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Abstract. Let Io and m° be the ideals associated with Laver and Miller

forcing, respectively. We show that add(/°) < cov(/°) and add(m°) < cov(m°)

are consistent. We also show that both Laver and Miller forcing collapse the

continuum to a cardinal < f).

Introduction and notation

In this paper we investigate the ideals connected with the classical tree forc-

ings introduced by Laver [La] and Miller [Mi]. Laver forcing L is the set of all

trees p on <(0co such that p has a stem and whenever s £ p extends stem(p)

then Succp(s) := {n : s~n £ p} is infinite. Miller forcing M is the set of all
trees p on <wco such that p has a stem and for every s £ p there is t £ p

extending s such that Succp(t) is infinite. We denote the set of all these split-
ting nodes in p by Split(p). For any t g Split(p), Splitp(t) is the set of
all minimal (with respect to extension) members of Split(p) which properly
extend t. For both L and M the order is inclusion.

The Laver ideal Io is the set of all X C aco with the property that for every

p £ L there is q £ L extending p such that X n [q] - 0. Here [q] denotes
the set of all branches of q . The Miller ideal m° is defined analogously, using
conditions in M instead of L. By a fusion argument one easily shows that Io
and m° are er-ideals.

The additivity (add) of any ideal is defined as the minimal cardinality of

a family of sets belonging to the ideal whose union does not. The covering
number (cov) is defined as the least cardinality of a family of sets from the ideal
whose union is the whole set on which the ideal is defined— "co in our case.

Clearly cox < add(/°) < cov(/°) < c and cox < add(m°) < cov(w°) < c hold.
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The main result in this paper says that there is a model of ZFC where

add(/°) < cov(/°) and add(m°) < cov(w°) hold. The motivation was that
by a result of Plewik [PI] it was known that the additivity and the covering
number of the ideal connected with Mathias forcing are the same and they are

equal to the cardinal invariant f)—the least cardinality of a family of maximal

antichains of ¿P(co)l fin without a common refinement. On the other hand, in

[JuMiSh] it was shown that add(s°) < cov(s°) is consistent, where s° is Mar-

czewski's ideal—the ideal connected with Sacks forcing S. Intuitively, L and

M sit somewhere between Mathias forcing and S. In [GoJoSp] it was shown

that under Martin's axiom add(/°) = add(m°) = c, whereas this is false for s°

(see [JuMiSh]).
The method of proof for add(s°) < cov(i°) in [JuMiSh] is the following:

For a forcing F denote by k(P) the least cardinal to which forcing with F

collapses the continuum. In [JuMiSh] it is shown that add(s°) < k(§) . In

[BaLa] it was shown that in Fs<u2rc(S) = cox holds, where Sa2 is the countable

support iteration of length co2 of S. Hence VSmi |= add(s°) = cox. On the

other hand, a Löwenheim-Skolem argument shows that Vs°>i |= cov(s°) = co2 .

Our method of proof is similar. Denoting by P^ a countable support iter-

ation of length co2 of L and M (each occurring on a stationary set), in §2 we
prove the following:

Theorem.

K'«2 |= coi = add(/°) = add(m°) < cov(/°) = cov(m°) = co2.

The crucial steps in the proof are to show that k(L) , k(M) equal cox and

add(/°) < k(L) , add(w°) < k(M) hold.
We will use the standard terminology for set theory and forcing. By b we

denote the least cardinality of a family of functions in wcd which is unbounded
with respect to eventual dominance and D will be the least cardinality of a

dominating family in "to. Moreover, p is the least cardinality of a filter base

on ([co]10, c*) without any lower bound, and t is the least cadinality of a

decreasing chain in ([co]™, ç*) without any lower bound. It is easy to see that

co. <p<t<b<0<c.

1. Upper and lower bounds

Theorem 1.1. (1) t < add(/°) < cov(/°) < b.
(2) p < add(w°) < co\(m°) < 0.

Proof of Theorem 1.1(1). We have to prove the first and the third inequality.

For the third inequality, let (/» : a < b) be an unbounded family. Define

Xa:={fe0><0'.(3°°k)f(k)<fa(k)}.

Clearly \J{Xa : a < b} = œco. We claim Xa £ Io. Let p £ L. We define q £ L
as follows: stem(q) := stem(p), and for any s extending stem(q) we have

s £ q if and only if s £ p and (V/c) if \stem(q)\ < k < \s\, then s(k) > fa(k).
Then clearly q £ L, q extends p, and [q]r\Xa = 0 .

In order to prove the first inequality we use the following notation from

[JuMiSh]: Let Q := {1 = (As : s £ <wco) : (Vs)As g [co]™}. For A £ Q we
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define a sequence of Laver trees (ps(A) : s £ <coco) as follows: ps(A) is the

unique Laver tree such that stem(ps(A)) = s and if t £ ps(A) extends s, then

Succp,(aM) = a< ■
For A, B £ Q we define:

A~ ç B & (Vs)As ç Bs,

ÄC*B& (\/s)As C* Bs,

1<*B& (\/s)As C* Bs A (V°°s)As C Bs.

Here <* is a slight but important modification of ç* from [JuMiSh].

Fact 1.2.  (Q, <*) is t-closed.

Proof of Fact 1.2. Suppose (Aa: a < y), where y < t is a decreasing sequence

in (Q, <*). Let A~a := (A* : s £ <0}co). Since y < t, there is b' = (B's :

s £ <wco) £ Q such that (Va < y)B~' C* la. Define fa : <mco -* co such

that (Vs)B's\fs(a) ç A<¡¡. Since t < b, there exists / : <03co -* co such that

(Va)(V°°s)/a(i) < f(s). Now let Bs := B's\f(s) and B := (Bs : s £ <wco). It is

easy to check that (Va < y)B <* Aa .

Fact 1.3. Suppose X £ Io and A £ Q. There exists B £ Q such that B ç A
and (Vi G <a)co)[ps(B)] f)X = 0.

Proof of Fact 1.3. First note that if D := {p £ h : [p]f)X = 0} , then D is open
dense and even 0-dense, i.e., for every p £h there exists q £ D extending p

such that stem(q) = stem(p). The proof of this is similar to Laver's proof in

[La] that the set of Laver trees deciding a sentence in the language of forcing
with L is 0-dense: Suppose p £h has no O-extension whose branches are not

in X. Then inductively we can construct q £h extending p such that every
extension of q has a branch in X, contradicting X £ Io .

Using this it is straightforward to construct B as desired.

Fact 1.4. Suppose X ç <°co, A,B £ Q, B <*1, and (\/s)[ps(A~)] n X = 0.

Then (Vs)[ps(B)]nX = 0.

Proof of Fact 1.4. Clearly, if F ç. ps(B) is finite, then

[Ps(B)] = {J{[pt(B)]:t£Ps(B)\F}.

But for almost all t £ ps(B), p,(B) extends pt(A). So clearly [ps(B)] C [ps(A~)]

and hence [ps(B)]f)X = 0 .

End of the proof of Theorem 1.1(1). Suppose we are given (Xa : a < y) and

q £ L, where y < t and (Va)Xa £ Io . Choose A £ Q such that pstem(q)(A) = q ,

and let F0 be the B given by Fact 1.3 for A and X0. If (Ba : a < ß) is

constructed for ß < y and ß is a successor, then choose Bß as given by Fact

1.3 for A = Bß_x and X = Xß . If ß is a limit, then by Fact 1.2 choose first

A such that (Va < ß)A <* Ba and then find Bß ç A as given by Fact 1.3 for

A and X = Xß . Finally, if we have constructed By — (B¡ : s G <wco), define

B := (Bs : s £ <wco) by Bs := B¡ nSuccq(s) if s £ q extends stem(q), and

Bs := B¡ otherwise. It is easy to check that B £ Q, pstem(g)(B) extends q and

(Va < y)[Pstem(q)(B)] nxa = 0.
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Proof of Theorem 1.1(2). The proof is similar to (1). For the third inequality,
let (fa : a < 5) be a dominating family. Define

Xa := {/eV (V°°k)f(k) < fa(k)}.

Then \J{Xa : a < V} - mco and in an analogous way as in (1) it can be seen

that Xa £ m°.
In order to prove the first inequality we need the following concept from

[GoJoSp]. Let R be the set of all P = (Ps:s£ <wco) where each Ps ç <a>co is

infinite, t £ Ps implies set, and if t, t' £ Ps are distinct, then t(\s\) ^ t'(\s\).

Given F G F we can define (ps(P) '■ s £ <wco) as follows:' ps(P) is the unique

Miller tree with stem s such that if t £ Split(ps(P)), then Split ,j,(t) = Pt.

Define the following relations on R :

P<Q<*(Vs)ps(P)<ps(Q),

P « Q «- (Vs)Fs =• Qs A (W°°s)Ps = Qs,

P<*Q& (3P')P kP'aP'<Q.

Fact 1.5 [GoJoSp, 4.14]. Assume MAK(o-centered). If (Pa : a < tc)_is a <*-

decreasing sequence in R, then there exists Q£ R such that (Va < k)Q <* Pa .

The following two facts have proofs similar to those of Facts 1.3 and 1.4.

Fact 1.6. Suppose X £ m° and P £ R.    There exists Q < P such that

(Vs)[ps(Q)]nX = 0.

Fact 1.7. Suppose X £ m°,P,Q £ R,P <* Q, and (Vj)[p,(ß)] nX = 0.

Then (Vs)[ps(P)]nX = 0.

Now using, Facts 1.5, 1.6, 1.7 and the well-known result that for all k < p
AL4K(t7-centered) holds, a similar construction as in Theorem 1.1(1) shows that

p < add(m°).

2. ADD AND COV ARE DISTINCT

Definition 2.1. A set AC œco is called strongly dominating if and only if

(V/ G «co)(3r, £ A)Cy»k)f{ri(k - 1)) < n(k).

Definition 2.2. For any set A ç wco, we define the domination game D(A) as

follows:
There are two players, GOOD and BAD. GOOD plays first. The game lasts

co moves.

GOOD I BAD
s

«o
m0

"i
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The rules are: 5 is a sequence in <coco, and the «, and m, are natural numbers.

(Whoever breaks these rules first, loses immediately.)

The GOOD player wins if and only if:
(a) For all i, m¡ > n¡.

(b) The sequence s~mo~mx~ ■■■ is in A .

Lemma 2.3. Let A çœco be a Borel set. Then the following are equivalent:
(1) There exists a Laver tree p such that [p] ç A.

(2) A is strongly dominating.
(3) GOOD has a winning strategy in the game D(A).

Remark. Strongly dominating is not the same as dominating. For example, the

closed set
A:={n£ <°co: (Vk)n(2k) = n(2k + 1)}

is dominating but is not strongly dominating.

Proof of Lemma 2.3. We consider the following condition:
(4) (For all F:<cocoxco

(4)-

co)(3n £ A)Cy°°k)(Vi < k)n(k) >F(n\k, i)
(3)-(l).

We
will show (l)-+(2)-

(1) -> (2) is clear.
(2) -» (4) : Given F, define / by

f(m) := max{F(s, i) : i <m, s £ m-m+l} + m;

f is increasing, f(m)>m for all m.

Find n such that (V°°/c)//(rc) > f(n(k - 1)). Then n is increasing. For
almost all k we have, letting m := n(k -1): m> k - 1, so n \ k £ m-m+l,

so by the definition of / we get f(m) > F(n \ k, i) for any i < k. So

n(k)>f(n(k-l)>F(tj]k,i).
(4) -* (3) : Assume that GOOD has no winning strategy. Then BAD has a

winning strategy a (since the game D(A) is Borel, hence determined).

We can find a function F : <wco x co -► co such that for all s, mo,... , mk

we have

o(s,mo,... ,mk) = F(s~m0~■ • ~mk, \s\).

Find n £ A as in (4). So there is ko such that V/c > ko  n(k) > F(n \ k, ko).
So in the play

GOOD BAD

s := n Í ko

m0 := n(ko+ 1)

mx := n(ko + 2)

n0:=o(s) = F(n \ko,ko)

«i := o(s, mo) = F(n \(ko + l),ko)

player BAD followed the strategy o , but player GOOD won, a contradiction.

(3) —y (1) : Let B be the set of all sequences s~mo~mx~ ■ ■ ■  that can be
played when GOOD follows a specific winning strategy. Clearly B ç A, and

for some Laver tree p , B — [p].
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Lemma 2.4 [Ke]. Let ACwco be an analytic set. Then the following are equiv-
alent:

(1) There exists a Miller tree p such that [p] c A .
(2) A is unbounded in (aco,<*).

Lemma 2.5. ( 1 ) Suppose b = c. For every dense open D ç L there exists a
maximal antichain Ac D such that

(*) V<7 G h([q] C \J{[p] :P£A}^3A'£ [A]« Vp G A\Äp 1 q).

(2) The same is true for M.

Proof. Let L = {qa : a < c}. Inductively we will define a set 5 ç c and

sequences (x7 : y < c) and (py : y £ S). Finally we will let A = {py : y £ S} .

Let 0 £ S and choose Xo G [qo] arbitrarily.
It can easily be seen that every Laver tree contains c extensions such that

every two of them do not contain a common branch. So clearly we may find

Po £ D such that x0 i [po]-
Now suppose that (xy : y < a) and (py : y £ S n a) have been constructed

for a < c.

First choose xa £ [qa] arbitrarily, but such that, if [qa] £ \J{[Py] '■ y < ot},

then xa <£ \J{[py] :y <a} .

In order to decide whether a G S or not we distinguish the following two

cases:

Case 1. qa is compatible with some py, y < a. In this case a £ S.

Case 2. qa is incompatible with all py, y < a. Now we let a £ S, and we

define pa as follows:
By Lemma 2.3 for each y G a we may find fy : co —» co such that

(**) (V? € [py] n [qa])(3°°k)n(k) < fy(n(k - 1)).

By our assumption on b there exists a strictly increasing / which dominates
all the /y's. Now define p'a £ L as follows: stem(p'a) = stem(qa), and for

t £ p'a, if CD stem(p'a) and |r| =: n , we require

SuccpL(t) = Succqo(t) n [f(t(n - 1)), oo).

Clearly p'a £ L, p'a ç qa , and by (**) and our assumption on / we conclude

[Py] n [P'a] = 0 i°r every y < a.

By the remark above that every Laver tree contains c extensions such that

every two of them do not contain a common branch, we may find pa £ D such

that pa extends p'a and [pa] and {xy : y < a} are disjoint.

This finishes the construction. Now let A := {py : y g S} .

Since every qa is either compatible with some py, y < a (Case 1) or contains

the condition pa (Case 2), and for a ^ y with a, y £ S we have [pa] n[py] =

0, we conclude that A is a maximal antichain.

A also satisfies condition (*) : Let q = qa. By construction, if [qa] ç/

\J{\Py] ■ 7 e S n a} , then [qa] £ \J{[py] :y£S}.
The proof of (2) is analogous, but instead of Lemma 2.3 we use Lemma 2.4.

Lemma 2.6. Suppose b = c. Then add(/°) < k(L) and add(w°) < k(M) .
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Proof. We may assume k(L) < c. Let / be a L-name such that H-L "/ :

k(L) -y c is onto". For a < /c(L) let

Da := {p £ L : (3ß)p lhL /(a) = £}.

For p £ Da we write /?p = ßp(a) for the unique ß satisfying p lhL /(a) = ß .

Clearly Da is dense and open.   So we may choose a maximal antichain

Aa C Da as in Lemma 2.5. Let

Xa:=i0co\{J{[p]:p£Aa}.

Then Xa £ Io . We claim that X = Ua<K(L) Xa £ Io . Suppose on the contrary

X £ 1° . So we may find q £ L such that [q]nX = 0 and hence [q] ç \J{[p] :
p £ Aa} for each a. By the choice of Aa each of the sets

Ba '■- {ßP(a) :p £ Aa,p compatible with q}

is bounded in c. Since c is regular by our assumption b = c, we can find v < c

such that for all a <k(L) , BaCv. So easily conclude that

q Ir-L "ran(/) ç v < c".

This is a contradiction.

The proof for M is similar.

Theorem 2.7. /c(L) < b and k(M) < h.

Proof. We prove it only for L. The proof for M is very similar. We work in
V. Let (sfa : a < h) be a family of maximal almost disjoint families such that:

(1) if a < ß < c, then srfß refines sfa ;

(2) there exists no maximal almost disjoint family refining all the stfa ;

(3) \}{K :ot<b} is dense in ([co]03 ,c*).

That such a sequence exists was shown in [BaPeSi].

Since b, is regular, for every pel there exists a < b, such that for each

í G Split(p) there is A £ srfa with A ç* Succp(s). Hence, writing La for
the set of those p £ L for which a has the property just stated, we conclude

L = lJ{La : a < h} .
For each A £ stfa choose 3§A = {BA(p) : p £ L} , a maximal almost disjoint

family on A.
Now we will define L'a := {qa(p) : p £ La} such that qa(p) extends p for

every p £ha and px ^ p2 implies qa(px) ± qa(Pi) ■ For p £ La, qa(p) will

be defined as follows:

For each s £ Split(p) let C"(p) := Succp(s) n BA(p) where

A £ sfa is such that A C* Succp(s). So clearly Cf(p) is
infinite. Now qa(p) is the unique Laver tree < p satisfying

stem(qa(p)) = stem(p) and for each s G Split(qa(p)) we have

Succga{p)(s) = Q(p).

It is not difficult to see that h'a has the stated properties.

Now we are ready to define a L-name / such that IKl " / : bv —y cv is onto":

For each p £ La , let {r?(p) : £ < c} ç L be a maximal antichain below qa(p),

and define / in such a way that rg(p) lr-L "/(a) = Ç". As [){h'a : a < h} is

dense in L, it is easy to check that / is as desired.
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Theorem 2.8. Let co2 = SmÙSl , where the sets SM and Sh are disjoint and

stationary. Let (Pa, Qa : a < co2) be a countable support iteration of length co2

such that for all a we have \tpa Qa = M whenever a £ SM, and \\-Pa Qa = L

otherwise. Also suppose that V satisfies CH. Then in Vp,b = cox holds.

Proof. Both M and L have the property (*)i of [JuSh]. (For L, this was
proved in [JuSh] and for M this was proved in [BaJuSh].) [JuSh] also showed

that this property is preserved under countable support iterations, so also PW2

has this property. Hence, the reals of V do not have measure zero in Vp,

so from h < 5 < unif(£) (where s is the splitting number and unif(£) is

the smallest cardinality of a set of reals which is not null) we get the desired
conclusion.

Theorem 2.9. Let PW2 be as in Theorem 2.8. Then

Vp»i \=cox= add(/°) = add(w°) < cov(/°) = cov(w°) = co2.

Proof. Since L adds a dominating real, we have VPaï f= b = c ; so by Lemma

2.6 and Theorems 2.7 and 2.8 it suffices to prove that the covering coefficients

are co2 in the respective models. The proof of this is similar to the proof of

[JuMiSh, Theorem 1.2] that cov of the Marczewski ideal is co2 in the iterated

Sacks's forcing model.

We give the proof only for /° . Suppose (Xa : a < cox) £ Vp<°2 is a sequence

of /°-sets. In VPa2 let fa : L -» L be such that for every p £ L, fa(p)
extends p and [fa(p)] n Xa = 0. Since PW2 has the c¿j2-chain condition, by a

Löwenheim-Skolem argument it is possible to find y < co2 such that

(fa\Lv>:a<cox)£Vp>

where Vy := Vpy. Moreover, it is possible to find such a y in SL. We claim

that the Laver real xy (which is added by Qy = L^) is not in \Ja<0J Xa , which

will finish the proof. Otherwise, for some p £ hyi02 where hyWl := L0)2/Gy and

some a < cox we would have p + xy £ Xa. But letting q := p(y) £ L and

letting r(y) := fa(q) and r(ß) := p(ß) for ß > y we see that r\\- xy <£ Xa, a

contradiction.
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