprises of at most k + 1 intervals and each Bk comprises of at most
2(k + 1) intervals. Therefore,

2(n + 2)5'2m(Bk)< [  \p'k(t)\dt <4(k + l)Vñ+l,
Jßk

whence

Now let

Then

S^míBX  20T+T (« + !)(«+ 2)
l^m(Bk) < -2-< L
k=0 v '

.4:=[-l,l]\lJ(^u5*).
k=0

m(A)>2-Yjm(Ak)-Y,m(Bk)
k=0 k=0

>2-(n+l)(n+l)~x -1=0,

so there is a point y e A c [-1, 1] where

|/>'(y)|<2(«+l)5/2,        fe = 0, 1,...,«.

Hence,

/ «       \1/2

\T,p'k(y)2)   <2(«+2)3,

and the lemma is proved.      D

Lemma 5. We have

|p'(0)| < 2(n + 2)3||p|U2[_2i2] < 2(n + 2)3||/J||[_2j2]

for every p G En.

Proof. Let A„ := {X\ < X2 < ■■■ < Xn] be a fixed set of nonzero real numbers,
and let y € [-1, 1] be chosen by Lemma 4. Let 0 £ p e £(A„). Then

q(t):=p(t-y)eE(A„);

therefore, applying Lemma 4 to q, we obtain

1^(0)1     < 1^(0)1        =     lg'001     < 2(n + 2)\
\\p\\l2[-2,2)        \\p\\L2{-l-y,l-y]        |k||¿2[-l,l]

and the lemma is proved.     □

Proof of Theorem 2. Let to e [a + ô, b - <$]. Applying Lemma 5 to a(r) :=
p(St/2 + to), we get the theorem.     D
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