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Abstract. By using a geometric framework of PDE's we prove that the set of

solutions of the D'Alembert equation (*) (ag]$f) = 0 is larger than the set

of smooth functions of two variables f(x, y) of the form (**) f(x, y) =

h(x) ' S(y) ■ This agrees with a previous counterexample by Th. M. Rassias

given to a statement by C M. Stephanos. More precisely, we have the following

result.

Theorem. The set of 2-dimensional integral manifolds of PDE (*) properly

contains the ones representable by graphs ofl-jet-derivatives of functions f(x, y)

expressed in the form (**).

A generalization of this result to functions of more than two variables is

sketched also by considering the equation (gdx .l0|{ ) = 0.

1. Synopsis

Questions of representation of functions in several variables by means of
functions of a lesser number of variables have occupied the interest of math-
ematicians for centuries. One of these questions is closely connected with the
thirteenth problem of Hubert (1862-1943) and concerns the solvability of alge-

braic equations [7]. Functions of certain special forms have been investigated
by several authors, including d'Alembert (1717-1783), who as early as 1747
proved that each sufficiently smooth scalar function h of the form

(1.1) f{x,y) = h(x)-g(y)

has to satisfy the partial differential equation

v ; V dxdy J

(see [3]). This equation can be also expressed in the form

(1.2)
/     fy
fx    fxy

= 0.
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A generalization of the form (1.1) to a finite sum of products of functions in
single variables

(1.3) f(x,y)= Yl h'(x)-Si(y)
Ki<n

has been considered since the beginning of this century, and it forms the fun-

damental problem in the subject. The functions of the tensor product (1.3) play

a significant role in many areas of both pure and applied mathematics, for ex-

ample, in the theory of integral equations, ordinary and partial equations, and

the approximation theory. In the year 1904 in the section Arithmetics and
Algebra at the 3rd International Congress of Mathematicians in Heidelberg,

C. Stephanos announced the following result:

The functions of the type (1.1) form the space of all solutions of the partial dif-

ferential equation with the "Wronskian" of order (k + 1)

(1.4) detWn+l(f) =

f      fy
Jx      Jxy

Jx"     Jx"y

fy"
fxy"

fx"y"

= 0.

His talk was published in [21] (see also [22]), where some further applications

and consequences were discussed. However, no proof of the above result was

given and no smoothness condition on the given function h was mentioned.

It is our belief that Stephanos was thinking of analytic functions only. In fact,
eighty years later, Rassias gave in [15] a counterexample of a function in two

real variables satisfying the differential equation (1.2), which is not of the form
(1.1). For the development of the subject see [13]. The new interest in the

fundamental problem was revived in the beginning of the 1980s, when Neumann
proved the basic theorem involving the equation ( 1.4) for functions of class C" .

This important result was published in [10] (see also [11]), where also a general

criterion for a function /: X x Y -y R (or C, respectively), being of the form
(1.3), was given in the form of the functional equation

f(x\,y\)
f(x2,yi)

f(x\, yi)
f(x2, yi)

f(xn+\,y\)   f(xn+x,y2)

f(x\,yn+\)
f(xi,yn+i)

f(xn+\, yn+\)

= 0

for all Xt £ X and y}■ £ Y. For the proof of this criterion no structure on
the sets X and Y is required. (Most of the theorems here hold for both real-

and complex-valued functions.) The problem of representing a function / in

several (more than two) variables by

(1.5) f(xx,...,xk)=  Yj A(xi) ■ ■ ■ fik(xk)
\<i<n

was proposed by Rassias in [16]. Gauchman and Rubel [4] obtained some new

results on finite sums expansions of the form (1.3), especially for real analytic

functions. Moreover, they developed an interesting approach to finding special

solutions of the classical partial differential equations, the so-called extended

separation of variables. The first existence theorem on the decomposition (1.5)
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was discovered by Neuman [12]. Later, Cadek and Simsa [1] found an effec-

tive criterion for the existence of the decomposition (1.5) by making use of a
system of functional equations, which does not require any assumption on the

function /. Furthermore, in [2] Cadek and Simsa outlined a way to find sys-

tems of partial differential equations whose solutions spaces form the family of

all sufficiently smooth functions f of type (1.5). Simsa [18] introduced some

new functional expressions for functions of the form (1.3) using the so-called

Casorati determinants. For a given function / that cannot be expressed in the

form (1.3) with a prescribed value of /, it is an interesting problem to find the

best approximation of the type

(1-6) f(x,y)= £ fi(x)-My)
\<i<n

in a given metric functional space. For the case of L2 spaces, this problem was

recently solved by Simsa [19]. However, for spaces without an inner product

structure, the problem seems to be difficult and open. A weaker version of the

above approximation problem, namely, to find a good approximation (1.6) and

also an estimation of the error, was treated in [20] (see the forthcoming book

by Rassias and Simsa [17]).
In this paper we prove the following theorem.

Theorem. The set Sol(d'A), of solutions of the d'Alembert equation, (d'A),

v ' V dxdy J

is larger than the set of functions which can be represented by (1.1).

This was made possible by using the modern geometric theory of PDE's [6,

8, 9, 14, 24]. In fact, we prove that (d'A) is a formally integrable PDE on
the trivial fiber bundle n : R3 -» R2. This means that for any point q £ (d'A)
(initial condition), we can construct a formal solution, i.e., a tower of points

qtç £ (d'A)+fc = kth prolongation of (d'A), such that n2+k,2(Qk) = <7 > where

n2+k,2 is the canonical projection

7r2+fc,2; J3f2+k(^2, ») -» J3>2(R2,R),

where J3?S(R2,R) denotes the s-order jet-derivative space for mappings R2
-» R. In the analytic case this implies the complete integrability, i.e., the

effective construction of analytic solutions in suitable neighbourhoods of any

point p £ R2, with p = n2(q), where n2: J2i2(R2, R) -> R2 is the canoni-

cal projection. Afterward, we prove that (d'A) can be identified with the set

of points of J3i2(R2, R) that can be represented in the form (D2f)(x, y) -

D2(h - g)(x, y), where h = h(x) and g = g (y). This, of course, implies that

the set of functions of the form (1.1) are solutions of (d'A). On the other

hand, any solution of (d'A) can be identified with 2-dimensional integral man-

ifolds of the Cartan distribution E2 c F(d'A) of (d'A). Then, we show that
such integral submanifolds cannot, in general, be represented as graphs of 2-jet

derivatives of functions of the type (1.1). Therefore, the set of solutions of

(d'A) is larger than the set of functions / £ C°°(R2, R) of the form (1.1). The
above theorem can be generalized to functions of more than two variables.



1600 a. prástaro and th. m. rassias

2. Proof of the theorem

Lemma 1. Let Mi, 1 < i < m, be C°° manifolds of finite dimension n¡. Then

any C°° function f:Mxx---x Mm -» R can be represented in the following

form:

/= E a"""m¿. • • -ft-»    a"""m e E' he c°°m'R)- l ^j^ m■
l<i'<oo

Proof of Lemma 1. In fact one has the following canonical isomorphism of

R-vector spaces [23]

C°°(MX, R) ®R • • • ®R C°°(Mm, R) = C°°(MX x-xMm, R ®R • • • ®R R)

= C°°{Mi x---xMm,R).

Thus any vector / £ C°°(MX x • • • x Mm , R) can be represented in the form

/= E *iv-imh®---®fim= E «',,"*"//1 ■■•/*.,
l<i'<oo 1<i'<oo

where (./},) is a R-basis for C°°(A7i, R) and a'1'••'-» e R.   D

Lemma 2. (1) Ler y}y, 1 < z'7 < kj < oo, be linear independent vectors

of C°°(Mj, R), 1 < j < m; then /¿, ■•■ fim generates a subvector space of

C°°(MX x ■•• x Mm , R) of dimension kx---km. Any vector

f£C°°(Mx x-..xMm,R)

that belongs to such a subspace can be represented in the following way:

(2.1) /=        E       ¿v"tmA-fim,
l<i<kj,l<j<m

o'1"'1'- € R,  fj £ C°°(Mj ,R),   1 < j < m .

Thus a function can be represented in the form (2.1 ) iff f belongs to some vector

subspace of finite dimension kx---km.

(2) In particular, if m = 2, Mx = M2 = R, and kx, k2 = 1, then any one of
such one-dimensional vector subspaces of C°°(R, R) is contained in Sol(d'A).

Proof of Lemma 2. (1) It is a direct consequence of Lemma 1.

(2) In fact, the set of regular solutions of (d'A) contains all the functions

h(x, y) of the type h(x, y) = ¿fi(x)f2(y), VA £ R.   a

Lemma 3. The d'Alembert equation (d'A) ç J3)2(R2, R) is a formally inte-
grable, PDE of second order on the trivial fiber bundle it: R3 -y R2.

Proof'of Lemma 3. The symbol (g2)q of (d'A) at q £ (d'A) is a vector subspace

of S$(TPM) ®vTuW s R2 © R2, where M = R2, W = R3, vT denotes
the vertical tangent functor, p = n2(q), and u = 7:2,0(0); with respect to a

coordinate system {x, y, u, ux, uy, uxx, uxy, uyy} on J3H2(R2, R), we have

that
t; = xxxduxx + x*yduxy + xy?duyy e (g2)q

iff v-F = 0, where F = uuxy-uxuy . Thus v £ (g2)q iff Xx>u = 0 «• X*y = 0.
Hence

dim(^2)9 = dim R2©R2-1 = 3-1 = 2.
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Furthermore,

(2.2) dim(d'A) = dim /^3(R2, R) - 1 = 8 - 1 = 7.

Let us now consider the first prolongation (d'A)+1 of (d'A) :

(d'A)+i cJ&3(R2,R)

F = uuxy - uxuy - 0,

Fx = uuxyx - uxxuy = 0,

Fy   =  UUxyy  -  UxUyy   =   0 .

Then we get dim(d'A)+1 = dim/^"3(R2, R) -3= 12-3 = 9. Moreover,

v = xxxxduxxx + xxxyduxxy + xyyxduyyx + xyyyduyyy e ((g2)+x)q

iff
{v-F = 0, v-Fx = 0, v-Fy = 0}&{uXxxy = 0, «X^ = 0}

=* dim((g2)+i), = 4-2 = 2.

Therefore, we get

(2.3)
dim(d'A)+1    -dim((ft)+i),   =dim(d'A)

9 2=7

On the other hand we have the following exact sequence:

(2.4) (d'A)+1--(d'A) -k-

where:
( 1 ) Fx is a vector bundle on (d'A) canonically identified by means of the

following commutative and exact diagrams of vector bundles over (d'A) :

(2.5)
0 0

+ g2 *n* 0(S%M®vTW)-

0--vF(d'A) ■J3f\vTW)-^J2f2(vTW/vT(d,A))--0,

(2.6) 0 - (g2)+x - nl0(S%M ®vTW) -+ T*M ®F0^FX;

and
(2) k is the curvature of (d'A) [6]. Then we have

(2 + 2)i
dimFi = 2 • dimFo -      3,     + dim((^)+1)?,

where dimF0 = dimJ3r2(R2, R) - dim(d'A) = 8-7=1. Thus taking into
account (2.2) we can conclude that dim Fx = 0, i.e., the curvature k is zero;

hence, the canonical mapping (d'A)+] —► (d'A) is surjective. Let us now con-

sider the following fundamental relation [5]:

dim((g2)+1)9 <  E dim(ft)^,
0<i<l
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where (g2)q0) = (g2)q , (g2)f = {v £ (g2)q\(v ,<?.) = ••• = (w, e,} = 0}, i>0,
being {e,}i<,<2 the basis on TPM induced by means of a coordinate system.

If the equality holds, then the symbol g2 is involutive. In fact, we get

v = Xxxduxx + xyyduyy £ (g2){q)   iff    Xxx = O =» dim^)^ = 1

=*■   dim((g2)+i)q    <   dim(^2)?    +   dim(g2)q1]

II II II
2 < 2 + 1

Thus (d'A) is not involutive. On the other hand we know [6] that we can

prolong an equation a finite number of times such that it becomes involutive.

Then, if (d'A) +r has the symbol (g2)+r involutive, we can find another integer

5 such that (d'A) ±'r+s = 7t2+r+J>2+r((d'A)+r+î) is involutive formally integrable

with the same regular solutions as (d'A). Therefore, we can conclude that (d'A)

is formally integrable.   D

Lemma 4. (1)  There exist two canonical embeddings of J3i2(R,R)   into

J3i2(R2,R) defined by
(a)

a: J22(R, R) - 7^2(R2, R), (<*, f, Ç{, C«) h» (£, 0, Ç, Q, 0, fK, 0, 0)

and
(b)
b: J&2(R, R) -> J32(R2,R), (Í, C, Q, C«) « (0, (, f, 0, Q, 0, 0, C«).

IFi? ca/7 (a) z7ze x-embedding and (b) the y-embedding respectively. Set A2 =

a(J3l2(R, R)), F2 = b(J9t2(R, R)). Then we can identify J3¡2(R,R) with
the two submanifolds A2 and B2 of JS>2(R2, R), characterized by the following
equations:

(A2):{*-£ = 0, y = 0,  u- Ç = 0, ux - f{ = 0,  wy = 0,

Wxx - C« = 0, uxy = 0,  uyy = 0},

(B2):{* = 0, y-C = 0, u-C = 0, ux = 0, uy - Ç -{ = 0,

uxx = 0,  z% - C« = 0}.

(2) One has A2 n B2 = R2, w/zere R2  z's zTze submanifold of J3í2(R2, R)
characterized by the equations {x — y = ux = uy = wxx = «^ = uyy = 0} .

Lemma 5. A2 and B2 are properly contained in (d 'A) : A2 c (d 'A),  B2 c
(d'A).

Proof of Lemma 5. In fact, (A2) and (F2) satisfy the equation uuxy - uxuy =

0.   D

Lemma 6. (1) There exist two canonical monomorphisms of C°°(R, R) z'zzto

C°°(R2,R) defined by

(I) a: C00(R,R)^C00(R2,R),        a(h)(x, y) = h(x),

(b) /5:C00(R,R)^C00(R2,R),        b(g)(x, y) = g(y).

We call (a) the x-embedding and (b) the y-embedding respectively. Set A =

a(C°°(R,R)), B = b(C°°(R,R)). Then C°°(R, R) can be identified with two
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subvector spaces of C°°(R2, R) : A is the subspace of functions f(x, y) that are

constant with respect to y-variable, and B is the subspace of functions f(x, y)

that are constants with respect to the x-variable. One has A n B = R, where R

is identified with the subspace of C°°(R2, R) of constant functions.

(2) A is the set of solutions of A2, and B is the set of solutions of B2 . R is

the set of solutions of A2r\B2 = R.

Lemma 7.  (d'A) is diffeomorphic to the image P2 of the canonical mapping

j: J2i2(R, R) x J2I2(R, R) -» 7^2(R2, R),

defined by
j(D2(h(x),D2g(y)) = D2(h.g)(x,y).

More precisely the diagram

J3>2(R.,R)xJ3f2(R,R)      =       J3>2(M,R)x J3>2(n,M)—>i^~J3r2(n,W)®J£!2(M,m)

j v

(d'A) C J3>2(R2,R) = J22(R2,R)

is commutative, where (i) n is the canonical morphism of vector bundles over

R2   (x,y), and (ii) /s is defined by the following equations:

Xo/z=x,     y o yi = y ,      U°/i = UU,     Uxo^=üü,      Ux o /z:=~û~xû,

Uy   O /l   —  ÜUy , UXX   O /l   =  ÜXXU , Uyy  O /l   =  ÜUyy , UXy   O /l   =   2ÜUy ,

where (x, ü, üx, üxx, y, u, uy, uyy) are coordinates on J3S2{R, R) x

J2f2(R,R).

Proof of Lemma 1. The image of F2 of /i is the set of points D2f(x, y) £

J3r2(R2, R) that can be written in the following way:

(2.7) D2f(x,y) = D2(hg)(x,y)

where h = h(x) and g = g (y) are C°° -functions. Furthermore, P2 is a

seven-dimensional submanifold of 7Ü?2(R2, R) as /i has constant rank seven.

Moreover, F2 ç (d'A) as all points of J3¡2(R2, R) that satisfy (2.7) belong
to (d'A) also. On the other hand the mapping j is onto (d'A). In fact,

for any point q £ (d'A) we can find a point u = ((D2h)(x), (D2g)(y)) e

/^2(R, R) x J3i2(R, R) such that j(u) = q . Indeed the point u is given by

u = (D2fy(x),D2fx(y)),

where fx and fy are the partial mappings R -> R at the points x and y,

respectively.   D

Lemma 8. The image of C°°(R, R) x C°°(R, R) into C°°(R2, R) by means of
the canonical mapping

c: C°°(R, R) x C°°(R, R) -» C°°(R, R) ®R C°°(R, R)

Si C°°(R2 , R <8>R R) S C°°(R2 , R)

represents the set of solutions of (d'A) that can be represented in the form (1.1).
Set C = c(C°°(R, R) x C°°(R, R)) c Sol(d'A).
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Proof of Lemma 8. In fact, / £ C°°(R2, R) can be expressed in the form (1.1)

iff / £ C. On the other hand from Lemma 7 it follows that if / £ C, the graph
of D2f is contained in (d'A) c J22(R2, R). Therefore, C can be identified
with the subset of Sol(d'A) defined by those integral manifolds of (d'A) that
can be obtained as graphs of 2-jet-derivatives of functions f(x, y) expressed
in the form (1.1).   D

Lemma 9. Let E2 c J2¡2(M, R) be a second-order PDE, where M is an n-

dimensional manifold. Let F(x,a ,y,ya,yaß) = 0 be the local expression

of E2. Then, the space of characteristic vectors at a point q £ E2 is an n-

dimensional space generated by the following linearly independent vector fields
on E2:

vß = (dyaß • F)dxa + ya(dyaß ■ F)dy + ySa(dyoß • F)dya

- [(dxa • F) + ya(dy • F) + y^dy03 • F)]dyaß .

Proof of Lemma 9. The ideal ^(E2) that characterizes the Cartan distribution
E2 of E2 is generated by the following differential 1-forms:

co0 = dF = (dxa • F)dxa + (dy ■ F)dy + (dya • F)dya + (dyaß • F)dyaß ;

œx=dy- yadxa ;       œ2a s dya - yaßdxß .

X = Xadxa + Ydy + Yadya + Yßadyaß e C°°(E2)

& X\o)o = X\œx = X\co2a = 0

=* (dxa • F)Xa + (dy.F)Y + (dya -F)Ya + (dyaß ■ F)Yaß = 0;

Y = yaXa;        Ya=yaßXß.

X £ Char(E2) = set of characteristic vector fields of E2 <=> X\df(E) ç ^(E2).
Taking into account that d¿f(E2)  is generated by the following differential
forms:

(2.8)
coo, cox, o)2a, 0J3 = da>x = -dya A dxa, œ^a = dco2a = -dyaß A dxß

=*> X\coi = Acoo + Bo)\ + Ca'(o2a ; X\œ4a = Aacoo + Bacox + Caco2ß

=► dxa[-Ya - A(dxa • F) + Bya + CsySa] + dy[A(dy • F) + B]

+ dya[Xa - A(dya • F) - Ca] + dyaßA(dyaß • F) = 0

=ïA = 0^Ca = Xa^B = 0^Ya = Côy5a =* Ya = YsySa.

dxß[-Yaß - Aa(dxß ■ F) + Bayß + C^ywß] + dy[la(dy ■ F) + Ba]

+ dyß[Aa(dyß ■ F) + c{] + dy<aß[Xßo^ - Aa(dy»ß • F)] = 0

(2-9)     =► Ba = -Äa(dy -F);Cßa = -Äa(dyß .F); X'S? = Aa(dy»ß ■ F)

=> Yaß = -Aa[(dxß - F)+yß(dy ■ F)+ymß(dy» ■ F)]

^Xa = Aß(dyaß - F) ; Y = Aßya(dyaß -F) ;  Ya = AßySa(dy5ß • F).
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Now we are able to prove that the set of solutions of (d'A) is larger than C.
In fact, one can see that the Cartan distribution E2 c F(d'A) In (d'A), that
characterizes the solutions* of (d'A), is the annihilator of the ideal generated by
the following differential 1-forms on J9)2(R2, R) :

a>o = dF = duuxy + uduxy - duxuy - uxduy,

o)x = du - uxdx - Uydy,

co2 = dux-uxxdx-uxydy,

G>3   =  dUy  -  UyxdX  - Uyydy .

Let us consider two 1-dimensional integral manifolds Vx and V2 of A2 and

B2, respectively. Of course, one has Vx c A2 c (d'A), V2 c B2 c (d'A).
Furthermore, V¡, i - 1, 2, are also 1-dimensional integral submanifolds of

(d'A). Let v¡, i = 1,2, be characteristic vector fields that are not contained
in the tangent space TVX. More precisely we can take

V\ = vx = u[dy + Uydu + uyxdux + uyyduy] + uxxuyduxx + uyyUxduyx,

v2 = vy — u[dx + uxdu + uxxdux + uxyduy] + uxxuyduxy + uyyuxdUyy.

Let (j>itt: (d'A) -* (d'A) be the 1-parameter groups of diffeomorphisms gener-

ated by v¡: dcßi = v¡. Then N¡ = \Jt4>i,t(Vi), ' = 1»2, are 2-dimensional
integral manifolds of (d'A). Such manifolds cannot, in general, be represented
as the graphs of the second-order jet-derivatives of functions f(x, y) of the
type (1.1).   D

Remark. This result interprets a general behaviour of PDE's. In fact, "sin-

gular solutions" or multivalued solutions cannot be interpreted as graphs of
jet-derivative mappings. Therefore, a generalization of our considerations for
functions of more than two variables can be, in a similar way, directly de-

veloped. In fact, we can also prove that the set of solutions of the following
generalized D'Alembert equation (d'A)„ c J3in(Rn, R) :

properly contains graphs of the «-jet-derivatives of all functions / £
C°°(R",R) that can be expressed in the form f(xl, ... , xn) = fx(xl)---fn(x").

(We do not go into details as these are trivial extensions of previous ones made
for two variables.)

The reader can find an extensive study, and other results, of this subject in

the book by Th. M. Rassias and J. Simsa [17] (see in particular, Chapter VIII).
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