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Abstract. In this paper, we are concerned with a superlinear parabolic equa-

tion

-^ -Au = up + h(t,x),       (f, x) G R+x Í2,
at

u = 0, (t,x) €R+ x dSi,

u>0, (t,x)eR+xdQ,

where Í2 C R^ is a bounded domain with smooth boundary 9Í2, h is T-

periodic with respect to the first variable, and 1 < p < ^| if N > 3 and

1 < p < +00 if N < 2. It is shown that there exist a stable and an unstable

positive T-periodic solution for this problem if h is sufficiently small in L°° .

1. Introduction

_ Let Q be a bounded domain in R^ with smooth boundary <9Q and h : R+ x

fi —y R be a bounded function which is F-periodic with respect to the first
variable. In this paper, we are concerned with stable and unstable F-periodic
solutions for a semilinear parabolic equation

(P)

du
-—Au = up + h(t, x)    inR+xQ,
at

u = 0 inR+xdQ,

u(t) = u(t+T) in ñi, u > 0 in R+ x Q,

where 1 < p < (N + 2)/(N -2) if tV > 3 and 1 < p < +oo if N < 2.
In the recent decade, many authors have studied the existence and multiplic-

ity of periodic solutions for semilinear parabolic boundary value problems of
the form

{du , .     .   _       _
— -Au = g(t,x, u)    ínR+xfí,

u = 0 onR+x<9Q,

where g:R+ xQxRxR is F-periodic with respect to the first variable. One

can find extensive references in [2] for the existence of periodic solutions of (*).
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On the other hand, the stability of periodic solutions of a semilinear parabolic

boundary value problem has been studied by Alikakos, Hess, and Matano [1],

Hess [12], Hirsch [15], and the authors. The method employed in these works in

the sub- and supersolution method. If there exist a subsolution u and a super-

solution ïï of the problem (*) satisfying u < vt, one can find a stable periodic
solution of the problem (cf. Dancer and Hess [6]). A few sufficient conditions
for the existence of sub- and supersolutions for (*) is known in case that g

has a sublinear growth (cf. Hess [12]). The existence of unstable solutions for

(*) is considered in Hirano [13] in the case that g has an asymptotically linear

nonlinearity.
On the other hand, it seems that only a few results are known when the

nonlinearity is superlinear. Esteban [7] obtained the existence of a positive

periodic solution of the problem (*) in the case of g(t,x,£) = m(t)\p with
1 < p < (3N + S)/(3N - A). She improved her results in [8] to the case that

1 < p < N/(N - 2). It is proved in Ôtani [16] that there exists a periodic
solution for (P) if h is sufficiently small with 1 < p < (N + 2)/(N - 2).

In this paper, we show that the problem (P) possesses at least one stable and
one unstable solution for small h . To show the existence of solutions of (P), we

calculate the Leray-Schauder degree of an associated compact mapping by using
the method employed in Esteban [7]. The stability and instability of solutions

of (P) are investigated in §3.

2. Existence of periodic solutions for (P)

In this section, we first describe our theorem and then evaluate the Leray-

Schauder degree to show the existence of positive periodic solutions. Through-

out the rest of this paper, we fix q > N+l. For simplicity, put Qt = (0, T) xQ.

Let

Wx'2-r(QT) = {u: QT -» R\uXiX], ux¡, ut £ U(QT) for I < i, j < N}

and

C1 'HQt) = {u:QT^ R\UXlXj, uXi, u, £ C(QT) for I < i, j < N},

where uXiX¡ — d2u/dx¡dXj, ux. = du/dx¡, and ut = du/dt. We set E =

WX'2<9(QT) and denote by ||-||, || • ||9 , and ((•,•)) the norms of E, L"(QT),

and the inner-product of L2(Qj), respectively. Br(v) stands for the closed ball

in E with radius r centered at v .

A solution u of (P) is said to be stable if for given e > 0, there exists ô > 0

such that for each vq £ Lq(Çï) with \v0 - u(0)\9 < S, there exists the global

solution v for the initial value problem

{--Av =vp + h(t, x)     in(0,oo)xi2,

v = 0 on (0, oo)xofí,

d(0) = ?jo infi,

and it holds that \v(t) - u(t)\q <e for all t > 0. Here | • \q stands for the norm
of L«(Q). A F-periodic solution u is called unstable if u is not stable. The
purpose of this paper is to prove the following result.
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Theorem. Let h £ L°°(R+ x SI) be nonnegative and T-periodic with respect to

the first variable. If ||A||l°o is sufficiently small, then there exist at least one

stable and one unstable solution of(P) in E.

We denote by Xx and tpx the first eigenvalue of -A in SI with the Dirichlet

boundary respectively. Let L-d/dt-A with domain

D(L) = {u£E: u(T) = u(0) in SI}.

A compact operator K: E —y E can be defined by L~x since there is uniquely

u £ E satisfying Lu = v for any v £ E arbitrarily given. Let /: R -» R be

the extension of £,p defined by /(£) = 0 for all £ < 0, and let g(t,x,Ç) =
f(£) + h(t, x). The solutions for (P) are fixed points of the operator K o g

from E into itself. We first investigate the Leray-Schauder degree of I-Kog

near 0 and then in a large ball in E. We denote by deg(F, U, v) the degree

of compact operator F on an open set U with respect to v .

Lemma 1. For given c > 0, there exist positive numbers r < c and ô such that

for each h £ L°°(QT) with ||Ä||oo < S,

de%(I-Kog,Br(0),0) = l.

Proof. According to the standard regularity theory, there exists C > 0 such

that

IMI<C||f(i,JC,ii)||f
for any solution u £ D(L) for Lu = sg(t, x, u) with se[0, 1]. Let c > 0.

Take 0 < p < 1  satisfying p/Cx < c and £p+x < ^£2 for all £ £ R with

|€| < P, where Cx is the constant of the embedding of E into C(QT). We

put r = p/Cx. Let S > 0 such that

Xx (I        x"
2ycr-S)   -Sr>0

and \\h\\oo < ô. Suppose that there is a solution u £ D(L) n dBr(0) for Lu -

sg(t, x, u) for some j £ [0, 1]. Then noting that pq > 2, we have

0 = ((ut - Au - sg(t, x, u), «))

=  /    I (\Vu\2-sup+x-shu)dxdt
Jo  Ja

>^/   ¡upqdxdt-¡   [ hudxdt
2 Jo  Ja Jo  Ja

c (¿ll"ll - IIÄUoo)* - llÄHoollMll > 0.

This contradiction implies the nonexistence of solutions of Lu = sg(t, x, u)
on dBr(0). From the homotopy invariance of the Leray-Schauder degree, it

follows that

deg(/ -Kog, Br(0), 0) = deg(/, Br(0), 0) = 1.

The following lemma is proved by Esteban for 1 < p < (N + 2)1 N in [7]
and for 1 < p < N/(N - 2) in [8] in the case that the right-hand side of (P) is
m(t, x)up . The proof of the following lemma is almost exactly as in [7] and

[8] (cf. [10]).



1490 norimichi hirano and noriko mizoguchi

Lemma 2. For each h £ L°°(QT), there exists R> r such that

deg(I-Kog,BR(0),0) = 0.

Proof. The proof of this lemma based on the same idea as in the proof of

Theorem 4 and the alternative proof of Proposition 12 of [7]. Then we will

only sketch the proof. We first get the uniform estimate for solutions of (P)

in L°°(QT). Indeed, on the contrary, assume that there is a sequence {«„} of

solutions of (P) such that M„ = supßr un diverges to +oo . Let (t„ , Pn) £ Qt

with M„ - u„(t„, P„) and {(tn, Pn)} converge to some (7, P). In case of

Çt,P)£QT, put

x2„/{p-l)Mn = i,  y = ̂ ,   T = Sir'   ^»^^"V',*).

By the same argument as in [7], {vn} converges to some v £ C1,2(R x R^) in

Cx'2([-R, R] x Br(0)) for any R > 0. Then v satisfies vt - Av = cvp in

R x R^ and v(0, 0) = 1. On the other hand, multiplying (P) with u replaced
by un by (u„)t and integrating on Qt , it follows that

/       (u„)2dxdt< h2dxdt.
Jo  Ja Jw Ja

Therefore, for any R > 0 and sufficiently large n , we have

/    /     (v„)2dydT<Xt/{p-l)-N+2 [   [h2dxdt^0    as/woo,
J-R Jbr{0) Jo  Ja

and hence vt = 0 in R x RN. According to a Liouville theorem in [9], v is

identically zero, which contradicts v(0, 0) — 1. In case that (7, P) £ [0, T] x

f9Qu{0,F}xfí,we obtain a contradiction by taking the same process as in
[7] using that vt = 0. The above argument shows that there exists Lo > 0

such that any solution u of (P) satisfies ||m||l°» < Lo. We can now complete

the proof by the same argument as in the proof of Theorem 4 of [7]. That is,

we define a family of compact operators {Ts} from E into itself as follows:

Tsu = v if and only if v is a solution of the problem

dv
—-Av = vp+ su + s + h(t, x),    (t, x) £ R+ x Si,
at

v = 0, (t,x)£R+xdSl,

v(t) = v(t+T) in Q, v > 0 in R+ x SI.

From the L°° estimate above, we have that there exists C(s) > 0 such that if

w is a fixed point of Ts, then \\u\\ < C(s). On the other hand, we can see that

Ts has no fixed point if s is sufficiently large. Then we have that there exists
R > 0 such that ||u|| < R if u is a fixed point of Ts for some j > 0. Then

since deg(7 - Ts, BR(0), 0) = 0 for s sufficiently large, the assertion follows
from the homotopy invariance of degree.

3. Stability and instability of periodic solutions

We discuss the stability and the instability for solutions of (P) in the present

section. Let « be a F-periodic solution for (P). Denote by S(i, 5) the evolution
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operator for the following problem:

{-5—Av = f'(u)v    in (s, 00) x SI,

v = 0 on(s,oo)x«9Q,

v(s) = z in SI;

that is, S(t, s)z - v(t). Then nonzero eigenvalues of the periodic map U(t) =
S(t + T, t) is independent of t (see [11]). It is known that if U(t) satisfies

a(U(t))n{p:\p\>l}¿0,

where o(A) means the set of eigenvalues of a linear operator A, then u is
unstable (see [11, Theorem 8.1.2]). By the result due to Beltramo and Hess

[3], we have that the linear operator Lu-L-f'(u) with domain D(L) has a

unique real principal eigenvalue pu with an associated positive eigenfunction

<pu . It is known that u is stable if pu > 0 and u is unstable if pu < 0 (cf. [3,

11]). We use a similar idea employed in [13] to prove the following result.

Lemma 3. Let u be a solution o/(P). Then there exists p > 0 satisfying the

following conditions:

(i) If pu > 0, then deg(/ -Kog, Bp(u), 0) = 1.
(ii) lfpu = 0,then deë(I-Kog, Bp(u), 0) = 0.

Proof. Suppose that pu> 0. Then Kof'(u) has no real eigenvalue larger than

or equal to 1 (cf. [3]). Then we have deg(7 - A' o f'(u), Br(0), 0) = 1 for any

r > 0 (cf. [5, Theorem 8.10]). From the definition of pu , we have that

((Lv-f'(u)v,v))>pu\\v\\22

for all v £ E. Then it is easy to see that there exists r > 0 such that

((Lv - g(t, x, v), v)) > 0    for all v £ Br(u)\{u}.

This implies that u is an isolated solution of (P) and by the homotopy invari-

ance of degree, we find that

deg(/ -Kog, 73,(0), 0) = deg(/ - K o f'(u), Bp(0), 0) = 1

for some p > 0 sufficiently small. We next prove statement (ii). Define L, K,

and / by L(u) = Lu + u for u £ D(L), K = (L)fx, and /(£) = /(£) + ¿; for
Ç £R. For simplicity, write tpu by tp . Then pu is the principal eigenvalue of

L - f'(u) and tp is an eigenfunction of L - f'(u) corresponding to pu . We

set Ex = {stp: jêR}. Then there is a closed subspace E2 of L°°(Qt) which

is invariant under K o f'(u) such that L°°(Qt) = Ex® E2. Denoting by F,

the projection from L°°(Qt) onto F, for / = 1, 2, F, is a bounded operator,
that is, there exists M > 0 satisfying

II/»«««» <M||«lu,      1 = 1,2,

for all v £ L°°(Qt). Since / is a mapping of class C2 from L°°(Qt) into
itself, the following Taylor expansions hold in B¿(0) for some ô > 0 :

(1) f(U + V) = /(U) + /'(«)t, + 0^t,2 + hx(v),

(2) f'(u + v) = f'(u) + f"(u)v + h2(v),       f"(u + v) = f"(u) + h2(v)
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for t; e Bg(0), where hx(v) £ o(||v||2o),  h2(v) £ o(||«||oo), and h3(v) £

0(||u||£r2). Here we choose e > 0 satisfying

{stp: \s\ < e} x {v £ E2: \\v\\ < e} c Bs(0)

and put Ue(u) = u + {s<p: \s\ < e} x {v £ E2: \\v\\ < e}.

Now we show that (f"(u)lf'(u))(p2 £ E2 . From the definition of / and

/, we have that f"(u)/f'(u) > 0 and (f"(u)/f'(u))tp2 £ E. Assume that

(f"(u)lf'(u))(p2 £ E2. Then we have that there is w e L°°(QT) such that

(3) Lw-f'(u)w=f"(u)/f'(u))tp2.   ■

Since 0 is the principal eigenvalue of L - f'(u), we obtain that there exists a

positive function q> £ E satisfying

(4) -tpt-Ay + (p-f'(u)y = 0

by [4]. From (3) and (4), it follows that

0<  /    ¡ C^L(p2(pdxdt
Jo  Ja f'(u)

=  /    / (wt - Aw + w - f'(u)w)(pdxdt
Jo  Ja

=  \    ¡(-(p~t-Aip + (j>-f'(u)(p)wdxdt = 0.
Jo  Ja

This contradiction implies that (f"(u)/f'(u)) £ E2. Therefore, there exists

r / 0 satisfying

/"(")    2       o   (/"M    2\

f'(u) \f'(u)    )

Fix v £ E2 with ||n|| < e, and define

ipv(s) = ((L(u + v +stp)- f(u + v + stp) - h, rq>))

for s £ R with \s\ < e . Then we have from (1) and (2) that

MO) = {(lv-f'(u)v - t^p-v2 -hx(v), rty ,

¥v(0) = -((f"(u)vtp + h2(v)<p,r<p)),

and

ri'(0) = -((f"(u)<p2 + h3(v)<p2,rtp)).

Consequently, we find

y/v(s) = (¿Lv - f'(u)v - Pp-v2 - hx(v), rtp^

(5) -((f"(u)v<p + h2(v)<p,rtp))s

- \{{f"{u)<p2 + h(v)<p2, rtp))s2 + h(s),

where A4(s) £ o(s2). For p e [0, 1], set

gp(t ,x,Z) = g(t,x,li) + prf'(u)tp.
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We claim that for each 0 < p < 1, the compact mapping K o gp has no fixed

point in UE(u) and that u is the unique fixed point of Ko g in Ue(u). Suppose

that

(6) L(U + W + T(p) = gp(t, X, U + W + TÇ))

for some p £ [0, 1], w £ E2, and r £ R with ||u;||, |t| < e . Then we get by

(1) that

Lw - f'(u)w -      v '(w + xtp)2 - hx(w + xtp) = prf'(u)(p.

Multiplying this equality by l/f'(u) and projecting both sides of the equality
onto £2, it follows that

(7) in, - /'(„)«, = q±P2 (¡p&i« + „)») + /»ft (4^0)

and hence

f0 = (L - /'(M))"1    ^F2    ^^(u; + T9>)2   + f'(u)P2 .

From the inequality above, we have that there exists Cx > 0 satisfying

Moo^cmim^ + t2).

Since we may choose e so small that Cxe < 1/2, we obtain from the inequality
above that

(8) IMIoo<2C,t2

for each w e E satisfying (6). Then we have from (5), (6), (7), and the equality

above that

0<p((f'(u)r(p,rtp)) = y/w(x)

= -ji(/W-/Wß|?2    ,r9\\r2 + h5(T)

= - 2((/'("W'^)>t2 + A5(t),

where A5 £ o(t2) . Then we have from the inequality above that w £ E2 with

111011 < e satisfies (6) only when p = 0 and w = 0. Thus we have shown that

K o gp has no fixed point in Ue(u) for 1 < p < 1 and u is the unique fixed

point of K o g in U£(u). Then according to the homotopy invariance of the

Leray-Schauder degree, we find that

deg(/ -Kog, Ue(u), 0) = deg(/ -Kogl, Ue(u), 0) = 0.

This completes the proof.

Proof of Theorem. By Lemma 1, there is r > 0 sufficiently small such that

the problem (P) possesses a solution Ux in Br(0). We may assume that 0 <

f'(v) < Xx on Q for each v £ Br(0). Letting puX and <puX as before, it holds

that

((puX)t = AtpuX - f'(u)(puX = puX<puX.



1494 NORIMICHI HIRANO AND NORIKO MIZOGUCHI

Assume that puX < 0. From this equality and the definition of Xx, it follows

that

/    ¡ Xxtpx<puXdxdt= I    / {f'(u)+puX}tpuXtpxdxdt< \    \ XX(puXtpxdxdt.
Jo  Ja Jo  Ja Jo  Ja

This contradiction implies that puX > 0, and then ux is stable. On the other

hand, taking R sufficiently large, we have by Lemma 2 that

deg(7 - K o g, BR(0)\Br(0), 0) = -1.

We can see from the proof of Lemma 3 that if m is a solution of (P) in BR(0)

satisfying pu > 0, then u is isolated. Then by Lemma 3, we conclude that

there exists u2 £ BR(0)\Br(0) with pu2 < 0. Therefore, u2 is unstable. This

completes the proof.
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