GAUSSIAN ESTIMATES AND HOLOMORPHY OF SEMIGROUPS

EL-MAATI OUHABAZ

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We show that if a selfadjoint semigroup T on $L^2(\Omega)$ satisfies a Gaussian estimate $|T(t)f| \leq MG(bt)|f|$, $0 \leq t \leq 1$, $f \in L^2(\Omega)$ (where $G = G(t)_{t \geq 0}$ is the Gaussian semigroup on $L^2(R^N)$ and Ω is an open set of R^N), then T defines a holomorphic semigroup of angle $\frac{\pi}{2}$ on $L^p(\Omega)$, $1 \leq p < \infty$. We obtain by duality the same result on $C_0(\Omega)$. Applications to uniformly elliptic operators and Schrödinger operators are given.

0. Introduction

Let Ω be an open set of R^N (with the Lebesgue measure), and consider a selfadjoint semigroup $T=T(t)_{t\geq 0}$ on $L^2(\Omega)$ with generator A. Then T is a holomorphic semigroup with angle $\frac{\pi}{2}$, i.e., T can be extended holomorphically to the maximal domain $\{z, \operatorname{Re} z > 0\}$ (see §1 for the precise definition).

Assume now that T interpolates on $L^p(\Omega)$, $1 \le p < \infty$; that is, there exists for each p, a strongly continuous semigroup T_p on $L^p(\Omega)$ with $T_2 = T$ and satisfying $T_p(t)f = T_2(t)f$ $(t \ge 0)$ for $f \in L^p(\Omega) \cap L^2(\Omega)$. It follows from the Stein interpolation theorem that for $1 the semigroup <math>T_p$ is holomorphic on $L^p(\Omega)$ with angle $\theta_p \ge \frac{\pi}{2}(1-|\frac{2}{p}-1|)$ (see Davies [6, p. 23]). However, the case p=1 is more delicate.

In the case where A is an elliptic operator of second order (with some smoothness conditions on its coefficients), Amann [2] showed that T_1 is holomorphic on $L^1(\Omega)$ if Ω is bounded and smooth; his method is based on duality arguments and the result of Stewart [21, 22] on $C_0(\Omega)$. Recently, Arendt and Batty [3] extended the result to an arbitrary open set Ω under Dirichlet boundary conditions. We also note that Kato [12] showed the holomorphy on $L^p(R^N)$, $1 \le p < \infty$, for the Schrödinger operator $A = \Delta - V$ (Δ is the Laplacian and $V = V_+ - V_-$ is a potential).

The purpose of this paper is to extend all these results to more general situations. We show the holomorphy on $L^p(\Omega)$, $1 \le p < \infty$, for elliptic operators under more general boundary conditions without regularity on their coefficients and by assuming minimal regularity on Ω . More precisely, we show in an abstract setting the following result:

Received by the editors June 28, 1993 and, in revised form, August 16, 1993. 1991 Mathematics Subject Classification. Primary 47D03, 47F05.

Assume that the semigroup T has a Gaussian estimate, i.e.,

$$(0.1) |T(t)f| \le MG(bt)|f| \text{for } 0 \le t \le 1 \text{ and all } f \in L^2(\Omega)$$

where M and b are positive constants and $G=G(t)_{t\geq 0}$ is the Gaussian semigroup on $L^2(\mathbb{R}^N)$. Then T_p is holomorphic with angle $\frac{\pi}{2}$ on $L^p(\Omega)$ for $1\leq p<\infty$.

Such Gaussian estimates hold for uniformly elliptic operators and Schrödinger operators (see [6, Chapter 3; 20, Theorem B.7.1]). Our result is applicable in the following framework.

Assume that A is the operator associated with the following symmetric form

$$a(u, v) = \sum_{i=1}^{N} \int_{\Omega} a_{ij} D_{i} u \overline{D_{j} v} \, dx + \int_{\Omega} V u \overline{v} \, dx$$

with $a_{ij} = a_{ji} \in L^{\infty}(\Omega)$ satisfying the ellipticity condition $\sum_{i,j=1}^{N} a_{ij}(x)\xi_i\bar{\xi}_j \ge c|\xi|^2$ a.e. $x \in \Omega$ and $0 \le V \in L^1_{loc}(\Omega)$.

The domain of a is given by $D(a) = W \cap \{u \in L^2(\Omega), \int_{\Omega} V|u|^2 < \infty\}$, where W is a closed subspace of the Sobolev space $H^1(\Omega)$ which contains $H^1_0(\Omega)$.

We obtain the holomorphy of T_p , $1 \le p < \infty$, in the following cases:

- (1) $W = H_0^1(\Omega)$ for Ω any open set of \mathbb{R}^N (this corresponds to the Dirichlet boundary conditions).
 - (2) W satisfies the two following properties:
 - * $u \in W$ implies $|u| \in W$.
 - * If $0 \le u \le v$, $v \in W$, and $u \in H^1(\Omega)$, then $u \in W$.

In this case we assume that Ω has the extension property (if $W = H^1(\Omega)$, this corresponds to the Neumann boundary conditions).

We recall that in [2], [3], and [12] it is shown that T_1 is holomorphic with some "small" angle. To be precise, it is shown that the estimate

$$(0.2) ||(\lambda - A)^{-1}||_{\mathscr{L}(L^1(\Omega))} \le \frac{M}{|\lambda|}$$

holds for λ s.t. Re $\lambda > 0$ (here M > 0 is a constant).

In the present paper we show that T_p , $1 \le p < \infty$, is holomorphic with angle $\frac{\pi}{2}$, that is, the estimate (0.2) holds in $\mathcal{L}(L^p(\Omega))$ in each sector $\Sigma(\theta+\frac{\pi}{2}):=\{\lambda=re^{i\alpha};\ r>0,\ |\alpha|<\frac{\pi}{2}+\theta\}$, $0\le\theta<\frac{\pi}{2}$. This holomorphy in the maximal domain $\{z,\ Re\ z>0\}$ answers positively and in a more general situation a question in Kato's paper [12].

We also study the holomorphy on $C_0(\Omega)$. We show by duality that if the Laplacian on $C_0(\Omega)$ is a generator of a semigroup T_0 , then T_0 is holomorphic (Ω is any open set of R^N). This result has been shown by Lumer and Paquet [13, 14]. Our method gives more information on the generator and that T_0 is holomorphic with angle $\frac{\pi}{2}$.

This paper is organized as follows. In §1 we recall some known material on holomorphic semigroups. In §2, we show that Gaussian estimates (0.1) imply the holomorphy on $L^p(\Omega)$, $1 \le p < \infty$. Finally, §3 is concerned with applications to elliptic operators on $L^p(\Omega)$ and $C_0(\Omega)$.

Remark 0.1. (1) All the semigroups considered in this paper are assumed to be strongly continuous.

(2) If E is a Banach space, we denote by $\mathcal{L}(E)$ the space of bounded linear operators on E and by $||\cdot||_E$ the norm of E.

1. Preliminaries

In this section we recall some known results on holomorphic semigroups. Denote by E a Banach space and by A a generator of a semigroup $T = T(t)_{t \ge 0}$ on E. By $\varrho(A)$ and $\sigma(A)$ we denote respectively the resolvent set and the spectrum of A.

Definition 1.1. (a) The semigroup T is said to be bounded holomorphic with angle $\theta \in (\theta, \frac{\pi}{2}]$ if T has an extension to the sector $\Sigma(\theta) := \{z = re^{i\alpha}; r > 0, |\alpha| < \theta\}$ which satisfies the following:

- (1) $T(z+z') = T(z)T(z'), z, z' \in \Sigma(\theta).$
- (2) $z \to T(z)$ is holomorphic on $\Sigma(\theta)$.
- (3) $\lim_{z\to 0, z\in\Sigma(\theta)} T(z)f = f$ for each $f\in E$.
- (4) For each $\theta' < \theta$ there exists a constant M (depending on θ) s.t. $||T(z)||_{\mathscr{L}(E)} \leq M$ for all $z \in \Sigma(\theta')$.
- (b) We say that T is bounded holomorphic if there exists $\theta \in (0, \frac{\pi}{2}]$ s.t. T is bounded holomorphic with angle θ .

The following can be found in the books on semigroup theory (see [9, 10, 11, 15, and 17]).

Theorem 1.2. The semigroup T is bounded holomorphic with angle θ if and only if $\Sigma(\theta + \frac{\pi}{2}) \subset \varrho(A)$, and for each $\theta' < \theta$ $(\theta' > 0)$ there exists a constant M s.t.

$$||(\lambda - A)^{-1}||_{\mathscr{L}(E)} \le \frac{M}{|\lambda|} \quad \text{for all } \lambda \in \Sigma \left(\theta + \frac{\pi}{2}\right).$$

Theorem 1.3. The semigroup T is bounded holomorphic if and only if $\Sigma(\frac{\pi}{2}) \subset \varrho(A)$ and

$$||(\lambda - A)^{-1}||_{\mathscr{L}(E)} \le \frac{M}{|\lambda|} \quad \text{for all } \lambda \in \Sigma\left(\frac{\pi}{2}\right).$$

Theorem 1.3 can be deduced from Theorem 1.2 by showing that if $||(\lambda-A)^{-1}||_{\mathscr{L}(E)} \leq \frac{M}{|\lambda|}$ for all $\lambda \in \Sigma(\frac{\pi}{2})$, then there exists some "small" angle $\theta>0$ such that $\Sigma(\theta+\frac{\pi}{2})\subset\varrho(A)$, and the same estimate holds in $\Sigma(\theta+\frac{\pi}{2})$.

We give now an interesting situation where the semigroup is holomorphic. Let E be a Hilbert space and denote by (\cdot, \cdot) its scalar product. Assume that A is a selfadjoint generator of a bounded semigroup T on E. Then it follows by the spectral theorem that $(Au, u) \leq 0$ for all $u \in D(A)$. Moreover, we have the following well-known

Proposition 1.4. The semigroup T is bounded holomorphic with angle $\frac{\pi}{2}$.

2. L^p and C_0 holomorphy

We keep the same notation as in the introduction. Ω is an open set of R^N with the Lebesgue measure and T a selfadjoint semigroup on $L^2(\Omega)$ with generator A. We say that T has a Gaussian estimate for $0 \le t \le 1$ if the

estimate (0.1) holds for $0 \le t \le 1$ and that T has a Gaussian estimate for all $t \ge 0$ if the estimate in (0.1) holds for all $t \ge 0$. We start by the following

Proposition 2.1. If T has a Gaussian estimate for $0 \le t \le 1$, then there exists $w \ge 0$ s.t. the semigroup $e^{-wt}T(t)_{t>0}$ has a Gaussian estimate for all $t \ge 0$.

Proof. By assumption $|T(t)| \le MG(bt)$ for $0 \le t \le 1$. Let $t \ge 1$, and write t = n + s with 0 < s < 1 and n a natural number. Then

$$|T(t)| = |T(n)T(s)| = |T(1)^n T(s)|$$

$$\leq M^{n+1}G(nb)G(sb) = M^{n+1}G(bt) \leq Me^{wt}G(bt)$$

with $w = \log M$. This shows the proposition. \square

The Gaussian semigroup G is contractive on $L^p(R^N)$ for $1 \leq p \leq \infty$. This implies that if (0.1) holds, then the semigroup T satisfies $||T(t)f||_{L^p(\Omega)} \leq Me^{wt}||f||_{L^p(\Omega)}$ for $f \in L^p(\Omega) \cap L^2(\Omega)$, $1 \leq p \leq \infty$. By the Riesz-Thorin interpolation theorem, there exists $T_p(t) \in \mathcal{L}(L^p(\Omega))$ s.t. $T_p(t)f = T_2(t)f := T(t)f$ for $f \in L^p(\Omega) \cap L^2(\Omega)$, $1 \leq p \leq \infty$. One can see easily that for $1 , <math>T_p = T_p(t)_{t \geq 0}$ is a strongly continuous semigroup on $L^p(\Omega)$. Moreover, we have

Proposition 2.2. T_1 is a strongly continuous on $L^1(\Omega)$.

By the density argument we see that $T_1(t+s) = T_1(t)T_1(s)$. We do not give the proof of the strong continuity since it is contained in Theorem 2.4.

It is easy to see from (0.1) that T(t) maps $L^2(\Omega)$ into $L^{\infty}(\Omega)$ for each t>0. This implies in particular that T(t) is given by a kernel K(t,x,y), i.e.

$$T(t)f(x) = \int_{\Omega} K(t, x, y)f(x) dy$$
 for each $t > 0$, $f \in L^2(\Omega)$, and $x \in \Omega$.

The same is clearly true for T(z) for $z \in \Sigma(\frac{\pi}{2})$. Denote by K(z, x, y) the corresponding kernel of T(z). We have

Proposition 2.3 (see [6, p. 103]). Assume that T has a Gaussian estimate for all $t \ge 0$. Then there exist two positive constants M and b such that

$$|K(z, x, y)| \le \frac{M}{((\operatorname{Re} z)^{N/2})} \exp\left\{-\operatorname{Re} \frac{b(x-y)^2}{z}\right\}$$

for $z \in \Sigma(\frac{\pi}{2})$ and $x, y \in \Omega$.

We state now our result on the holomorphy on $L^p(\Omega)$. With the same notation as above, we have

Theorem 2.4. If T has a Gaussian estimate for $0 \le t \le 1$, then there exists $w \ge 0$ s.t. the semigroup $e^{-wt}T_p(t)_{t\ge 0}$ is bounded holomorphic with angle $\frac{\pi}{2}$ on $L^p(\Omega)$ for $1 \le p < \infty$.

Proof. From Proposition 2.1 there exists $w \ge 0$ s.t. the semigroup $e^{-w}T$ has a Gaussian estimate for all $t \ge 0$. We can then assume that T has a Gaussian estimate for all $t \ge 0$ in order to work with T instead of $e^{-w}T$.

We let $K_0(z, x, y) = \exp\{-\operatorname{Re} \frac{b(x-y)^2}{z}\}$, $\operatorname{Re} z > 0$, and $k_0(z)$, be the function given by $k_0(z)(x) = \exp\{-\operatorname{Re} \frac{bx^2}{z}\}$, $x \in \mathbb{R}^N$.

Let $f \in L^1(\Omega) \cap L^2(\Omega)$. By Proposition 2.3 we have

$$|T(z)f(x)| \le M((\operatorname{Re} z)^{-N/2} \int_{\Omega} K_0(z, x, y) |f(y)| \, dy$$

$$\le M(\operatorname{Re} z)^{-N/2} \int_{\mathbb{R}^N} K_0(z, x, y) |f^{\sim}(y)| \, dy$$

where $f^{\sim}(y) = f(y)$ if $y \in \Omega$ and 0 if not.

By Young's inequality we get

(2.1)
$$||T(z)f||_{L^{p}(\Omega)} \le M(\operatorname{Re} z)^{-N/2} ||k_{0}(z)||_{L^{1}(\mathbb{R}^{N})} ||f||_{L^{p}(\Omega)}$$
 for $1 and $\operatorname{Re} z > 0$.$

This implies that T(z) can be extended to a bounded operator $T_p(z) \in$ $\mathscr{L}(L^p(\Omega))$, $1 \leq p < \infty$. By density we have $T_p(z+z') = T_p(z)T_p(z')$, $z, z' \in \Sigma(\frac{\pi}{2})$.

Let $\theta \in (0, \frac{\pi}{2})$ be fixed. The inequality (2.1) gives

$$||T_p(z)||_{\mathscr{L}(L^p(\Omega))} \le M((\operatorname{Re} z)^{N/2} \int_{\mathbb{R}^N} \exp\left\{-\left(\frac{\sqrt{b\operatorname{Re} z}x}{|z|}\right)^2\right\} dx$$

$$\le M\left(\frac{1}{\sqrt{b}}\right)^N \left(\frac{|z|}{\operatorname{Re} z}\right)^N \int_{\mathbb{R}^N} e^{-x^2} dx.$$

It follows that there exists a constant $M_0 > 0$ s.t.

$$(2.2) ||T_p(z)||_{\mathscr{L}^p(\Omega))} \leq M_0 \left(\frac{1}{\cos \theta}\right)^N \text{for } z \in \Sigma(\theta) \text{ and } 1 \leq p < \infty.$$

Consequently, $||T_p(z)||_{\mathscr{L}(L^p(\Omega))}$ is bounded in $\Sigma(\theta)$.

We show that $z \to T_p(z)$ is holomorphic from $\Sigma(\theta)$ in $\mathcal{L}(L^p(\Omega))$. It is known that this is equivalent to the weak holomorphy, i.e., $z \to \langle T_p(z)f, g \rangle$ holomorphic for each $f \in L^p(\Omega)$ and $g \in L^q(\Omega)$ with $\frac{1}{p} + \frac{1}{q} = 1$, and $\langle \cdot, \cdot \rangle$ is the pairing between $L^p(\Omega)$ and $L^q(\Omega)$. We treat the important case p=1(for $p \neq 1$ the proof is exactly the same).

Let $f \in L^1(\Omega)$ and $g \in L^{\infty}(\Omega)$. Consider a sequence $(f_n)_n \in L^1(\Omega) \cap L^2(\Omega)$ converging to f in $L^1(\Omega)$. Let $g_n = \chi_{\Omega_n} g$ where Ω_n is a sequence of bounded open sets s.t. $\bigcup_n \Omega_n = \Omega$ and χ_{Ω_n} is the indicator function of Ω_n . For each $n \geq 0$, $\langle T_1(z)f_n, g_n \rangle = \langle T(z)f_n, g_n \rangle$, so $z \to \langle T_1(z)f_n, g_n \rangle$ is holomorphic since f_n , $g_n \in L^2(\Omega)$. But inequality (2.2) implies that

$$|\langle T_1(z)f_n, g_n\rangle| \leq M_0 \left(\frac{1}{\cos\theta}\right)^N ||f_n||_{L^1(\Omega)}||g_n||_{L^{\infty}(\Omega)}.$$

Hence, there exists a constant $M_1 > 0$ s.t.

$$(2.3) |\langle T_1(z)f_n, g_n\rangle| \leq M_1 \left(\frac{1}{\cos\theta}\right)^N ||f||_{L^1(\Omega)} ||g||_{L^{\infty}(\Omega)}$$

for all n > 0 and $z \in \Sigma(\theta)$.

On the other hand $\langle T_1(z)f_n, g_n \rangle \to \langle T_1(z)f, g \rangle$ when $n \to \infty$. It follows from (2.3) and Vitali's theorem (see [10, Theorem 3.14.1]) that $z \to \langle T_1(z)f, g \rangle$ is holomorphic in $\Sigma(\theta)$.

We show now that $T_1(z)f \to f$ when $z \to 0$, $z \in \Sigma(\theta)$ for each $f \in L^1(\Omega)$. Because of (2.2) it suffices to show this for $f \in L^1(\Omega) \cap L^2(\Omega)$. In this case $T_1(t)f = T(t)f$ for $t \ge 0$ and $T(t)f \to f$ in $L^2(\Omega)$ $(t \downarrow 0)$. Consequently, we can extract a sequence $t_n > 0$ s.t. $T_1(t_n)f(x) \to f(x)$ for a.e. $x \in \Omega$ $(t_n \downarrow 0)$. By the Gaussian estimate and the dominated convergence theorem we have $T_1(t_n)f \to f$ in $L^1(\Omega)$. The holomorphy of $z \to T_1(z)$ implies that $T_1(z)f \to f$ in $L^1(\Omega)$ when $z \to 0$, $z \in \Sigma(\theta)$. We have shown that T_1 is bounded holomorphic with angle θ for all $\theta \in (0, \frac{\pi}{2})$. This implies that T_1 is bounded holomorphic with angle $\frac{\pi}{2}$. The proof is complete.

Our next result can be used in particular for Feller semigroups. Denote by $C_0(\Omega)$ the space of continuous functions in Ω which vanish at infinity. Assume that T has a Gaussian estimate for $0 \le t \le 1$ and there exists a semigroup T_0 on $C_0(\Omega)$ s.t. $T_0(t)f = T(t)f$ for $f \in C_0(\Omega) \cap L^2(\Omega)$. We have

Corollary 2.5. There exists $w \ge 0$ such that the semigroup $e^{-w} T_0$ is bounded holomorphic with angle $\frac{\pi}{2}$ on $C_0(\Omega)$.

Proof. As in Theorem 2.4 we can assume that T has a Gaussian estimate for all $t \ge 0$. Denote by A_1 and A_0 the generators of T_1 and T_0 , and let $A_\infty = A_1^*$ on $L^\infty(\Omega)$.

We first show that $\Sigma(\pi) \subset \varrho(A_0)$. Since T_1 is holomorphic with angle $\frac{\pi}{2}$, then $\Sigma(\pi) \subset \varrho(A_1) = \varrho(A_\infty)$. We claim that $\varrho(A_\infty) \subset \varrho(A_0)$. In fact, let $\lambda \in \partial \sigma(A_0)$ (the boundary of $\sigma(A_0)$). It is known that this implies that λ is in the approximate spectrum of A_0 , i.e., there exists a sequence $f_n \in D(A_0)$ s.t. $||f_n||_{C_0(\Omega)} = 1$ and $(\lambda - A_0)f_n \to 0$ in $C_0(\Omega)$ (see, for example, [15, p. 64]). But one can see easily that A_∞ is an extension of A_0 and then $\lambda \in \partial \sigma(A_\infty) = \sigma(A_\infty) \subset (-\infty, 0]$. Hence $\sigma(A_0) = \partial \sigma(A_0) \subset \sigma(A_\infty)$ and the claim is shown.

Now since $(\lambda - A_0)^{-1} = (\lambda - A_\infty)^{-1}$ on $C_0(\Omega)$ for $\lambda > 0$ this equality holds for all $\lambda \in \Sigma(\pi)$ by analytic continuation. Let $\theta \in (0, \frac{\pi}{2})$. Then

$$\begin{aligned} ||(\lambda - A_0)^{-1}||_{\mathscr{L}(C_0(\Omega))} &\leq ||(\lambda - A_\infty)^{-1}||_{\mathscr{L}(L^\infty(\Omega))} \\ &= ||(\lambda - A_1)^{-1}||_{\mathscr{L}(L^1(\Omega))} \leq \frac{M}{|\lambda|} \end{aligned}$$

for all $\lambda \in \Sigma(\theta + \frac{\pi}{2})$ by Theorems 1.2 and 2.4. This shows the corollary.

Remark 2.6. The same conclusion as in Corollary 2.5 holds if we replace $C_0(\Omega)$ by $C(\bar{\Omega})$, the space of continuous functions on $\bar{\Omega}$ with Ω bounded.

3. APPLICATIONS

3.1. Elliptic operators. Let Ω be an open set of \mathbb{R}^N as above, and consider on $L^2(\Omega)$ the symmetric form

$$a(u, v) = \sum_{i,j=1}^{N} \int_{\Omega} a_{ij} D_i u \overline{D_j v} \, dx + \int_{\Omega} V u \overline{v} \, dx \quad \text{where } D_i = \frac{\partial}{\partial x_i}.$$

Assume that

(3.1)
$$a_{ij} = a_{ji} \in L^{\infty}(\Omega) \text{ and real, } 1 \leq i, j \leq N.$$

(3.2)
$$\sum_{i,j=1}^{N} a_{ij} \xi_i \bar{\xi}_j \ge c |\xi|^2 \quad \text{for a.e. } x \in \Omega$$
 and all $\xi = (\xi_1, \dots, \xi_N) \in C^N$, $c > 0$ is a constant.

$$(3.3) 0 \le V \in L^1_{loc}(\Omega).$$

Let W be a closed subspace of $H^1(\Omega)$ containing $H^1_0(\Omega)$ (here $H^1(\Omega)$ and $H^1_0(\Omega)$ are the classical Sobolev spaces).

The domain D(a) of a is given by $D(a) = W \cap \{u \in L^2(\Omega), \int_{\Omega} V |u|^2 dx < \infty\} = W \cap D(V)$. It is easy to see that the form a with this domain is closed. Denote by T its associated selfadjoint semigroup on $L^2(\Omega)$.

We shall say that W is an ideal of $H^1(\Omega)$ if the following two properties are satisfied:

- (1) $u \in W$ implies $|u| \in W$.
- (2) If $0 \le v \le u$, $u \in W$, and $v \in H^1(\Omega)$, then $v \in W$.

An example of such a W is given by $W = \{u \in H^1(\Omega), u_{|\Gamma} = 0\}$ where Γ is a closed set of the boundary of $\partial \Omega$ of Ω . (Here we assume that Ω is bounded and regular.)

Keeping these notation and those of §2, we have

Theorem 3.1. Under the assumptions (3.1), (3.2), and (3.3) we have

- (1) If $W = H_0^1(\Omega)$ with Ω any open set of \mathbb{R}^N , then T_p is bounded holomorphic with angle $\frac{\pi}{2}$ on $L^p(\Omega)$, $1 \le p < \infty$.
- (2) If W is an ideal of $H^1(\Omega)$, we assume in addition that Ω has the extension property. Then there exists $w \geq 0$ s.t. the semigroup $e^{-w}T_p$ is bounded holomorphic with angle $\frac{\pi}{2}$ on $L^p(\Omega)$, $1 \leq p < \infty$.
- *Proof.* (1) If $W = H_0^1(\Omega)$, then T has a Gaussian estimate for all $t \ge 0$ (see [6, Corollary 3.2.8]). We then apply Theorem 2.4.
- (2) If W is an ideal of $H^1(\Omega)$, then the semigroup T corresponding to the form a with domain $D(a) = W \cap D(V)$ is dominated by the semigroup $T_{H^1(\Omega)}$ corresponding to the form a with domain $D(a) = H^1(\Omega) \cap D(V)$ (see [16] or [23]). Since $T_{H^1(\Omega)}$ has a Gaussian estimate for $0 \le t \le 1$ (see [6, Theorem 3.2.9]), then so has T. The claim follows again from Theorem 2.4.

Another important situation where we have Gaussian estimates is the case of the Schrödinger operator $\Delta-V$ where $V=V_+-V_-$ with $0\leq V_+\in L^1_{\rm loc}(R^N)$ and $0\leq V_-$ is in the Kato class. It is an easy consequence of the Feynman-Kac formula that the semigroup generated by $\Delta-V$ has a Gaussian estimate for $0\leq t\leq 1$. (See, for example, [1, 20, 7]. In [1], it is shown that Gaussian estimates hold for $\Delta-\mu$ where $\mu=\mu_+-\mu_-$ is a certain smooth measure.) We then obtain that $\Delta-V$ generates a holomorphic semigroup with angle $\frac{\pi}{2}$ on $L^p(R^N)$ for $1\leq p<\infty$. The fact that the angle of holomorphy can be $\frac{\pi}{2}$ answers positively a question in [12].

We can also show this result without referring to the Feynman-Kac formula. In fact, it is clear that the semigroup $e^{t(\Delta-V_+)}$ generated by $\Delta-V_+$ is dominated by the Gaussian semigroup. It follows from our result that $e^{t(\Delta-V_+)}$ is bounded holomorphic with angle $\frac{\pi}{2}$ on $L^1(R^N)$. Moreover if V_- is in the Kato class, this means that V_- is Δ -bounded with bound 0 on $L^1(R^N)$. Then V_- is

 $\Delta - V_+$ -bounded with bound 0. The result follows by the well-known perturbation arguments. This perturbation method has the advantage of working for complex potentials V such that $\operatorname{Im} V$ and $(\operatorname{Re} V)_-$ are in Kato class and $(\operatorname{Re} V)_+ \in L^1_{\operatorname{loc}}(R^N)$. To be precise, the operator $\Delta - V$ is seen here as a perturbation of $\Delta - \operatorname{Re} V$ by $-i \operatorname{Im} V$.

3.2. Laplacian on $C_0(\Omega)$. In this subsection we give an application of Corollary 2.5 to the Laplacian Δ on $C_0(\Omega)$ with Ω any open set of R^N . The result has been obtained in [13, 14], but their method does not give that the angle of holomorphy can be $\frac{\pi}{2}$.

Proposition 3.2. Assume that there exists a realization A_0 of the Laplacian which generates a semigroup on $C_0(\Omega)$. Then $D(A_0)=\{u\in C_0(\Omega),\ \Delta u\in C_0(\Omega)\}$. Proof. Let $u\in C_0(\Omega)$ s.t. $\Delta u\in C_0(\Omega)$. Let $\lambda>0$ $(\lambda\in\varrho(A_0))$. There exists $v\in D(A_0)$ s.t. $\lambda u-\Delta u=\lambda v-A_0v$. This implies that $\lambda(u-v)-\Delta(u-v)=0$ (in the distributional sense). It is known by regularity results that this implies u-v is a C^∞ function on Ω (see, e.g., [5]). The maximum principle implies that u=v since $u-v\in C_0(\Omega)$.

Theorem 3.3. Assume that the Laplacian Δ with domain $D(\Delta) = \{u \in C_0(\Omega), \Delta u \in C_0(\Omega)\}$ generates a semigroup T_0 on $C_0(\Omega)$. Then T_0 is bounded holomorphic with angle $\frac{\pi}{2}$.

Proof. Consider the following form of the Dirichlet Laplacian on $L^2(\Omega)$

$$a(u, v) = \sum_{i=1}^{N} \int_{\Omega} D_i u \overline{D_i v} \, dx, \qquad D(a) = H_0^1(\Omega).$$

Denote by T_2 its associated semigroup. Then T_2 has a Gaussian estimate for all $t \ge 0$ (more precisely, we have $T_2(t) \le G(t)$ for $t \ge 0$; see [6, Theorem 2.1.6] or [16, Proposition 4.2]). We have to show that $T_2(t)f = T_0(t)f$ for $f \in C_0(\Omega) \cap L^2(\Omega)$ and apply Corollary 2.5.

If Ω is bounded and sufficiently smooth, then $T_2(t)f = T_0(t)f$ $(f \in C_0(\Omega) \cap L^2(\Omega))$ for all $t \geq 0$ (see, for example, [8, Theorem 8.30; 4, p. 32]).

Let now $(\Omega_n)_{n\geq 1}$ be a sequence of bounded and of class C^{∞} open sets s.t. $\Omega_n\subset\Omega_{n+1}$ and $\bigcup_n\Omega_n=\Omega$. For each n, define on $L^2(\Omega)$ the form a_n by

$$a_n(u, v) = \sum_{i=1}^N \int_{\Omega_n} D_i u \overline{D_i v} dx, \qquad D(a) = H_0^1(\Omega_n).$$

Denote by $R(\lambda, a)$ and $R(\lambda, a_n)$ for $\lambda > 0$ the resolvents of the associated operators with a and a_n respectively. The sequence a_n satisfies $a_{n+1} \le a_n$ in the sense that $D(a_n) \subset D(a_{n+1})$ and $a_{n+1}(u, u) \le a_n(u, u)$. It follows by a convergence theorem on forms ([11, p. 452] or [18, p. 373]) that $R(\lambda, a_n)$ converges strongly in $L^2(\Omega)$ to $R(\lambda, a)$ for all $\lambda > 0$. (Here the forms a_n are not densely defined, but the convergence theorem is still valid; see [3, §7; 6, p. 62]).

Define now the operators Δ_n on $C_0(\Omega_n)$ by

$$D(\Delta_n) = \{ u \in C_0(\Omega_n) \cap H_0^1(\Omega_n), \, \Delta u \in C_0(\Omega_n) \}, \qquad \Delta_n u = \Delta u.$$

Since Ω_n is bounded and regular, $R(\lambda, a_n) = (\lambda - \Delta_n)^{-1}$ on $C_0(\Omega_n) \cap L^2(\Omega_n)$ for all $\lambda > 0$.

Let now $f\in C_0(\Omega)$ with compact support. Then $f\in C_0(\Omega_n)$ for $n\geq n_0$ (for some n_0). Let $h_n=(\lambda-\Delta_n)^{-1}f$ and $h=(\lambda-\Delta)^{-1}f$, $\lambda>0$. Define h_n^\sim by $h_n^\sim(x)=h_n(x)$ for $x\in\Omega_n$ and 0 if $x\in\Omega\setminus\Omega_n$. Then $h_n^\sim\in C_0(\Omega)$ and $(\lambda-\Delta)(h_n^\sim-h)=0$ on Ω_n with $h_n^\sim-h\in C(\bar\Omega_n)$. The maximum principle implies that $||h_n^\sim-h||_{C(\Omega_n)}=\sup_{\partial\Omega_n}|h_n^\sim-h|=\sup_{\partial\Omega_n}|h|$. But $h\in C_0(\Omega)$, so $\sup_{\partial\Omega_n}|h|$ converges to 0 when $n\to\infty$. Hence

$$||(\lambda - \Delta_n)^{-1} f - (\lambda - \Delta)^{-1} f||_{C(\Omega_n)} \to 0.$$

In particular, $(\lambda - \Delta_n)^{-1} f(x) \to (\lambda - \Delta)^{-1} f(x)$ for all $x \in \Omega$. We then get that $R(\lambda, a) f = (\lambda - \Delta)^{-1} f$. This shows the theorem.

Remark 3.4. The last result is true if instead of the Laplacian we consider an elliptic operator with smooth coefficients.

REFERENCES

- 1. S. Albeverio, P. Blanchard, and Z. Ma, Feyman-Kac semigroups in terms of signed smooth measures, preprint BiBos n.424, Univ. Bielefeld, 1990.
- H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225–254.
- 3. W. Arendt and C. J. K. Batty, Absorption semigroups and Dirichlet boundary conditions, Math. Ann. 295 (1993), 427-448.
- 4. Th. Cazenave and A. Haraux, Introduction aux problemes d'evolution semi-lineaires, S. M. A. I., Ellipses, 1990.
- R. Dautray and J. L. Lions, Analyse mathematiques et calcul numerique, Vol. 2, Masson, Paris, 1988.
- 6. E. B. Davis, Heat kernels and spectral theory, Cambridge Univ. Press, Cambridge, 1989.
- 7. M. Demuth and J. A. van Casteren, On spectral theory of self-adjoint Feller generators, Rev. Math. Phy. 1 (1989), 325-414.
- 8. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1977.
- J. A. Goldstein, Semigroups of linear operators and applications, Oxford Univ. Press, London, 1985.
- E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, RI, 1957.
- 11. T. Kato, Perturbation theory of linear operators, Springer-Verlag, Berlin, 1966.
- L^p-theory of Schrödinger operators, Aspects of Positivity in Functional Analysis (R. Nagel, U. Schlotterbeck, and M. Wolff, eds.), North-Holland, Amsterdam, 1986, pp. 63-78.
- 13. G. Lumer and L. Paquet, Semi-groupes holomorphes et equations d'evolution, C.R. Acad. Sci. Paris Sér. I. Math. 284 (1977), 237-240.
- Semi-groupes holomorphes, produit tensoriel de semi-groupes et equations d'evolution,
 Sem. Théorie du Potential, no. 4 (1977/78) (F. Hirsch and F. Mokobodzki, eds.), Lecture
 Notes in Math., vol. 713, Springer-Verlag, Berlin, 1979.
- 15. R. Nagel (ed.), One-parameter semigroups of positive operators, Lecture Notes in Math., vol. 1184, Springer-Verlag, Berlin, 1986.
- 16. E. M. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups, Potential Anal. (to appear).
- 17. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983.
- 18. M. Reed and B. Simon, Methods of modern mathematical physics I, Functional Analysis, revised ed., Academic Press, New York, 1980.

- 19. J. P. Roth, Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues, Ann. Inst. Fourier (Grenoble) 26 (1976), 1-97.
- 20. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 447-526.
- 21. H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141-162.
- 22. _____, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc. 259 (1980), 299-310.
- 23. P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, preprint.

SFB 288, Technische Universität Berlin, 136, Strasse 17 Juni, 1000 Berlin 12, Germany

Max-Planck Arbeitsgruppe, FB Mathematik, 10, Am Neuen Palais, 1571 Potsdam, Germany

Current address: Equipe d'Analyse et de Mathématiques Appliqueés, Université de Marne-la-Valleé 2, rue de la Butte Verte, 93166 Noisy-le-Grand, France