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A GENERALIZATION OF OUTER PARALLEL SETS
OF A CONVEX SET

J. R. SANGWINE-YAGER

(Communicated by Christopher Croke)

Abstract. An outer parallel set is formed by adding outer normals of fixed

length to the boundary points of a convex set. In this paper the length of the

outer normals varies as a function of the direction. This construction yields a

geometric interpretation of the dual quermassintegrals of Lutwak and bounds

on certain mixed volumes. An inequality of Firey will follow from one of the

mixed volume bounds.

1. Introduction

Let K be a convex set with nonempty interior in (/-dimensional Euclidean

space Ed. The unit ball centered at the origin will be denoted by B, and
Sd~x is the unit sphere. The outer parallel set of K at distance t > 0 is

Kt = {k + tb\k e K and b e B). These sets may be used to define the
quermassintegrals W¡■, i = 0, ... , d, from the classical Steiner's formula

(1) K(*0 = ¿ (^W(tf).
¿=o w

Here V = W0 is ¿-dimensional volume, dW\ is (d - 1 )-dimensional surface

area, and Wd is constant and equal to V(B). The outer parallel set at distance
t may also be constructed by adding to each boundary point of K vectors of

length t which are outer normals to the boundary of K at that point. It is this

view of the outer parallel sets which we will generalize.

Let / be a nonnegative measurable function on Sd~x for which the integrals

in (2) are finite. At each boundary point of K at which u is an outer normal

add 6f(u)u, 0 < 8 < t, t > 0. The resultant (probably nonconvex) set will be

called a generalized outer parallel set of K at distance t denoted by Ktf{u) • It

follows from a result of Weil [10] that

(2) v(Ktm) = V(K) + ̂ Y,(äi)t'lsä    /(«)'<«*-/(*,«),
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where the 5, are the area measures. We will use (2) to obtain a geometric
interpretation of the dual mixed volumes of Lutwak [4] and to obtain bounds

on certain mixed volumes of convex sets. One of these bounds will lead to an

inequality of Firey [2].

2. Preliminaries

The scalar product in Ed is represented by (•, •), its induced norm by || • ||,

and " + " is Minkowski or vector addition. The boundary of a convex set K
is denoted by bdK. The support function is a real-valued function on Ed

defined by h(K, x) = max{(x, y) : y e K) . For all convex sets K and L,

positive scalars s and t, and x e Ed , h(sK + tL, x) = sh(K, x) + th(L, x).

The radial function is a real-valued function on Sd~x defined for a convex set K

with the origin in its interior by p(K, u) = max{A > 0 : Xu e K} . For all convex

sets K and L with the origin in their interiors, positive scalars s and t, and
u e Sd~x, p(sK, u) = sp(K, u) and p(sK + tL,u) > sp(K, u) + tp(L, u).
The polar dual of a convex set K with the origin in its interior is defined by

K* = {xeEd :(x,y)<l, forah> eK}.

The only properties of the polar dual which will be needed in this work are

(3) h(K*, u) = p(K, u)-x    and    p(K*, u) = h(K, u)~x.

The mixed volume of d convex sets in Ed is defined within a theorem of

Minkowski which generalizes the Steiner formula (1). The theorem states that

the volume of the linear combination /- Kx H-\-tmKm, where K\,..., Km are

convex sets and tx, ... ,tm are positive scalars, is a dth degree homogeneous

polynomial in t\,... ,tm, that is,

(m \ m m

£ UKi    = £ • • • E ^ • • • í.„ V(Kh ,..., Kid).
1=1 / ¿1 = 1 iä=l

The coefficients are chosen to be invariant under permutations of their argu-
ments and are called the mixed volumes. The mixed volumes and quermassin-

tegrals are related by the identity

(5) V(K,...,K,B,...,B) = Wd_i(K),        i=l,...,d.

i d-i

The name quermassintegral comes from the property that Wd_i(K), 1 < / <
d - 1, is proportional to the mean value of the /-dimensional volumes of the

projections of K onto /-dimensional subspaces (see [1, p. 139]).
An excellent treatment of area measures may be found in [7, §4.2]. Here we

present some necessary definitions. For any point x e Ed the unique point of

K nearest to x is denoted by p(K, x). If x $ K, then p(K, x) e bdK and

x -p(K, x) is an outer normal to bdK at p(K, x). For each Borel subset to

of Sd~x we define the brush set of K at a distance / > 0 by

Bt(K, co) = {* : 0 < \\x-p(K, x)\\ < fand..^"^^ e «} .

Each brush set is a Borel set and its Lebesgue measure Vt(K, co) is a polynomial

in t of degree at most d whose constant term is zero. This polynomial is used
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to define the area measures as follows:

Vt(K,co) = ±Yj(d\td-iSi(K,co).
i=0 ^   '

This formula may be viewed as a local version of the Steiner formula (1). If K

and L are convex sets in Ed with the origin in the interior of L, the following
identities are required below:

(6) V(L) = -\\     p(L,u)ddS0(B,u),
a Js<t-i

where we note that S0(K, •) = S0(B, •), and

(7) V(K,...,K,L) = U     h(L,p)dSd-x(K,u).
a jSd-\

We now give our defintion of generalized outer parallel sets: If K is a convex

set in Ed , t > 0, f is a nonnegative measurable function on Sd~x for which

the integrals in (2) are finite, and P = {u e Sd~x : f(u) > 0}, then

Ktm=Kö\jBtm(K,{«}).
u€P

It is evident from simple examples that the generalized outer parallel sets may

not be convex. Although it is often the case that the Minkowski sum of two

convex sets is not homothetic to a generalized outer parallel set of either, the

next lemma provides useful relations. We note that there are other methods of
generalizing outer parallel sets; for example, see [7, §6.5].

Lemma. If K and L are convex sets in Ed with the origin in the interior of L

and t > 0, then

Ktp{L,u) C K + tLC Kth(L¡uy

Proof. It suffices to let t = 1 . The first inclusion follows directly from the fact

that p(L, u)u e L for all u e Sd~x. For the second inclusion let x = k + l,

for any k e K and I e L. If x e K, we are done. If not, p = p(K, x) is a
boundary point of K and u = (x -p)/\\x —p\\ is an outer normal to K at p .
We must show that \\x -p\\ < h(L, u). Since (k, u) < (p, u), we have

\\x -p\\ = (x - p ,u) = (l,u) + (k-p,u) <(l ,u) < h(L, u).

In the parallel set K,f(„) all outer normals to K in the direction u are extended

the same distance. An alternate construction is to extend all outer normals
at a given boundary point of K the same distance. If / is a nonnegative

measurable function on bdA^ for which the integrals in (8) are finite, / > 0,

and P = {p e bdK : f(p) > 0}, then let

Ktfip) = Ku\J{x:0<\\x-p(K,x)\\<tf(p)andp(K,x)=p}.
pep

In the result analogous to (2) (see (8)) the integration is with respect to Federer's

curvature measures.
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3. Proof of (2) and applications

Equation (2) follows from a more general result proved by Weil [10, p. 99];

this result first appears in Weil [9, (4.7)]. In the notation of the latter citation

we have

/ g(s[K,Eq],u[K,Eq])dpq(Eq)
JKnEq=0

d-q-l    .»a    r

= (d-q)a(d-q)  T   /     /      sd-"-j-xg(s, u)dSj(K, u)ds,
j^o  •'0   Jsd~l

where Eq is an element of the homogeneous space of g-flats in Ed with

invariant measure pq, q = 0,... ,d — 1; g is a measurable function on

(0, oo) x Sd~x for which the integrals above are finite; s[K, Eq] is the shortest

distance from K to the ¿¡r-flat and u[K, Eq] e Sd-x is the direction in which

that distance is realized; and a(d - q) is the volume of the (d - <?)-dimensional

unit ball. To verify (2), let / be the given function and let q = 0. Notice

that if x = Eq, then s[K, E0] = \\x -p(K, x)\\ and u[K, E0] is parallel to
x - p(K, x). The result will follow if we define g to be an indicator function,

that is, g(s, u) = 1 if s < f(u) and 0 otherwise.

We have a result analogous to (2) when / is a function defined on bdK ; this

follows from Weil [9, (6.3)]. If K is a convex set in Ed and / is a nonnegative

measurable function on bd K for which the integrals below are finite, then

(8) V(Ktf(p)) = V(K) + ¿ E (f ) Í* j k f(P)' dCd-AK, p).

The C¡ are Federer's curvature measures, and they are also discussed in [7].
As an application of (8), let f(p) = r(K, p) be the interior reach at p e bdK

where
r(K, p) = sup{A : p e x + XB c ÄTforsomcx € Ed}.

The generalized outer parallel set of K at distance r(K, p) may be viewed

as the set K "turned inside out". In Sangwine-Yager [6] the author obtains a

representation of V(K) as an alternating sum of the integrals in (8).

Theorem. If K and L are convex sets in Ed and the origin is in the interior of

L, then

p(L,u)d~xdSx(K,u)< V(K,L,...,L)1/
d JSd-<

and

V(K,... ,K,L,L)<\I     h(L, u)2dSd.2(K,u).
a Js<i-i

Proof. It follows from the lemma and the monotonicity of volume that

V(Ktp{L>u)) < V(K + tL)    and    V(K + tL) < V(Kth(L,u)).

By (2) or (4), as appropriate, each of the volumes above may be represented

as a polynomial of degree d in t with constant term V(K). In the left-hand

inequality (6) implies that the coefficients of td are equal, and in the right-hand

inequality (7) implies that the coefficients of / are equal. Thus the order of the
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polynomials may be reduced to d - 2. Any inequality for polynomials of the

same order results in inequalities between the coefficients of the lowest- and

highest-order terms. In the theorem we give only two inequalities because, in
both the left- and right-hand cases, the other inequality is well known. They are

\l     p(L,u)dSd-x(K,u)<V(K,...,K,L)
a JSd-\

and

V(L)< i /     h(L,u)ddS0(K,u)
a Jsd-i

and follow from p(L, u) < h(L, u) and (7) and (6), respectively.

Lutwak [4] defines the dual mixed volume to be

V(Kx,...,Kd) = ^ [     p(Kx,u)---p(Kd,u)dS0(B,u),
a Jsä-\

and the dual quermassintegrals are

Wd_i(K) = V(K,...,K, B,...,B),        i=l,...,d.

i d-i

The dual mixed volumes share many properties with classical mixed volumes;
for example, there are analogues to (1) and (4) where vector addition is replaced

with radial addition. See [5] and [1, pp. 158-159] for further properties. In the
theory of dual mixed volumes the integration is always with respect to S0(B, •).

To use (2) to obtain a geometric interpretation of the dual quermassintegrals,

first note that in a variation of (1) the classical quermassintegrals are the co-
efficients of the volume polynomial for the outer parallel sets B + tK. If we
let K = B and f(u) = p(K, u) in (2), then the dual quermassintegrals are the

corresponding coefficients of the volume polynomial for the generalized outer

parallel sets Bip^KtU). Unfortunately it does not seem possible to extend this
interpretation to the dual mixed volumes.

An inequality of Lutwak [4] states that V(K{, ... ,Kd) < V(KX, ... ,Kd).
In the case K\ = • • • = A¿_i = L and Kd = K ^ B, neither Lutwak's inequality
nor the first inequality of the theorem provide a universally stronger lower bound

for the mixed volume. For example, if d = 2 and K = L, then equality holds in

Lutwak's inequality but not in general in the theorem. The situation is reversed

if d = 2 and L = B.
Finally, if AT is a convex set with the origin as an interior point and we apply

(3) to the theorem for L = K*, then

(9) \ [     h(K,u)x-ddSx(K,u)<V(K,K*,...,K*)

and

V(K,...,K,K*,K*)<^ [     p(K, u)-2 dSd-2(K, u).
a JSd-\

When Jensen's inequality and (5) are applied to (9) we have

(10) Wd_x(K)d < Wd_2(K)d~xV(K, K*,..., JT).

This result for d = 2 and i = 1 may be combined with the isoperimetric
inequality in the plane, nV(K) < V(K, B)2, to yield

7t< V(K,K*),
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which is a well-known inequality due to Steinhardt [8] and Firey [2]. We also

note that for d = 2, (10) is a special case of an inequality of Ghandehari [3,

(25)].
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