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NONSEPARABILITY AND UNIFORM STRUCTURES
IN LOCALLY COMPACT GROUPS

G. HANSEL AND J. P. TROALLIC

(Communicated by Roe Goodman)

Abstract. Let G be a locally compact topological group. We prove that if G

is not a SIN-group, then the quotient Banach space í¿i{G)¡V{G) contains an

isometric linear copy of l°° . To get this result, we first establish an extension

theorem for (bilaterally) uniformly continuous functions on G.

1. Introduction

Let G be a topological group and C(G) the usual Banach space of all contin-
uous bounded complex-valued functions on G. Let j/ and 3S be two distinct

Banach subspaces of C(G) with Jcj/. In such a framework, a now stan-

dard question is to ask if the quotient Banach space si /&§ is nonseparable or
even contains an isometric linear copy of the space /°° of bounded complex
sequences. C. Chou [2], [3] and H. A. M. Dzinotyiweyi [4], [5] have established
several interesting results of this type and the main purpose of this paper is to
present a new one.

As in [13], let us denote by °¿¿l(G) (respectively %(G) ) the space of all
the functions in C(G) which are 'left (respectively right) uniformly continuous
and let 1t{G) = %(G) n %(G) be the space of all functions in C(G) which
are (bilaterally) uniformly continuous. In [9] G. L. Itzkowitz has shown that

if G is a nonunimodular locally compact topological group, then %(G) and
%(G) are distinct, and H. A. M. Dzinotyiweyi [4] has asked if the quotient
%(G)/^(G) is nonseparable. Later on P. Milnes [13] has extended the result
of G. L. Itzkowitz by showing that %(G) and $i(G) are distinct as soon as G
is not a SIN-group, i.e., if its two usual uniform structures are different (recall
that a locally compact SIN-group is unimodular). Hence the question of H.
A. M. Dzinotyiweyi is relevant in this case. In the third section of the present

work, we show that in fact if G is not a SIN-group, then %(G)/^(G) contains
an isometric linear copy of /°° .

To get this result we first establish an extension theorem for (bilaterally)
uniformly continuous functions on G. The method of proof is similar to that

Received by the editors September 4, 1992 and, in revised form, August 13, 1993.

1991 Mathematics Subject Classification. Primary 22D05; Secondary 54E15, 46E15.
Key words and phrases. Locally compact groups, uniform structures, uniformly continuous

functions.

©1995 American Mathematical Society
0002-9939/95 $1.00+ $.25 per page

1613



1614 G. HANSEL AND J. P. TROALLIC

of the classical Urysohn's lemma. Let us remark that it does not seem possible

to deduce this theorem from Katetov's extension theorem of bounded uniformly

continuous functions [11], [12].

2. Bilaterally uniformly continuous extensions

Let G be a topological group and let e be its identity element. As in [8],

a complex-valued function / on G is called left uniformly continuous if it is

uniformly continuous with respect to the left uniform structure on G, i.e., if

for any e > 0 there is a neighbourhood V of e in G such that for x, y £ G,

x-lyeV=ï\f(x)-f(y)\<e.

As said above, we denote the Banach space of bounded left uniformly conti-

nous functions on G by %(G) ; the space ÍÍr(G) of bounded right uniformly
continuous functions on G is defined accordingly with respect to the right uni-

form structure of G, and we denote the Banach space of bounded (bilaterally)

uniformly continuous functions on G by îi(G).

A finite sequence (Wx, ... , Wm) of neighbourhoods of e is called well fitted

if there is a neighbourhood X of e in G such that XW¡X c Wi+X for all
i = I, ... , m - I.

The following two lemmas are quite simple: they only use elementary prop-

erties of neighbourhoods of the identity in a topological group.

Lemma 2.1. Let (Wx, W2, ... , Wm) be a well fitted finite sequence of neighbour-

hoods of e in G. Then there is a finite sequence (W{, ... , W'm_x) of neighbour-

hoods of e in G such that the "'mixed'' finite sequence (Wx, W{, ... , Wm_x,

Wm_x, Wm) is well fitted.

Proof. Let X be a neighbourhood of e in G such that XW¡X c Wi+X for
all i = I, ... , m - I . Let F be a neighbourhood of e in G such that Y2 c

X. For all i = 1, ... , m - 1, let W¡ = YW¡Y; then the finite sequence
(W[, ... , W^_x) satisfies the required condition.   D

Lemma 2.2. Let W be a neighbourhood of e in G and let

D = {±\neJ',i = 0, l...,2"}

be the set of all rational positive dyadic numbers in [0, 1]. Then there is a D-

indexed family (Wt)teD of neighbourhoods of e in G such that Wx = W and
such that for all n £JV the finite sequence

of neighbourhoods of e in G is well fitted.

Proof. We define the sets Wj_ , i = 0, 1, ... , 2" , by induction on n. Let

Wx = W and let W0 be a neighbourhood of e in G such that (Wo, Wx) is
well fitted. Suppose that a well fitted sequence

(Wo ,W±,...,W»)

of neighbourhoods of e in G has already been built. Then according to

Lemma 2.1, for any rational dyadic number  2j^-,  j = 0, ... , 2" - 1, we
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can choose a neighbourhood W2i+\  of e in G such that the sequence
2n+\

{W_ä_, Wi,..., Wjnii)
2"+> 2»+' 2"+>

is well fitted.   D

The following result is the "extension theorem" announced in the introduc-

tion.

Theorem 2.3. Let (An)n€jr be a sequence of subsets of G, and let c = (c„)neyy- £

l°° . Suppose there is a neighbourhood Z of e in G such that the elements of the

sequence (ZAnZ)nÇ.jr are pairwise disjoint. Then there is a function h£$/(G)

such that h(x) = cn for all x £ An, «€/.

Proof. If c = 0, the null function of fi(G) satisfies the required conditions.

So let us suppose that c ^ 0. Let W bea neighbourhood of e in G such that

W2 c Z and let (Wt)teD be a D-indexed family of neighbourhoods of e in G
whose existence is asserted by Lemma 2.2. Let us put

A= U WA„W.
neyr

Remark that the sets WAn W, n £ JV, are pairwise disjoint; indeed the sets

ZAnZ , n £ JV, are pairwise disjoint and for all ne/,we have WAnW =

(ZAnZ)nA.
For all x £ A, let us define tx £ [0, 1] and cx £ & in the following way:

let n be the positive integer such that x £ WA„ W ; we put

tx = inf{i £ D | x £ WtA„W,} and cx = c„.

Then we define the function h : G —► W by

ht \-¡ c*(l ~tx^   for a11 * e ^ >

W     10 for x£G\A.

With this definition, it is clear that h(x) = c„ for all x £ A„, n £ JV, and
moreover h is bounded. Let us show that h is left uniformly continuous.

Let e > 0. Let p e # be such that jft < jifir and let Xp c W be a

symmetrical neighbourhood of e in G such that for / = 0, 1, ..., 2P - 1

XpW^XpCWfy.

Let x, y £ G be such that x~xy £ Xp and let us show that

(1) \h(x) - h(y)\ < e.

If the points x and y belong to G\A, then h(x) = h(y) = 0. So let us
suppose that at least one of the points x and y belongs to A .

First case: x and y belong to A .

Let m be the positive integer such that x £ WAm W ; then we get that

y £ WAm W as a consequence of the inclusions

y € xXp c WAmWXp c WAmW2 c ZAmZ.

It follows that cx = cy = cm and consequently

\h(x) - h(y)\ = \cm\\tx - ty\ < \\c\\\tx - ty\.
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Hence to get inequality (.1), we have only to show that \tx - ty\ < ^r • Suppose

that tx < ty . Let i e {0, 1, ... , 2" - 1} be such that

i i+ 1
2P - x <   2P  ■

If i + 2 > 2P , we have

i      2P-i        1
\tx-ty\ = ty-tx<l-1r- = —r— <<-y\-<-y      -X-*       2p -      y       -2P-1'

If / + 2 < IP, since

y £ xXn c W^AmWi^Xp c WiiiAmWta ,r V V V 2P

we have ty < —=— and consequently

i+ 2    j_       1
|(x     fyl - fy - tx <    2P 2í'-2í'-1'

Second case:  {x, y} £ A. Let us suppose that x £ A and j/£G\^. Let
m be the positive integer such that x £ WAm W. We have

\h(x) - h(y)\ = \h(x)\ = |cm|(l - tx) < \\c\\(l - tx).

Hence to get inequality ( 1 ), we have only to show that l-tx < ^ . Of course

we can suppose that tx < 1. Let i £ {0, 1, ... , 2P - 1} be such that

i i+1

2P-X<   2P  '

We necessarily have / + 2 > 2P since otherwise we would get

y £ XXP C W^AmWi^Xp C WigAmWig c A.

Hence
,      i      2"-'        1

1 - tx < 1 - xr = ^^ <
2P        2J>        2p~1'

Thus we have established that Ae%(G). The proof that h£Í¿R(G) follows
the same way.   D

Remarks 2.4. (1) Theorem 2.3 obviously implies the following "Urysohn's

lemma": let A and B be two subsets of G; suppose there exists a neigh-

bourhood Z of e in G such that Z/1Z n ZBZ = 0 ; then there exists a
function h £ fi (G) such that h(x) = 1 for jc 6 A and /j(x) = 0 for x £ B.
Let us remark that the proof of this special case of 2.3 is not easier than the
one of 2.3.

(2) The referee has pointed out that Theorem 2.3 can be generalized to a

"Tietze theorem": any bounded bilaterally uniformly continuous function on a

subset A of G can be extended to a function g £ 1i(G). This can be obtained

by making use of the above "Urysohn's lemma" and adapting a standard method
which appears in [6, Section 1.17].

3. Imbedding of /°° in %(G)/^(G)

The following lemma, established in the metrizable case, gives the combina-
torial core of the proof of the subsequent theorem.
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Lemma 3.1. Let G be a metrizable locally compact topological group and let V

be a compact symmetrical neighbourhood of the identity e. Let us assume that
^x€GxVx~x is not a neighbourhood of e in G. Then

(1) There are two sequences (x„)neyy and (yn)neyr of elements of G such
that

lim x„y~l =e,
n—>oo

for all m, n £Jr, yñxxm $ V,

formen,  (VymV2) n (VynV2) = 0.

(2) Let g : G -» [0, 2] be a continuous function such that g(e) = 2 and

g(x) = 0 for all x £ G\V; let c = (cn)nejr e l°°. Then we can define the
function f:G -> ̂  by

fc(x) = Yl c"g(yñlx)    f°r allxeG,
ndJV

and fc belongs to %l(G).

Proof. (l)Let (Vn)nejr be a countable decreasing basis of neighbourhoods of e

in G. For all n £ JV, the set V„ is not included in C\y€Gy Vy~x ; hence one can

choose a„ £ Vn and y„ £ G such that a„ £ ynVy~x. Let us put xn - a„y„,

n£jV ; then lim«-,^ xny~x = lim„^oo an = e . We have yñxxn = yñxanyn and

consequently, for all n£j/', y„~xxn £ V.

It is immediate that sequences (xn)nÇ.jr and (yn)neyr converge to oo. By

taking subsequences if necessary, we can suppose that for all n£JV,

x„+\,yn+\ i {xo,yo,...,x„,yn}V    and    yn+x i V2{y0,..., yn}V4.

Hence if m # n , we have

y~xxm i V    and    (VymV2) n (VynV2) = 0.

(2) If c = 0, / is the null function and belongs to %(G). Suppose that

c ± 0. Since the elements of the sequence (y„ V)nejr are pairwise disjoint
subsets of G, the function fc is well defined; moreover we have |/(x)| < 2||c||

for all x £ G.
Let us show that / is left uniformly continuous. Let e > 0 and let us

show that there is a neighbourhood W of e in G such that if x, y £ G with

x-'ye^,then \fc(x) - fc(y)\ < e.
Since the function g is continuous with a compact support, it is left uni-

formly continuous. Hence there exists a symmetrical neighbourhood W c V
of e in G such that for x, y € G,

(*) x-xy£W=*\g(x)-g(y)\<¿-

Let x, y £ G besuchthat x~xy £ W and let us show that \fc(x)-fc(y)\ < e. If

x, y $ U„ejrynV, this follows immediately from equalities fc(x) = fc(y) = 0.

Suppose now that there is n £ JV such that x £ y„ V ; then if m / n,

x $. ymV because (ymV) n (ynV) — 0; similarly y £ ymV because y e

xW c ynVW c y„F2 and (ywK) n (ynV2) = 0. Hence it follows from (*)
that

\fc{x) - fc(y)\ = \c„g(y~lx) - c„g(y~xy)\ < e.



1618 G. HANSEL AND J. P. TROALLIC

Of course if y £ y„V for some n £ ¿V, we get in the same way that \fc(x) -

fc(y)\<e.   o

Let us recall that a topological group is called a SIN-group if its two usual

uniform structures are equal. It is equivalent to say that for any neighbourhood

V of e in G the set r\xeGxVx~x is still a neighbourhood of e in G.

We now can state and prove the main result of this paper.

Theorem 3.2. Let G be a locally compact topological group which is not a SIN-

group. Then the quotient Banach space 1SL(G)/%(G) contains an isometric

linear copy of l°° . In particular îii(G)/1i(G) is not separable.

Proof. (1) Since G is not a SIN-group, it follows from Corollary 4.5 of [7] (cf.

also [13], [14]) that there is a a -compact open subgroup H of G which is not

a SIN-group. Let W be a neighbourhood of e in H suchthat r\xtEHxWx~x is

not a neighbourhood of e in H. Let V be a compact symmetrical neighbour-

hood of e in H such that V2 c W ; it follows from the Kakutani-Kodaira's

theorem (cf. [9]) that there exists a compact normal subgroup N of H such

that N c V and such that the quotient H/N is a locally compact metrizable
topological group.

For all x £ H let us denote by x the class xN of H/N and for any subset

A cH let A = {x | x £Ä\.

The set V is a compact symmetrical neighbourhood of ë in H. Let us show

that the set C\x€hxVx~x is not a neighbourhood of ? in H. Indeed otherwise

the set nx€H(xVx~xN) would be a neighbourhood of e in H but this is false

since

f| (xVx~xN) = f| xV(x'xNx)x~x
xeH xeH

= fl x(VN)x~x c f| xV2x~x c fl xWx~x.
x€H x€H xeH

Then it follows from Lemma 3.1 that there exist two sequences (x„)neyy and

(y n)ne^r of elements of H suchthat

(1) lim XnYn~X = ê,
n—>oo

(2) for ail m, n £ JV, yn~ x„\ £ V,

(3) form^K,  (VymV2)n(VTnV2) = 0.

(2) Let g : H -> [0, 2] be a continuous function such that g(e) = 2 and

g(x) = 0 for all x £ H\V. Let c - (cn)ne^ £ l°° ■ It follows from Lemma

3.1 that the function fc:H ^W (well) defined by

fc(u) = X) cng(y„"lu)    for all u £ H

belongs to %L(H).

Let 4> : G -> H be the function defined by

, ■ f x   for x £ H,

m = \0   forxiH,
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and let us put

(4) fc = fe o 4>.

If G and H are respectively equipped with their left uniform structures, the

function 0 is uniformly continuous. Hence, since fc belongs to %?l(H) , the

function fc belongs to %(G).

(3) Let (Nk)k£jr be a partition of jV into infinite subsets of JV. To any

d = (dn)n£jr £ /°° let us associate the sequence c¿ = (cn)níJy £ l°° defined by

cn - dk for all n £ Nk and all k £ Jf.

The function d *-» c¿ is a linear isometry which maps /°° onto a Banach

subspace E of /°° whose each element c = (cn)niJy satisfies the condition

limsupn^oo \cn\ = \\c\\ (let us remark that a similar construction appears in [2]).

Consequently to get the theorem, it is sufficient to prove that the linear function

c ~ f + %f(G)

is an isometry from E into the quotient Banach space %(G)/^(G), i.e., that

for all c £ E

inf{\\fc + h\\\h£W(G)} = \\c\\.

Let c = (cn)n€yr £ E and let h £ %(G) ; let us show that \\fc + h\\ > \\c\\.

Let (\c„p\)peyr be a subsequence of (\cn\nejr) suchthat

lim \c„ | = limsup|c„| = ||c||.
P-KX „-,00

It follows from (1) that lim^oo-x^y^,- = e\ hence, if p is big enough,

xñpyñp~ 6 V or equivalently xnpy~x belongs to the compact subset VN of

H. Let (x„ay~ax) be a subnet of (x„py~x) which converges in H to a point z;

we have

(5) z = limx^yX"1 = e.
a

For any a we have

(6) U + h)(xna)-(fc + h)(z-xyna)\

> \fc(xna) - fc(z-xynJ\ - \h(xna) - h(z~xyna)\.

It follows from the definition of (x„), (y„), and / (cf. (2), (3), and (4)) and
from (5) that

\fc(xna)-fc(z-xyna)\ = |7c(y7j| = 2|c,J;

hence

(7) lim|/c(xnJ-/c(z-1y«J| = 2||c||.
a

By the definition of z
limxna(z-xynJ-x =e,

a

and consequently, since h £ îi(G), we have

(8) Mm\h(xna)-h(z-xyna)\ = 0.
a
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It follows from (6), (7), and (8) that

lim sup | (/c + h)(x„a) - (fc + h)(z-xy„a)\ > 2\\c\\
a

which implies that \\fc + h\\ > \\c\\.
To conclude it is now sufficient to prove that for all c £ E there exists

hx £ %(G) such that \\fc + hx\\ < \\c\\. Since (V%V2)nejr is a sequence of

pairwise disjoint subsets of H, it follows from Theorem 2.3 that there exists a

function hx £ fi(fl) such that for all n £ JV

hx(u) = -cn    if u£ynV,

and such that \\hx \\ — ||c|| .Let u£ H ; if u £ U„€yf %V, we have

Ü + h)(u)\ = Mu)\<\\h¡\\ = \\c\\;

if u £ %V for some n£jV, then

\(~fc + hx)(u)\ = \cn\\g(rn-xu) - 1| < |c| < ||c||

and therefore ||/c + Ai|| < ||c||.

Let hx : G —> W be the function hx - hx o0 ; since hx £ %i(H) and since <f> is

uniformly continuous when G and H are equipped with their left (respectively

right) uniformity, the function hx belongs to %(G) ; moreover

||/c + *i|| = \\l ° <P + h¡o 011 = ||(/c + hx) 0 011 = ||/c -4-äTh ,

and consequently ||/ + hx\\ < \\c\\.   D

Remark 3.3. The referee has pointed out that another imbedding theorem is

also true: /°° \ {0} can be isometrically imbedded into %L(G) \ %(G). The
proof of this statement is easy by making use of the results of [10].
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