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Abstract. We give a new simplified proof of two theorems of Froelich, Ingel-

stam, and Smiley. Our approach enables us also to generalize both of them. In

the second section we prove a related theorem which requires different methods

for its proof.

0. Introduction

The study of strictly cyclic operator algebras due to John Froelich pointed

out associative Hubert algebras with identity 1 satisfying |xy| < |x||t>| and

|1| = 1 where |x| = y/(x, x) is a norm derived from the inner product. These

algebras were already studied by Ingelstam in [2] who used the analysis of the
so called vertex property for Banach algebras. He proved that such algebras are

necessarily division algebras.
A simpler proof was given by Smiley in [3] and his proof was in turn greatly

simplified by Froelich in his recent paper [1] which is a base point for our

investigation. Our paper has three goals:
(i) Froelich used in his proof Gelfand theory and the Riesz representation

theorem. As we show even those can be avoided in order to obtain probably

the simplest possible proof.
(ii) We shall replace original assumption |xy| < |x||y| by a weaker one |x2| <

|jc|2.

(iii) In some of our results we can avoid the assumption of associativity.

Let R , C , H , and D denote real numbers, complex numbers, quaternions,

and octonions, respectively.

1. Generalizations of Froelich-Ingelstam-Smiley theorems

Proposition 1. Let si be a real nonassociative pre-Hilbert algebra with identity

1, and suppose that \a2\ < \a\2 holds for all a£si and |1| = 1. Then for every
nonzero a £ si there exists a* e si such that aa* - a*a = 1.
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Proof. Suppose that we have x £ {1}X with \x\ = 1. For each X £ R we

have

\(X + x)2\2 = \X2 + 2Xx + x2\2 <\X + x\4

and so

2X2( 1 + ( 1, x2)) + AX(x, x2) + \x2\2 - 1 < 0.

This is possible for all real X only if 1 + (1, x2) < 0. On the other hand

|(l,x2)|<|l||x2| <|x|2= 1

and so x2 = -1 follows. If x £ {1}X is arbitrary, then x2 = -\x\2 follows.
Note that this trivially holds for x = 0 as well.

Given a nonzero a £ si we may decompose a = X + x where X £ R

and x £ {I}-1.  Since a / 0, we have X2 + \x\2 = \a\2 ^ 0 and so we may

define a* = Xi\xn (X - x). Using the above paragraph, we can easily compute

aa* = a* a = 1.

If we use Proposition 1 and the well-known fact that every associative division

normed algebra is isomorphic to R , C , or H , we obtain

Corollary 1 (the first Froelich-Ingelstam-Smiley theorem). Let si be a real as-

sociative pre-Hilbert algebra with identity 1, and suppose that \ab\ < \a\\b\ holds
for all a, b £ si and 111 = 1. Then si is isomorphic to R , C , or H .

However if we base our proof on the concept of the absolute valued algebra

rather than on division normed algebras, then the closer inspection of the proof
of Proposition 1 gives us the following generalization of Corollary 1:

Theorem 1. Let si be alternative real pre-Hilbert algebra with identity 1. Sup-

pose that \a2\ < \a\2 holds for all a £ si and |1| = 1. Then si is isomorphic
to R , C , H , or D .

Proof. Let us recall first that algebra is called alternative if a2b = a(ab) and

ba2 = (ba)a for all a, b £ si . Every associative algebra is obviously alternative

while D is alternative but not associative.

Next we recall from the proof of Proposition 1 that for each x £ {I}-1 the

equality x2 = -\x\2 holds. This implies that |a2| = |a|2 in fact holds for all
a £si since, if we decompose a = X + x,

|a2| = \X2 + 2Xx - \x\2\ = yJ(X2-\x\2)2 + AX2\x\2 = X2 + \x\2 = |a|2.

In our first step we shall assume that 1, x, y are pairwise orthogonal. Then

(x + y)2 = -|x+y|2 = -|x|2- \y\2 = x2 +y2

implies xy = —yx. This further implies, together with the Moufang identity

xy • yx = x • y2 • x which is valid in every alternative algebra,

\xy\2 = \(xy)2\ = l-*^ 'xy\ = \xy -yx\ = \xy2x\ = |-x|2|j>|2.

In our second step we shall take x, y both orthogonal to 1. In the same way

as in the above paragraph we can verify xy+yx = -2(x, y). Decompose xy —

(I, xy) + z and yx - (I, yx) + zx . Since xy + yx £ R 1 and z + zx £ {l}-1,

we have z\ = -z. From x(xy) = x2y = -|x|2y we obtain (1, xy)x + xz =

-|x|2>>. From (yx)x = yx2 = -|x|2y we obtain

(1, yx)x - zx = -\x\2y - (I, xy)x + xz.
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But xz + zx = -2(x, z) £ R 1 while x £ {1}X , so we have (1, xy) = (1, yx)

and (z, x) = 0. Therefore

(1) (l,xy) = (l,yx) = -(x,y),

(2) (xy ,x) = (yx,x) = 0

if x, y £ {I}1-. Now we shall prove that \xy\ = \x\\y\. If x = 0, then the
result is trivial. Otherwise define

-(*> y)
vi =     ó  x + y

so that x is orthogonal to yx.  According to the above paragraph, we have

\xyi\ = \x\\yx\. Thus

\(x, y) +xy\2 = \x\2(\y\2 - ^^) = |x|2|y|2 - (x,y)2.

According to (1), we have

\(x, y) + xy\2 = (x, y)2 + 2(x ,y)(l, xy) + \xy\2 = \xy\2 - (x, y)2

and finally \xy\ = \x\\y\.
In our last step we take any a, b £si and decompose a = X + x, b = p+y .

Then

|a|2|è|2 - \ab\2 = X2p2 + X2\y\2 + p2\x\2

+ \x\2\y\2 - X2p2 - X2\y\2 - p2\x\2 - \xy\2

- 2Xp((l, xy) + (x, y)) - 2X(y, xy) - 2p(x, xy),

so, by (1) and (2), it follows that \ab\ = \a\\b\. Thus si is an absolute valued
algebra with identity and consequently isomorphic to I , C , H , or D .

Theorem 2 (generalization of the second Froelich-Ingelstam-Smiley theorem).

Let si be a nonassociative complex pre-Hilbert algebra with identity I, and
supposethat \a2\ < |a|2 holds for all a £ si and |1| = 1. Then si is isomorphic

to C and is consequently automatically associative.

Proof. If si were not isomorphic to C , then it would be at least two-dimen-

sional over C and so there would exist some x £ {1}X with \x\ = 1. If we

define a real inner product on si by (a, b)x = Re(<z, b), then si with this

new inner product satisfies the assumptions of Proposition 1. Moreover x and

ix are both orthogonal to 1 and so x2 = (ix)2 = -1 should hold which is

clearly impossible.

We shall finish this section with an example which throws some light on the

nonassociative case.

Example 1. Let %* be a Hilbert space with dimension greater than one, and

define the multiplication in si = R  © 3? by

(a © x)(ß ®y) = (aß - (x, y)) © (ay + ßx)

and the inner product by

((a®x), (fi®y))=afi + (x,y).



1500 BORUT ZALAR

Then si satisfies |a¿>| < \a\\b\ and |1| = 1 . However si contains divisors

of zero, and therefore the existence of a* which satisfies aa* - a*a = 1 (see

Proposition 1) is not a sufficiently restrictive condition in the general nonasso-
ciative case. We do not see an easy way to describe all nonassociative algebras
satisfying the assumptions of Proposition 1. Note that Example 1 is well known

in the theory of Jordan algebras.

2. Algebras satisfying |x2| = |x|2

It is obvious that we cannot drop the existence of an identity element in

the Froelich-Ingelstam-Smiley theorems. We can in fact produce a very trivial

example. If si is any pre-Hilbert space and we define ab — 0 for all a, b £si ,

then si is associative, \ab\ < \a\\b\, but si is not isomorphic to one of the
algebras from these theorems. It is the purpose of this section to prove that if
we change the inequality |x2| < |x|2 to the strict equality, then the existence of
identity can be dropped.

Theorem 3. Let si be a real associative pre-Hilbert algebra satisfying \a2\ = |a|2

for all a £ si . Then si is isomorphic to R , C , or H .

Proof. First we shall assume that si is commutative. Then

(3) \(a,b)\<\ab\<\a\\b\

holds for all a, b £si and consequently si is a normed algebra.
In fact

\a + b\2 = \(a + b)2\ = \a2 + b2 + 2ab\

< \a2\ + \b2\ + \2ab\ = \a\2 + \b\2 + 2\ab\

implies (a, b) < \ab\. If we replace a by -a, we get \(a, b)\ < \ab\.

Now assume for a moment that |a| = \b\ — 1. Then

A\ab\ = \(a + b)2 - (a - b)2\

< \(a + b)2\ + \(a - b)2\ = \a + b\2 + \a - b\2 = A

and so \ab\ < 1. In the general case we can reason as follows:

If a = 0 or b = 0, then \ab\ < \a\\b\ is obvious. Otherwise |jfr • j£t| < 1

and so (3) follows.
Now we shall use the well-known fact that a commutative associative real

normed algebra without topological zero divisors is isomorphic to R or C .
Our next goal is therefore to prove that the algebra under consideration does

not have any topological zero divisors.

Suppose that |a| = 1, \x„\ = 1, and ax„ -» 0. By (3) we have

l(a.*«}| < \axn\ ->0.

Since si is associative,

\(a2,x2)\ < \a2x2\ = \(axn)2\ = \ax„\2 -* 0.

If we compute \a + x„\ in a direct way, we obtain

\a + x„\4 = (2 + 2(a,xn))2 ->A.
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If we use the square multiplicativity of the norm, we obtain

|a + *n|4 = \(a + x„)2\2 = |a2 + 2ax„+x2|2

= |a2|2 + 4|ax„|2 + |x2|2 + A(a2, ax„) + A(ax„ , x2) + 2(a2, x2).

Since
lû2l2 = lal4 = 1 lx2l2 = 1

|(a2, ax„)| < |a2||ax„| = |ax„| ->0,

\(ax„, x2)| < |ax„||x2| = \ax„\ ->0,

we have (note that (<22, x2) -+ 0 was already established) that \a + x„|4 —► 2
which contradicts the previously obtained fact.

Now that we proved the result for the commutative case, we can handle the

noncommutative one by means of localization. Take some nonzero b £ si . A

subalgebra Gen(è), generated by b, is commutative and so it is isomorphic to

R or C . Note that it is trivial that this subalgebra also satisfies the assumptions
of our theorem. In particular this subalgebra contains the identity element

which we denote by e. Then e is of course an idempotent of si . According
to Theorem 1 it remains to prove that e is the identity of si .

Given an arbitrary a £ si we have e(a - ea) = 0 and (a - ae)e — 0. Since

e ^ 0, it remains to prove that si cannot contain any zero divisors. If xy = 0

with |x| = |j>| = 1, then |yx|2 = \(yx)2\ = |yxyx| = 0 and so yx - 0. Thus

|x + y|2 = |(x + y)2| = |x2+y2| = |x-y|2

implies |x + y|2 = 2. Next we have

4 = |x + y|4 = |x2 + y2|2 = |x2|2 + |y2|2 + 2(x2, y2)

= |x|4 + |y|4 + 2(x2,y2) = 2 + 2(x2,y2)

and so (x2, y2) = 1 implies x2 = y2 . But then

1 = |jc|4 = |x2|2 = |x4| = |x2y2| = 0

is a contradiction.
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