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ON THE SOLUTIONS OF THE EQUATION
xm+ym_zm = l IN A FINITE FIELD

WEN-FONG KE AND HUBERT KIECHLE

(Communicated by William Adams)

Abstract. An explicit formula for the number of solutions of the equation

in the title is given when a certain condition, depending only on m and the
characteristic of the field, holds.

1. Introduction

Let (F, +, •) be the Galois field of order q = ps, where p is a prime and

5 > 0. Let k > 2. We say that the ordered pair (q, k) is circular if k\(q - 1)
and the subgroup <S> < F* := F\{0} of order k satisfies1

|<Pa + b n Oc + d\ < 2

for all a,c£F*,b,d£F with Oa ^ Oc or b # d. Let (q, k) be circular
and put m = (q - l)/k . Denote the number of solutions of the equation

xm+ym_zm= ,

in F by N. Also, let N' be the number of solutions with xyz ^ 0. The main
purpose of this paper is to prove

Theorem 1. Let (q, k) be circular.

( 1 ) If k is even, then

' 3(k - l)m3 + 6m2 + 3m   if 6\k;

N=< 3(k- l)m3 + 3m2 + 3m   ifp = 3;

3(k - l)m3 + 3m otherwise;

and N' = 3(/c - l)m3.

(2) If k is odd, and if (q, 2k) is also circular, then N = (2k - l)m3 + 2m
and N' = (2/c-l)w3.

Note that in case ( 1 ) iV is the number of solutions of xm + ym + zm = 1 ,

too. In order to prove this theorem, we separate the solutions of the equation
into two disjoint sets S and T :

T = {(x,y,z)\xm+ym-zm = 1, xyz = 0 or 1 £{xm,ym}},

S = {(x,y, z)\xm +ym - zm = I, (x,y, z) $T).
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We will compute \S\ in §2 as an application of results in [12]. The crucial step

in §2 requires some knowledge of this paper and is therefore not self-contained.

To find \T\, we essentially have to deal with problems in two variables, namely,
to find

t+ = \{(x,y)\xm+ym = l}\   and   t- = \{(x, y)\xm -ym = l}\.

In §3 we will show

Theorem 2. Let (q, k) be circular.

( 1 ) If k is even, then

{2m2 + 2m   if6\k;

m2 + 2m     if p — 3 ;

2m otherwise.

(2) If k is odd, and if (q, 2k) is also circular, then t+ = 2m and t- = m.

This proof also uses results from [12].

In a more general setting Hua-Vandiver [7] as well as Weil [18] give formulas
for the number of solutions involving Jacobi sums (see also [9, Chapter 8, The-

orem 5] for a comprehensive exposition and [10] for more literature). However,
these formulas are hard to evaluate for large m. Explicit and simple formulas
are only known for certain special cases, namely when m is small [5, 13], when

k is small [17, 13], or when 2\s and m\(^/q + 1) ([14, 8, 6] and, more general,

[19]).
In fact m is always large in the circular case. So, in a sense, we attack the

problem from the top, while estimates derived from Hua-Vandiver's or Weil's

theorems assume q to be large enough. This will be discussed in more detail

in §4.
For bookkeeping, we shall have F and k fixed such that k\(q - 1) and let

m — (q - l)/k. Further, let C be a primitive element of F, (p = Çm, and

O = (<p). Thus, |0| = k . Also, let A be the set of all /nth roots of unity, i.e.,

A = (Çk). The letters t+ and z_ will keep their meaning, too.

2. Number of elements in S

For a triple x = (x, y, z) £ (F*)3 such that xm + ym - zm = 1, we define

bx = (xm - l)(y> - l)"1 = (zm - ym)(tp - l)~l. In the following, we set up a

correspondence between S and the set of all bx, which then gives a way to

count the number of elements in S.

(2.1) 7/x = (x,y, z) £ S, then (<D + bx) n (0> + <pbx) = {d, e}, where d =
xm + bx = 1 + <pbx and e = zm + bx = ym + <pbx, and d±e.

Proof. Let x - C, y - Çs, and z = Ç'. Then xm = fr, ym = <ps, and

zm = <p', so {d, e} ç (<p + bx) n (<P + y>bx). Since x £ S, we have ym ¿ 1 ;

therefore, d ± e .   D

(2.2) Let b £ F*. If |(<D + b) n (O + tpb)\ = 2, then b £ Obx for some x£S.

Proof. Suppose (<f>+b)n(®+(pb) = {d, e} , d ^ e, where d = <pr+b - <pu+<pb
and e = y)' + b = <ps + tpb . Then we have

Ç»'-Ç,» = (Ç»- l)b = <p' -fs.
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Thus,
pr-u + yS-u _ yt-u = !

Let x = (x, y, z), where x = rtr~u , y = Çs~u , and z = Ç'-" . Then certainly

xm + ym _ zm _ j  ancj ¿ _ ^u¿x     ¡t remains to show that X £ S.   Of

course, 0 £ {x, y, z} . If ;cm = 1, then p'-" = (f*)'-» = (p-«)« = 1, and so
(pr — q>u . But then p = 1, a contradiction. Similarly, if ym = 1, then q>s = <pu ,

and so ci = e, a contradiction again. Therefore, x e S. This completes the

proof.   D

We now define an equivalence relation on S. Two elements x = (x, y, z),

x' = (x', y', z') £ S are equivalent, denoted by x ~ x', if there are kx, k2, A3 £

A such that x' - kxx, y' = k2y, and z' - k^z. It is easy to see that each

equivalence class [x], x£ S, has m3 elements.

(2.3) Let x, x' £ S. Then bx = bx> if and only if x ~ x'.

Proof. Let x = (x, y, z), x' = (x', y', z'). First assume that x ~ x' and let

AeA such that x' — kx. Then, by definition,

bx, = (x'm - l)(<p - l)-1 = ((kx)m - l)(y> - l)-1

= (xm - l)(y> - l)-1 = bx.

Conversely, suppose bx — bx>. From (2.1), we have

(<D + bx) n (O + ?»¿x) = {¿ ,^},

(<D + /3x0n(i> + ̂ ) = K^'},

where d = xm+/3x = l+ç)èx, e = zm+bx =ym+<pbx, d' = x'm+bx, = l+<pbx>,

and e' = z'm + bx> = y'm + <pbxi. From bx = bx> and circularity we derive

{d, e} = {d', e'}. We conclude that d = d' and e = e', since otherwise
y'm = 1. Hence, ;cm = x'm , ym = y'm , and zm = z'm , and so x ~ x'.   D

(2.4) Let (q, k) be circular.
(l)Ifk is even, then \S\ = m3(k-2).
(2) If k is odd and (q, 2k) is also circular, then S = 0.

Proof. Suppose 2|/c. From (4.6) and (4.7) of [12] together with (2.2), there
are exactly 2(/c/2 - 1) = k — 2 different bx . By (2.3), each bx corresponds to

exactly one equivalence class [x] in S/ ~. Since each [x] has m3 elements,

we get \S\ = m3(k - 2). This is (1).
Now, (2) follows from (2.2) and (2.3) together with [12, (4.9)].   D

Remarks. (1) from [12, (4.4)], it follows that if x = (x, y, z) runs through

S, then xm runs through all of <P\{-1, 1} . Therefore all the bx are easy to

obtain. Using (2.1), one gets e, and then ym and zm . Thus, the problem of

finding all the elements in S boils down to the problem of finding wth roots
in F.

(2) The condition that (q, k) is circular cannot be dropped. For example,
the pairs (11, 5), (13, 6), (43, 7), (31, 10) are not circular, and |5| is, in
each case, different from the value computed using the formula in the theorem.
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However, the theorem is valid for the pairs (19, 6) and (71, 10), although they

are not circular either. (See also the remarks in §4.)

3. The equations xm ± ym = 1 and the number of elements in T

We remind the reader of the following notation

t+ = \{(x,y)\xm+ym = l}\   and   t. = \{(x, y)\xm -ym = l}\.

We will also have use for

t = |<Pn<I>+ i|.

The next theorem seems to be well known; essentials appear e.g. in [14; 4,

Theorems 2 and 3]. However, we include a proof for completeness and due to

the lack of a suitable reference.

(3.1) t+ = tm2 + 2m and

(tm2 + 2m   if2\k;

\ tm2 + m     if 2 \ k.

Proof. Assume x, y £ F*.   We have xm + ym = 1  if and only if x~m -

(yx~l)m = 1. This shows

t' := \{(x, y)\xm + ym = 1, xy ± 0}| = \{(x, y)\xm - ym = 1, xy ¿ 0}|.

Since xm = ym + 1 puts xm £ <5> n <I> + 1, and since there are m different

x £ F* with xm — q> for any given q> £ <I>, we find t' - tm2.

The case y = 0 leads to the m solutions (x, 0), x e A. There exists

u £ F* such that um = -1 if and only if 2|/c. Hence, if x - 0, there is no

solution for -ym = 1 in the case 2 \ k, while all other cases have another m

solutions (0, y), y £ u~lA.   D

By circularity, we have t £ {0, 1,2}. Using results of [12] we can say more.

(3.2) Let (q, k) be circular.
(1) Assume 2|/c ; then t = 1 if and only if 2 £<*>.
(2) If 2\k and (q, 2k) is also circular, then t £ {0, 1} .

Proof. From both assumptions we have 2\(q- 1) ; therefore, p ^ 2. Thus there

is an /¡€f with 2/z = 1 (" h = 1/2 "), and

/ = |<Dn<D+ 1| = |<D + (-l)/zn<I> + /z|.

(1) (4.3) and (4.4) of [12] applied to El (notation from [12]) prove the
assertion.

(2) Obviously, there is a subgroup *F of order 2/c in F*. Note that O c *F.

If *¥+(-l)hny¥ + h = {a,b} and a £ <D + /z, then we find from (4.4) of [12]
that b 0 <P + h . From this the result follows.   D

We are now in a position to compute t.

(3.3) Let (q,k) be circular.
(1) If2\k, then

(2   z/6|/c;

t = I  1    z/ char F = 3 ;

I 0   otherwise.

(2) If 2\k and (q, 2/c) z's a/50 circular, then t = 0.
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The proof utilizes the following two lemmas.

Lemma A. Assume 2\k, then t - 1 •» char F = 3.7« this case, OnO+1 =

{-I}-

Proof. From (3.2.1) we know t = 1 & 2 e O.   Let í = 1.   To see that
char F = 3, we note that -1 eO. Thus we obtain

-1 = -2+ l e<PnO+ 1

and

2=1 + 1 e$nO+ 1.

Therefore, 2 = -1 in F or, equivalently, char F = 3. Conversely, if char F =

3, then 2 = -1 £ <P since 2|/c by the hypothesis. This shows Lemma A.   D

Lemma B. t = 2 <& 6|/c. In this case, Oní>+ 1 = {y, y-1} with a primitive
6th root of unity y.

Proof. Suppose 6\k . There is y £ 4> of order 6, thus y is a primitive 6th root
of unity, hence y2 - y + 1 = 0. This implies

y = y2 + l e Oni>+ 1.

Also, we have

y5 = y4y = y4(y2 + 1 ) = y4 + 1 G$nO+l.

Since y t¿ y5, we conclude that t > 2. By circularity we have t = 2.
For the converse, assume t = 2. Then 2|/c by (3.2.2). Suppose

<ps = <pr + l £$>n<¡>+ l,

where j,ieN. Then

-<pr = -<ps + l €<PnO+ l.

If (ps = -y>r, we have

(ps~r = -1   and   <ps~r = <p~r + I,

which puts 2 = -Ç9~r € O, contracting Lemma A. So tps ^ -tpr. From <ps~r =

q>~r + 1 and circularity we must have (ps~r = -fr, because <ps~r = <ps leads to

the contradiction 2 e <I> as before. Hence

This means -tpr — fa1' + 1 ; therefore, (tpr)3 = 1 and q>r # 1. Now we can

conclude 3|/c and so 6|/c . This completes the proof for Lemma B.   D

Proof of (3.3). (1) follows directly from Lemma A and Lemma B.

(2) As in the proof of (3.2.2), we will need the subgroup *V of F* of order

2/c. Notice that Oct. In case l^ n ¥ + 11 = 2, we find from Lemma B that
<P n O + 1 = 0 because O does not contain a primitive 6th root of unity, i.e.,
an element of order 6.

The case pFn«F+l| = 1 implies Tn^+l = {-1} by Lemma A, but -1
is not in O, so t = 0 in this case. If ¥ n 4* + 1 = 0 , then <t> n O + 1 = 0 .
Since (q ,2k) is circular, we have covered all the cases and have always found
t = 0.   O

The proof of Theorem 2 comes directly from (3.1) and (3.3).
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To employ (3.1 ) in the proof of Theorem 1, we decompose T into the disjoint

subsets

T0 = {(x,y, z)£ T\xyz = Q}

and
T, = {(x, y, z) £ T\l £ {xm, ym}, xyz ¿ 0} = T\T0.

(3.4)   \TX\ = (2k - l)m3.

Proof. If xm — 1, then we are left with ym - zm = 0, which has m(q - 1)

solutions (each y £ F* gives m z 's). Similarly, we find m(q- 1) solutions in
the case ym = 1. If xm = ym = 1, then we have zm = 1. Thus, we conclude

that

|7i| = 2m2(q - 1) - m3 = m3(2k - 1).

since the m3 triples (x, y, z), x, y, z e A, have been counted twice.   □

Finding |7o| can be reduced to the problem discussed in (3.1).

(3.5)
(3t+-3m if2\k;

1 0|     1 2t- + t+-2m   if2\k.
Proof. Let

Tx = {(0, y, z)\ym - zm = 1},     Ty = {(x,0, z)\xm - zm = 1},

Tz = {(x,y,0)\xm+ym = l}.

Then

t+ = \TZ\   and   i_ = \TX\ = |7j,|.

If 2|/c, then t+ = r_ by (3.1). Note that T0 = TxöTy\jTz.
Since TxnTy = {(0,0, z)\zm = -1} , it follows that

,„,     „,      im    if2|/c;
|r'nr'l=Í0    if2t*.

Obviously, we have |TX n Tz| = |Tj, n Tz| — m and T* n Ty n Tz = 0 . Now the

assertion follows easily.   D

Putting these results together, we find

Î3 6Ï r(2/c-l)m3 + 3im2 + 3m   if2|/c;

{'} '   '     \ (2/c-l)m3 + 3iw2 + 2m   if2\k.   u

Proof of Theorem 1. Since TV = |S| + |r| and N' = 151 + 1711 in both cases, the
result is an easy consequence of (2.4), (3.6), (3.4), and (3.3).   D

4. The exponents

It is easy to see that the condition m\(q - 1) puts no real restriction to the

problem; see [10, (1.2.3)] for details.2
By a previous remark, the condition that (q, k) is circular plays a crucial

role in our argument. In this case, k cannot be too large. In fact, Clay shows

2The argument given in [13] is incorrect.
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that k < (3 + \/4fl - 7)/2 in [2, (5.6)]. From this we derive the following lower
bound for m.

....                             û-1    VW^-3     v/5iTr7-3
(4.1) m>^--2->-j-.

Proof. As mentioned above we have

(7-1^^4^7 + 3
m    * 2

and so _
2(g-l)     _g-l    747^7-3

w- v^—7+3 ~fl-4' 2

Since (o - l)/(q - 4) > 1, the second inequality is clear.   D

Remarks. (1) Clay's bound is reached if (and only if) q = p2s, s > 0 ; then the
bound is p* + 1, and (q, ps + 1) is always circular (cf. [2, (5.7), and (5.9)]).

From [3, (1.3)] one can derive that

m>--2-

if Clay's bound is not reached for circular (q, k).
(2) Modisett shows that the circularity of (q,k), once k\(q - 1), depends

only on p, and not on s in q = ps. Furthermore, for any k > 2, there are

only finitely many p's (!) such that (q, k) is not circular (cf. [2, (5.31); 16]).
Last but not least, Modisett gives an algorithm to find the exceptional p 's for
any given k . For a list of exceptional primes when k < 10 see [2, §5, p. 73]

or [16].
(3) Modisett's algorithm may be modified (and is then quicker) to determine

whether or not a given pair (q, k) is circular. If k\p - 1 for a prime p, [11]
gives a fairly quick algorithm to determine the circularity of (p, k), which is

substantially different from Modisett's.
In [7, Theorem II] Hua and Vandiver give the following bound

Í£HiL _ fl-1/2(i + im _ 1)^)3 < N>   (0ur notation).

To make sure that N' is not 0, we need

This implies

and

ri/a(1 + (w_l)V5)S<itll)!
*2

l + (m-l)Vq<^-

m<^2jT--^2 + l<^ß+L

The inequality m < qxl3 + 1 follows from [18], too. Putting in our lower bound

for m given in (4.1), we find

V/ö-7/4-3/2<ö1/3+1;
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thus

q~A< (qi/3 + l)2 = (ql/3)2 + 5qlß + ^,

and so

c7<(tf1/3)2 + 5c71/3 + 8.

This is only possible for q < 36. So for q > 37 and 2|/c our theorem shows

the existence of solutions outside T in the circular case, while the estimates of
Hua and Vandiver as well as Weil do not work.
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