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GAUSSIAN ESTIMATES AND HOLOMORPHY OF SEMIGROUPS

EL-MAATI OUHABAZ

(Communicated by Palle E. T. Jorgensen)

Abstract. We show that if a self adjoint semigroup T on L2(fi) satisfies a

Gaussian estimate \T(t)f\ < MG(bt)\f\, 0 < t < 1 , f e L2(Sï) (where
G = G(f)/>o is the Gaussian semigroup on L2(RN) and Q is an open set

of RN ), then T defines a holomorphic semigroup of angle | on Z/(Í2),

1 < p < oo . We obtain by duality the same result on Co(fl). Applications to

uniformly elliptic operators and Schrödinger operators are given.

0. Introduction

Let Q be an open set of RN (with the Lebesgue measure), and consider a

selfadjoint semigroup T = T(t)t>o on L2(Q) with generator A. Then T is a

holomorphic semigroup with angle § , i.e., T can be extended holomorphically
to the maximal domain {z, Re z > 0} (see § 1 for the precise definition).

Assume now that T interpolates on LP(Q), 1 < p < oc ; that is, there

exists for each p, a strongly continuous semigroup Tp on LP(Q) with T2 = T

and satisfying Tp(t)f = T2(t)f (t > 0) for / £ D>(Q)nL2(Q). It follows
from the Stein interpolation theorem that for 1 < p < oo the semigroup Tp is

holomorphic on 1/(0.) with angle 6P > |(1 - ß - l\) (see Davies [6, p. 23]).

However, the case p — 1 is more delicate.

In the case where A is an elliptic operator of second order (with some
smoothness conditions on its coefficients), Amann [2] showed that Tx is holo-
morphic on L1 (Q) if Q is bounded and smooth; his method is based on duality

arguments and the result of Stewart [21, 22] on Co(Q). Recently, Arendt and
Batty [3] extended the result to an arbitrary open set Q under Dirichlet bound-

ary conditions. We also note that Kato [12] showed the holomorphy on LP(RN),

1 < p < oo, for the Schrödinger operator A = A - V (A is the Laplacian and

V = V+ - F_ is a potential).
The purpose of this paper is to extend all these results to more general situ-

ations. We show the holomorphy on LP(Q), 1 < p < oo, for elliptic operators

under more general boundary conditions without regularity on their coefficients
and by assuming minimal regularity on Q. More precisely, we show in an

abstract setting the following result:
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Assume that the semigroup T has a Gaussian estimate, i.e.,

(0.1) \T(t)f\ < MG(bt)\f\    for0<i< landall/ £ L2(Q)

where M and b are positive constants and G = G(t)t>o is the Gaussian

semigroup on L2(RN). Then Tp is holomorphic with angle § on LP(Q) for
1 <p < oo.

Such Gaussian estimates hold for uniformly elliptic operators and Schröd-

inger operators (see [6, Chapter 3; 20, Theorem B.7.1]). Our result is applicable

in the following framework.

Assume that A is the operator associated with the following symmetric form

a(u,v)= V]  / ajjDjuDjVdx+ / Vuvdx
¡j=lJa Ja

with a¡j = üji £ L°°(Q) satisfying the ellipticity condition Y,f j=x aij(x)ciiÇj >

c\c¡\2 a.e. x £ Q and 0 < V £ LX0C(Q).

The domain of a is given by D(a) = W n {u £ L2(Q), jn V\u\2 < oo},

where W is a closed subspace of the Sobolev space HX(Q) which contains

HX(Q).
We obtain the holomorphy of Tp, 1 < p < oo, in the following cases:

(1) W = HQX(Q) for Q any open set of RN (this corresponds to the Dirichlet

boundary conditions).

(2) W satisfies the two following properties:

* u £ W implies \u\ £ W.
* If 0 < u < v , v £ W, and u£Hl(Q), then u £ W.

In this case we assume that Q has the extension property (if W — HX(Q),
this corresponds to the Neumann boundary conditions).

We recall that in [2], [3], and [12] it is shown that Tx is holomorphic with

some "small" angle. To be precise, it is shown that the estimate

(0.2) m-Ayx\w(vm<^

holds for X s.t. ReX > 0 (here M > 0 is a constant).

In the present paper we show that Tp , 1 < p < oo, is holomorphic with angle

f, that is, the estimate (0.2) holds in £f(Lp(Q)) in each sector 1(6 + f ) :=
{X = reia ; r>0, |a| < f + 0} , O<0<|. This holomorphy in the maximal
domain {z, Rez > 0} answers positively and in a more general situation a

question in Kato's paper [12].

We also study the holomorphy on Co(Q) ■ We show by duality that if the
Laplacian on Co(Q) is a generator of a semigroup 7b, then To is holomorphic

( Q is any open set of RN ). This result has been shown by Lumer and Paquet

[13, 14]. Our method gives more information on the generator and that To is

holomorphic with angle \ .
This paper is organized as follows. In §1 we recall some known material

on holomorphic semigroups. In §2, we show that Gaussian estimates (0.1) im-

ply the holomorphy on LP(Q), 1 < p < oo. Finally, §3 is concerned with

applications to elliptic operators on LP(Q) and Co(Q).
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Remark 0.1. (1) All the semigroups considered in this paper are assumed to be

strongly continuous.
(2) If E is a Banach space, we denote by 3?(E) the space of bounded linear

operators on E and by 11 • | \e the norm of E.

1. Preliminaries

In this section we recall some known results on holomorphic semigroups.

Denote by E a Banach space and by A a generator of a semigroup T= T(t)t>o
on E. By g(A) and a(A) we denote respectively the resolvent set and the

spectrum of A.

Definition 1.1. (a) The semigroup T is said to be bounded holomorphic with

angle 0 £ (0, f ] if T has an extension to the sector X(0) := {z = re'a ; r > 0,

| a | < 0} which satisfies the following:

(1) T(z + z') = T(z)T(z'), z,z'£ 2(0).
(2) z -» T(z) is holomorphic on Z(0).

(3) limz^o,z€i(0) T(z)f = / for each f £E.
(4) For each 0' < 0 there exists a constant M (depending on 0 ) s.t.

\\T(z)\W(E)<M for all z e 1.(6').

(b) We say that T is bounded holomorphic if there exists 0 e (0, f ] s.t. T
is bounded holomorphic with angle 0 .

The following can be found in the books on semigroup theory (see [9, 10, 11,

15, and 17]).

Theorem 1.2. The semigroup T is bounded holomorphic with angle 0 if and

only if 1(6 + \ ) c q(A) , and for each 6' < 6 (6' > 0) there exists a constant
M s.t.

IP-^rW)<pg   forallX£l{6 + ̂ ).

Theorem 1.3. The semigroup T is bounded holomorphic if and only //£(§) c

q(A) and

IP-^)-W)<^   forallX£l(^j.

Theorem 1.3 can be deduced from Theorem 1.2 by showing that if

||(A - ^)-1||^(£) < m for all X £ E(f ), then there exists some "small" angle

0 > 0 such that X(0 + f ) c q(A) , and the same estimate holds in X(0 + f ).
We give now an interesting situation where the semigroup is holomorphic.

Let E be a Hubert space and denote by (•, •) its scalar product. Assume that

A is a selfadjoint generator of a bounded semigroup T on E. Then it follows

by the spectral theorem that (Au, u) <0 for all u e D(A). Moreover, we have

the following well-known

Proposition 1.4. The semigroup T is bounded holomorphic with angle f .

2.   LP  AND  Co  HOLOMORPHY

We keep the same notation as in the introduction. Q is an open set of
RN with the Lebesgue measure and T a selfadjoint semigroup on L2(Q) with

generator A.  We say that T has a Gaussian estimate for 0 < t < 1  if the
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estimate (0.1) holds for 0 < t < 1 and that T has a Gaussian estimate for all

t > 0 if the estimate in (0.1) holds for all t > 0. We start by the following

Proposition 2.1. If T has a Gaussian estimate for 0 < t < 1, then there exists
w > 0 s.t. the semigroup e~wtT(t)t>o has a Gaussian estimate for all t>0.

Proof. By assumption \T(t)\ < MG(bt) for 0 < t < 1. Let t > 1, and write
t - n + s with 0 < s < 1 and n a natural number. Then

\T(t)\ = \T(n)T(s)\ = \T(l)nT(s)\

< Mn+xG(nb)G(sb) = Mn+xG(bt) < MewtG(bt)

with w = log M. This shows the proposition.     D

The Gaussian semigroup G is contractive on LP(RN) for 1 < p < oo.

This implies that if (0.1) holds, then the semigroup T satisfies \\T(t)f\\u>{a) <

Mewt\\f\\L,,m for f £ D>(Q) nL2(Q), 1 < p < oo. By the Riesz-Thorin
interpolation theorem, there exists Tp(t) £ 5?(LP(Q)) s.t. Tp(t)f = T2(t)f :=

T(t)f for / £ LP(Q) n L2(Q), 1 < p < oo. One can see easily that for
1 < p < oo, Tp = Tp(t)t>o is a strongly continuous semigroup on LP(Q).
Moreover, we have

Proposition 2.2.   Tx is a strongly continuous on Lx (Q).

By the density argument we see that Tx(t + s) = Tx(t)Tx(s). We do not give

the proof of the strong continuity since it is contained in Theorem 2.4.

It is easy to see from (0.1) that T(t) maps L2(Q) into L°°(Q) for each

t > 0. This implies in particular that T(t) is given by a kernel K(t, x, y),
i.e.,

T(t)f(x) = i K(t,x, y)f(x)dy    foreacht > 0, / £ L2(Q), andx e Q.
Ja

The same is clearly true for T(z) for ze X( f ). Denote by K(z, x, y) the
corresponding kernel of T(z). We have

Proposition 2.3 (see [6, p. 103]). Assume that T has a Gaussian estimate for
all t > 0. Then there exist two positive constants M and b such that

for z e£(f) and x,y £Q.

We state now our result on the holomorphy on LP(Q). With the same nota-
tion as above, we have

Theorem 2.4. // T has a Gaussian estimate for 0 < t < 1, then there exists
w > 0 s.t. the semigroup e~wtTp(t)t>o is bounded holomorphic with angle \

on LP(Q) for 1 <p <oo.

Proof. From Proposition 2.1 there exists w > 0 s.t. the semigroup e~w'T has

a Gaussian estimate for all t > 0. We can then assume that T has a Gaussian

estimate for all t > 0 in order to work with T instead of e~w'T.

We let Ko(z, x, y) = exp{- Re teí¿}, Re z > 0, and ko(z), be the func-

tion given by ko(z)(x) = exp{- Re ^}, x £ RN .
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Let / e LX(Q) n L2(Q). By Proposition 2.3 we have

\T(z)f(x)\<M((Rez)~Nl2 ¡ K0(z,x,y)\f(y)\dy
Ja

<M(Rez)~Nl2 [  KQ(z,x,y)\r(y)\dy
Jrn

where f~(y) = f(y) if y £ Q and 0 if not.
By Young's inequality we get

(2.1) \\T(z)f\\um < M(Rez)-N/2\\k0(z)\\LHRN)\\f\\LPia)

for 1 < p < oo and Re z > 0.

This implies that T(z) can be extended to a bounded operator Tp(z) £
S?(LP(Q)), 1 < p < oo. By density we have Tp(z + z') = Tp(z)Tp(z'),

z,z'€ 2(f).
Let 0 £ (0, f ) be fixed. The inequality (2.1) gives

\\TP(z)\\^mm<M((Rez)N/2JRNexpi-rb^ZX^   \ dx

It follows that there exists a constant M0 > 0 s.t.

(2.2) ||rp(z)||^(Ii))<M0(^y       forzeZ(0)andl<p<oo.

Consequently, \\Tp(z)\\^(U,(aï) is bounded in 2(0).

We show that z -► Tp(z) is holomorphic from 1(0) in 5?(LP(Q)). It is
known that this is equivalent to the weak holomorphy, i.e., z -> (Tp(z)f, g)

holomorphic for each / e LP(Q) and g £ Lq(Q) with 1 + 1 = 1, and (•, •)

is the pairing between LP(Q) and Lq(Q). We treat the important case p = 1
(for p / 1 the proof is exactly the same).

Let / e Ll(Q) and g £ L°°(Q). Consider a sequence (/„)„ £ LX(Q) n L2(Q)

converging to / in Ll(Q). Let gn = Xa„g where Qn is a sequence of bounded

open sets s.t. IJ« ̂ « - ^ and Xa„ is the indicator function of Q„ .

For each n > 0, (Tx(z)fn,gn) = (T(z)fn,gn), so z - (Tx(z)fn,g„) is

holomorphic since f„, g„ £ L2(Q). But inequality (2.2) implies that

IW(*)/», fti}| < ̂ 0 (¿oT^J     H/«llL'(Q)llÄlli«'(n).

Hence, there exists a constant Afi > 0 s.t.

(2.3) \(Tx(z)fn,gn)\<Mx (^)   II/IIlWIsIIl-w

foralln>Oandz€E(0).

On the other hand (Tx(z)fn , g„) -* (Tx(z)f, g) when n -> oo . It follows from

(2.3) and Vitali's theorem (see [10, Theorem 3.14.1]) that z -► (Tx(z)f, g) is
holomorphic in 2(0).
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We show now that Tx (z)f -» / when z -» 0, z e 2(0) for each f £ Ll (Q).

Because of (2.2) it suffices to show this for / e LX(Q) n L2(Q). In this case

Tx(t)f = T(t)f for t > 0 and T(i)/ -> / in L2(f2) (/|0). Consequently,
we can extract a sequence tn > 0 s.t. ri(i„)/(x) -> /(x) for a.e. x £ Q
(t„ | 0). By the Gaussian estimate and the dominated convergence theorem

we have Tx(t„)f—>f in LX(Q). The holomorphy of z —► Tx(z) implies that
T\(z)f — / in LX(Q) when z — 0, z £ 2(0). We have shown that Tx is
bounded holomorphic with angle 0 for all 0 e (0, f ). This implies that Tx is
bounded holomorphic with angle f . The proof is complete.

Our next result can be used in particular for Feller semigroups. Denote by

Co(ß) the space of continuous functions in Q which vanish at infinity. Assume

that T has a Gaussian estimate for 0 < / < 1 and there exists a semigroup T0

on C0(Q) s.t.  T0(t)f=T(t)f for / £ C0(Q) nL2(Q). We have

Corollary 2.5. There exists w > 0 such that the semigroup e~w'To is bounded

holomorphic with angle \ on Co(Q).

Proof. As in Theorem 2.4 we can assume that T has a Gaussian estimate for all

t > 0. Denote by Ax and A0 the generators of Tx and T0, and let Ax = A\
on L°°(Q).

We first show that 2(a) C q(Aq) . Since Tx is holomorphic with angle § ,

then 2(7t) c q(Ax) - q(A00) . We claim that q(A00) c q(Aq). In fact, let

X £ da(Ao) (the boundary of o(Aq) ). It is known that this implies that X is

in the approximate spectrum of Ao, i.e., there exists a sequence fn £ D(Aq)

s-t. ||/«||co(£i) = ! and (X - A0)fn -> 0 in C0(Q) (see, for example, [15,
p. 64]). But one can see easily that A^ is an extension of Ao and then

X £ da(Aoo) - cr^oo) c (-oo, 0]. Hence o(Aq) = da(A0) C a(A00)and the

claim is shown.
Now since (X-Aq)~x = (X-A^)'1 on Co(íí) for X > 0 this equality holds

for all A e 2(7t) by analytic continuation. Let 0 6 (0, f ). Then

\\(X-A0)~ ||^(Co(ß)) ̂  ll(^-^oo)- \\s,{L°°{a))

= \\ß- AX)~  ||^(Li(£î)) < 7^7

for all X £ 2(0 + |) by Theorems 1.2 and 2.4. This shows the corollary.

Remark 2.6. The same conclusion as in Corollary 2.5 holds if we replace Q(Q)

by C(Q), the space of continuous functions on Q with Q bounded.

3. Applications

3.1. Elliptic operators. Let Q be an open set of RN as above, and consider

on L2(Q) the symmetric form

a(u,v)= y^  / aijDjUDjVdx+     Vuvdx    where A = ^—.
~ix Ja Ja oXi

Assume that

(3.1) au = aji £ L°° (Q) and real, 1 <i,j< N.
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N

(3.2) J] otfi£j > c\t\2   for a.e. x £ Q
',;=i

andalld; = (Çx, ... , ÇN) £ CN, c> 0 is a constant.

(3.3) 0 < V £ Ll^Q).

Let IF be a closed subspace of HX(Q) containing H¿(Q) (here HX(Q) and

H0X(Q) axe the classical Sobolev spaces).

The domain D(a) of a is given by D(a) = W V\ {u £ L2(Q), ja V\u\2 dx <
oo} = W D D(V). It is easy to see that the form a with this domain is closed.

Denote by T its associated selfadjoint semigroup on L2(Q).

We shall say that W is an ideal of Hl(Q) if the following two properties

are satisfied:

(1) u £ W implies \u\ e W.
(2) If 0 < v < u, u £ W, and v £ HX(Q), then v e W.

An example of such a If is given by W — {u £ HX(Q), U\y = 0} where
r is a closed set of the boundary of dQ of Q. (Here we assume that Q is

bounded and regular.)

Keeping these notation and those of §2, we have

Theorem 3.1. Under the assumptions (3.1), (3.2), and (3.3) we have

(1) If W = H0X(Q) with Q any open set of RN, then Tp is bounded holo-
morphic with angle \ on LP(Q), 1 < p < oo.

(2) If W is an ideal of HX(Q), we assume in addition that Q has the exten-
sion property. Then there exists w > 0 s.t. the semigroup e~w'Tp is bounded

holomorphic with angle f on LP(Q), 1 <p < oo.

Proof. (1) If W = H0X(Q), then T has a Gaussian estimate for all t > 0 (see

[6, Corollary 3.2.8]). We then apply Theorem 2.4.
(2) If W is an ideal of Hx (Q), then the semigroup T corresponding to the

form a with domain D(a) = WC\D(V) is dominated by the semigroup TH,^a)

corresponding to the form a with domain D(a) = HX(Q) r\D(V) (see [16] or
[23]). Since THi^ has a Gaussian estimate for 0 < t < 1 (see [6, Theorem

3.2.9]), then so has T. The claim follows again from Theorem 2.4.

Another important situation where we have Gaussian estimates is the case of

the Schrödinger operator A - V where V = V+ - V- with 0 < V+ £ Ll^R")
and 0 < F_ is in the Kato class. It is an easy consequence of the Feynman-Kac

formula that the semigroup generated by A - V has a Gaussian estimate for

0 < t < 1. (See, for example, [1, 20, 7]. In [1], it is shown that Gaussian

estimates hold for A - p where p = p+ - p- is a certain smooth measure.)

We then obtain that A - V generates a holomorphic semigroup with angle f

on LP(RN) for 1 < p < oo . The fact that the angle of holomorphy can be f

answers positively a question in [12].
We can also show this result without referring to the Feynman-Kac formula.

In fact, it is clear that the semigroup e'(A-K+) generated by A- V+ is dominated
by the Gaussian semigroup. It follows from our result that et(-Á~v+í is bounded

holomorphic with angle f on LX(RN). Moreover if F_ is in the Kato class,

this means that  V-  is A-bounded with bound 0 on Ll(RN).   Then  F_  is
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A- V+ -bounded with bound 0. The result follows by the well-known perturbation

arguments. This perturbation method has the advantage of working for complex

potentials V such that Im V and (Re K)_ are in Kato class and (Re V)+ £

Lj^R1*). To be precise, the operator A - V is seen here as a perturbation of

A-Re F by -ilmV .

3.2. Laplacian on Co(Q). In this subsection we give an application of Corol-

lary 2.5 to the Laplacian A on Co(Q) with Q any open set of RN . The result

has been obtained in [13, 14], but their method does not give that the angle of

holomorphy can be § .

Proposition 3.2. Assume that there exists a realization Ao of the Laplacian which

generates a semigroup on C0(Q) ■ Then D(A0) = {u £ C0(Q),   Au £ Co(Q)} ■

Proof. Let w G C0(Q) s.t. Au £ C0(Q). Let X > 0 (X £ q(A0)) . There exists
v £ D(A0) s.t. Xu - Au = Xv - Aqv . This implies that X(u - v) - A(u - v) = 0
(in the distributional sense). It is known by regularity results that this implies

u - v is a C°° function on Q (see, e.g., [5]). The maximum principle implies

that u = v since u-v £ Go(Q).

Theorem 3.3. Assume that the Laplacian A with domain D(A) = {u £ Co(Q),

Au £ Co(Q)} generates a semigroup To on Co(Q) ■ Then To is bounded holo-

morphic with angle §.

Proof. Consider the following form of the Dirichlet Laplacian on L2(Q)

N   f
a(u,v) = YJ     DjuDiV dx,       D(a) = H¿(Q).

¡=i Ja

Denote by T2 its associated semigroup. Then T2 has a Gaussian estimate for
all t > 0 (more precisely, we have T2(t) < G(t) for t > 0; see [6, Theorem
2.1.6] or [16, Proposition 4.2]). We have to show that T2(t)f = T0(t)f for

/ £ C0(Q) n L2(Q) and apply Corollary 2.5.
If Q is bounded and sufficiently smooth, then T2(t)f = T0(t)f (f £ C0(Q)n

L2(Q)) for all t > 0 (see, for example, [8, Theorem 8.30; 4, p. 32]).
Let now (Qn)ri>i be a sequence of bounded and of class C°° open sets s.t.

Qn c Q„+x and IJ„ Q„ = Q. For each n , define on L2(Q) the form a„ by

N   f
an(u,v) = T      DiuDiVdx,        D(a) = H0X(Q„).

1=1Ja»

Denote by R(X, a) and R(X, a„) for X > 0 the resolvents of the associated

operators with a and an respectively. The sequence an satisfies a„+i < a„

in the sense that D(a„) c D(an+X) and an+x(u, u) < a„(u, u). It follows by

a convergence theorem on forms ([11, p. 452] or [18, p. 373]) that R(X, a„)

converges strongly in L2(Q) to R(X, a) for all X > 0. (Here the forms an are

not densely defined, but the convergence theorem is still valid; see [3, §7; 6, p.

62]).
Define now the operators A„ on Co(Qn) by

D(An) = {U£ C0(Qn) n H0x(Qn), Au £ C0(Qn)},        Anu = Au.

Since Q„ is bounded and regular, R(X, a„) = (X - An)~x on C0(Qn) C\L2(Q„)
for all X > 0.
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Let now f £ Co(Q) with compact support. Then f £ Co(Qn) for « > «o

(for some «0 )• Let h„ = (X - A„)-1/ and h = (X - A)~xf, A > 0. Define h~
by h~(x) = h„(x) for x £ Q„ and 0 if x £ Q \ Qn. Then h¿ £ C0(Q) and
(X - A)(A~ - h) = 0 on Qn with h~ - h £ C(Q„). The maximum principle

implies that \\h~ - h\\C{Cln) = supôiin \h~ - h\ = supaiiii \h\. But h £ C0(Q), so

sup9£in \h\ converges to 0 when n —> oo . Hence

||(A - A„)-'/- (A - A)-'/||C(an) ^ 0.

In particular, (X - An)~xf(x) -* (X - A)~xf(x) for all x £ Q. We then get that

R(X, a)f — (X - A)~x f. This shows the theorem.

Remark 3.4. The last result is true if instead of the Laplacian we consider an

elliptic operator with smooth coefficients.
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