ON HILBERT SPACES WITH UNITAL MULTIPLICATION

BORUT ZALAR

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We give a new simplified proof of two theorems of Froelich, Ingelstam, and Smiley. Our approach enables us also to generalize both of them. In the second section we prove a related theorem which requires different methods for its proof.

0. Introduction

The study of strictly cyclic operator algebras due to John Froelich pointed out associative Hilbert algebras with identity 1 satisfying $|xy| \le |x||y|$ and |1| = 1 where $|x| = \sqrt{\langle x, x \rangle}$ is a norm derived from the inner product. These algebras were already studied by Ingelstam in [2] who used the analysis of the so called vertex property for Banach algebras. He proved that such algebras are necessarily division algebras.

A simpler proof was given by Smiley in [3] and his proof was in turn greatly simplified by Froelich in his recent paper [1] which is a base point for our investigation. Our paper has three goals:

- (i) Froelich used in his proof Gelfand theory and the Riesz representation theorem. As we show even those can be avoided in order to obtain probably the simplest possible proof.
- (ii) We shall replace original assumption $|xy| \le |x||y|$ by a weaker one $|x^2| \le |x|^2$.
- (iii) In some of our results we can avoid the assumption of associativity. Let \mathbb{R} , \mathbb{C} , \mathbb{H} , and \mathbb{D} denote real numbers, complex numbers, quaternions, and octonions, respectively.

1. Generalizations of Froelich-Ingelstam-Smiley theorems

Proposition 1. Let \mathscr{A} be a real nonassociative pre-Hilbert algebra with identity 1, and suppose that $|a^2| \leq |a|^2$ holds for all $a \in \mathscr{A}$ and |1| = 1. Then for every nonzero $a \in \mathscr{A}$ there exists $a^* \in \mathscr{A}$ such that $aa^* = a^*a = 1$.

Received by the editors June 9, 1993 and, in revised form, August 24, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46K15; Secondary 46H70.

Key words and phrases. Hilbert space, Hilbert algebra, absolute valued algebra, division algebra, topological zero divisor.

Proof. Suppose that we have $x \in \{1\}^{\perp}$ with |x| = 1. For each $\lambda \in \mathbb{R}$ we have

$$|(\lambda + x)^2|^2 = |\lambda^2 + 2\lambda x + x^2|^2 \le |\lambda + x|^4$$

and so

$$2\lambda^2(1+\langle 1, x^2\rangle) + 4\lambda\langle x, x^2\rangle + |x^2|^2 - 1 \le 0.$$

This is possible for all real λ only if $1 + \langle 1, x^2 \rangle \leq 0$. On the other hand

$$|\langle 1, x^2 \rangle| \le |1||x^2| \le |x|^2 = 1$$

and so $x^2 = -1$ follows. If $x \in \{1\}^{\perp}$ is arbitrary, then $x^2 = -|x|^2$ follows. Note that this trivially holds for x = 0 as well.

Given a nonzero $a \in \mathcal{A}$ we may decompose $a = \lambda + x$ where $\lambda \in \mathbb{R}$ and $x \in \{1\}^{\perp}$. Since $a \neq 0$, we have $\lambda^2 + |x|^2 = |a|^2 \neq 0$ and so we may define $a^* = \frac{1}{\lambda^2 + |x|^2} (\lambda - x)$. Using the above paragraph, we can easily compute $aa^* = a^*a = 1$.

If we use Proposition 1 and the well-known fact that every associative division normed algebra is isomorphic to \mathbb{R} , \mathbb{C} , or \mathbb{H} , we obtain

Corollary 1 (the first Froelich-Ingelstam-Smiley theorem). Let \mathscr{A} be a real associative pre-Hilbert algebra with identity 1, and suppose that $|ab| \le |a||b|$ holds for all $a, b \in \mathscr{A}$ and |1| = 1. Then \mathscr{A} is isomorphic to \mathbb{R} , \mathbb{C} , or \mathbb{H} .

However if we base our proof on the concept of the absolute valued algebra rather than on division normed algebras, then the closer inspection of the proof of Proposition 1 gives us the following generalization of Corollary 1:

Theorem 1. Let \mathscr{A} be alternative real pre-Hilbert algebra with identity 1. Suppose that $|a^2| \leq |a|^2$ holds for all $a \in \mathscr{A}$ and |1| = 1. Then \mathscr{A} is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} , or \mathbb{D} .

Proof. Let us recall first that algebra is called alternative if $a^2b=a(ab)$ and $ba^2=(ba)a$ for all a, $b\in \mathscr{A}$. Every associative algebra is obviously alternative while $\mathbb D$ is alternative but not associative.

Next we recall from the proof of Proposition 1 that for each $x \in \{1\}^{\perp}$ the equality $x^2 = -|x|^2$ holds. This implies that $|a^2| = |a|^2$ in fact holds for all $a \in \mathscr{A}$ since, if we decompose $a = \lambda + x$,

$$|a^2| = |\lambda^2 + 2\lambda x - |x|^2| = \sqrt{(\lambda^2 - |x|^2)^2 + 4\lambda^2 |x|^2} = \lambda^2 + |x|^2 = |a|^2.$$

In our first step we shall assume that 1, x, y are pairwise orthogonal. Then

$$(x + y)^2 = -|x + y|^2 = -|x|^2 - |y|^2 = x^2 + y^2$$

implies xy = -yx. This further implies, together with the Moufang identity $xy \cdot yx = x \cdot y^2 \cdot x$ which is valid in every alternative algebra,

$$|xy|^2 = |(xy)^2| = |xy \cdot xy| = |xy \cdot yx| = |xy^2x| = |x|^2|y|^2.$$

In our second step we shall take x, y both orthogonal to 1. In the same way as in the above paragraph we can verify $xy+yx=-2\langle x\,,\,y\rangle$. Decompose $xy=\langle 1\,,\,xy\rangle+z$ and $yx=\langle 1\,,\,yx\rangle+z_1$. Since $xy+yx\in\mathbb{R}$ 1 and $z+z_1\in\{1\}^\perp$, we have $z_1=-z$. From $x(xy)=x^2y=-|x|^2y$ we obtain $\langle 1\,,\,xy\rangle x+xz=-|x|^2y$. From $\langle yx\rangle x=yx^2=-|x|^2y$ we obtain

$$\langle 1, yx \rangle x - zx = -|x|^2 y = \langle 1, xy \rangle x + xz.$$

But $xz+zx=-2\langle x\,,\,z\rangle\in\mathbb{R}$ 1 while $x\in\{1\}^{\perp}$, so we have $\langle 1\,,\,xy\rangle=\langle 1\,,\,yx\rangle$ and $\langle z\,,\,x\rangle=0$. Therefore

$$(1) \langle 1, xy \rangle = \langle 1, yx \rangle = -\langle x, y \rangle,$$

$$\langle xy, x \rangle = \langle yx, x \rangle = 0$$

if $x, y \in \{1\}^{\perp}$. Now we shall prove that |xy| = |x||y|. If x = 0, then the result is trivial. Otherwise define

$$y_1 = \frac{-\langle x, y \rangle}{|x|^2} x + y$$

so that x is orthogonal to y_1 . According to the above paragraph, we have $|xy_1| = |x||y_1|$. Thus

$$|\langle x, y \rangle + xy|^2 = |x|^2(|y|^2 - \frac{\langle x, y \rangle^2}{|x|^2}) = |x|^2|y|^2 - \langle x, y \rangle^2.$$

According to (1), we have

$$|\langle x, y \rangle + xy|^2 = \langle x, y \rangle^2 + 2\langle x, y \rangle \langle 1, xy \rangle + |xy|^2 = |xy|^2 - \langle x, y \rangle^2$$

and finally |xy| = |x||y|.

In our last step we take any a, $b \in \mathscr{A}$ and decompose $a = \lambda + x$, $b = \mu + y$. Then

$$|a|^{2}|b|^{2} - |ab|^{2} = \lambda^{2}\mu^{2} + \lambda^{2}|y|^{2} + \mu^{2}|x|^{2}$$

$$+ |x|^{2}|y|^{2} - \lambda^{2}\mu^{2} - \lambda^{2}|y|^{2} - \mu^{2}|x|^{2} - |xy|^{2}$$

$$- 2\lambda\mu(\langle 1, xy \rangle + \langle x, y \rangle) - 2\lambda\langle y, xy \rangle - 2\mu\langle x, xy \rangle,$$

so, by (1) and (2), it follows that |ab| = |a||b|. Thus $\mathscr A$ is an absolute valued algebra with identity and consequently isomorphic to $\mathbb R$, $\mathbb C$, $\mathbb H$, or $\mathbb D$.

Theorem 2 (generalization of the second Froelich-Ingelstam-Smiley theorem). Let \mathscr{A} be a nonassociative complex pre-Hilbert algebra with identity 1, and suppose that $|a^2| \le |a|^2$ holds for all $a \in \mathscr{A}$ and |1| = 1. Then \mathscr{A} is isomorphic to \mathbb{C} and is consequently automatically associative.

Proof. If $\mathscr A$ were not isomorphic to $\mathbb C$, then it would be at least two-dimensional over $\mathbb C$ and so there would exist some $x \in \{1\}^\perp$ with |x| = 1. If we define a real inner product on $\mathscr A$ by $\langle a,b\rangle_1 = \operatorname{Re}\langle a,b\rangle$, then $\mathscr A$ with this new inner product satisfies the assumptions of Proposition 1. Moreover x and ix are both orthogonal to 1 and so $x^2 = (ix)^2 = -1$ should hold which is clearly impossible.

We shall finish this section with an example which throws some light on the nonassociative case.

Example 1. Let \mathscr{H} be a Hilbert space with dimension greater than one, and define the multiplication in $\mathscr{A} = \mathbb{R} \oplus \mathscr{H}$ by

$$(\alpha \oplus x)(\beta \oplus y) = (\alpha \beta - \langle x, y \rangle) \oplus (\alpha y + \beta x)$$

and the inner product by

$$\langle (\alpha \oplus x), (\beta \oplus y) \rangle = \alpha \beta + \langle x, y \rangle.$$

1500 BORUT ZALAR

Then \mathscr{A} satisfies $|ab| \le |a||b|$ and |1| = 1. However \mathscr{A} contains divisors of zero, and therefore the existence of a^* which satisfies $aa^* = a^*a = 1$ (see Proposition 1) is not a sufficiently restrictive condition in the general nonassociative case. We do not see an easy way to describe all nonassociative algebras satisfying the assumptions of Proposition 1. Note that Example 1 is well known in the theory of Jordan algebras.

2. Algebras satisfying
$$|x^2| = |x|^2$$

It is obvious that we cannot drop the existence of an identity element in the Froelich-Ingelstam-Smiley theorems. We can in fact produce a very trivial example. If $\mathscr A$ is any pre-Hilbert space and we define ab=0 for all a, $b\in\mathscr A$, then $\mathscr A$ is associative, $|ab|\leq |a||b|$, but $\mathscr A$ is not isomorphic to one of the algebras from these theorems. It is the purpose of this section to prove that if we change the inequality $|x^2|\leq |x|^2$ to the strict equality, then the existence of identity can be dropped.

Theorem 3. Let \mathscr{A} be a real associative pre-Hilbert algebra satisfying $|a^2| = |a|^2$ for all $a \in \mathscr{A}$. Then \mathscr{A} is isomorphic to \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Proof. First we shall assume that $\mathscr A$ is commutative. Then

$$|\langle a, b \rangle| \le |ab| \le |a||b|$$

holds for all $a, b \in \mathcal{A}$ and consequently \mathcal{A} is a normed algebra. In fact

$$|a+b|^2 = |(a+b)^2| = |a^2+b^2+2ab|$$

$$\leq |a^2| + |b^2| + |2ab| = |a|^2 + |b|^2 + 2|ab|$$

implies $\langle a, b \rangle \le |ab|$. If we replace a by -a, we get $|\langle a, b \rangle| \le |ab|$. Now assume for a moment that |a| = |b| = 1. Then

$$4|ab| = |(a+b)^2 - (a-b)^2|$$

$$\leq |(a+b)^2| + |(a-b)^2| = |a+b|^2 + |a-b|^2 = 4$$

and so $|ab| \le 1$. In the general case we can reason as follows:

If a=0 or b=0, then $|ab| \le |a||b|$ is obvious. Otherwise $|\frac{a}{|a|} \cdot \frac{b}{|b|}| \le 1$ and so (3) follows.

Now we shall use the well-known fact that a commutative associative real normed algebra without topological zero divisors is isomorphic to $\mathbb R$ or $\mathbb C$. Our next goal is therefore to prove that the algebra under consideration does not have any topological zero divisors.

Suppose that |a| = 1, $|x_n| = 1$, and $ax_n \to 0$. By (3) we have

$$|\langle a, x_n \rangle| \leq |ax_n| \to 0.$$

Since \mathscr{A} is associative,

$$|\langle a^2, x_n^2 \rangle| \le |a^2 x_n^2| = |(ax_n)^2| = |ax_n|^2 \to 0.$$

If we compute $|a + x_n|$ in a direct way, we obtain

$$|a + x_n|^4 = (2 + 2\langle a, x_n \rangle)^2 \to 4.$$

If we use the square multiplicativity of the norm, we obtain

$$|a + x_n|^4 = |(a + x_n)^2|^2 = |a^2 + 2ax_n + x_n^2|^2$$

= $|a^2|^2 + 4|ax_n|^2 + |x_n^2|^2 + 4\langle a^2, ax_n \rangle + 4\langle ax_n, x_n^2 \rangle + 2\langle a^2, x_n^2 \rangle$.

Since

$$|a^{2}|^{2} = |a|^{4} = 1$$
, $|x_{n}^{2}|^{2} = 1$,
 $|\langle a^{2}, ax_{n} \rangle| \le |a^{2}||ax_{n}| = |ax_{n}| \to 0$,
 $|\langle ax_{n}, x_{n}^{2} \rangle| \le |ax_{n}||x_{n}^{2}| = |ax_{n}| \to 0$,

we have (note that $\langle a^2, x_n^2 \rangle \to 0$ was already established) that $|a + x_n|^4 \to 2$ which contradicts the previously obtained fact.

Now that we proved the result for the commutative case, we can handle the noncommutative one by means of localization. Take some nonzero $b \in \mathcal{A}$. A subalgebra $\operatorname{Gen}(b)$, generated by b, is commutative and so it is isomorphic to \mathbb{R} or \mathbb{C} . Note that it is trivial that this subalgebra also satisfies the assumptions of our theorem. In particular this subalgebra contains the identity element which we denote by e. Then e is of course an idempotent of \mathcal{A} . According to Theorem 1 it remains to prove that e is the identity of \mathcal{A} .

Given an arbitrary $a \in \mathcal{A}$ we have e(a - ea) = 0 and (a - ae)e = 0. Since $e \neq 0$, it remains to prove that \mathcal{A} cannot contain any zero divisors. If xy = 0 with |x| = |y| = 1, then $|yx|^2 = |(yx)^2| = |yxyx| = 0$ and so yx = 0. Thus

$$|x + y|^2 = |(x + y)^2| = |x^2 + y^2| = |x - y|^2$$

implies $|x + y|^2 = 2$. Next we have

$$4 = |x + y|^4 = |x^2 + y^2|^2 = |x^2|^2 + |y^2|^2 + 2\langle x^2, y^2 \rangle$$

= $|x|^4 + |y|^4 + 2\langle x^2, y^2 \rangle = 2 + 2\langle x^2, y^2 \rangle$

and so $\langle x^2, y^2 \rangle = 1$ implies $x^2 = y^2$. But then

$$1 = |x|^4 = |x^2|^2 = |x^4| = |x^2y^2| = 0$$

is a contradiction.

ACKNOWLEDGMENT

The author wishes to express his gratitude to Professor Angel Rodriguez for his helpful comments.

REFERENCES

- 1. J. Froelich, Unital multiplications on a Hilbert space, Proc. Amer. Math. Soc. 117 (1993), 757-759.
- 2. L. Ingelstam, A vertex property for algebras with identity, Math. Scand. 11 (1962), 22-32.
- 3. M. F. Smiley, Real Hilbert algebras with identity, Proc. Amer. Math. Soc. 16 (1965), 440-441.

University of Ljubljana, Institute of Mathematics, Jadranska 19, 61000 Ljubljana, Slovenija

Current address: Faculty of Civil Engineering, Department of Basic Sciences, University of Maribor, Smetanova 17, 62000 Maribor, Slovenija

E-mail address: borut.zalar@uni-lj.si