ON THE COVERING AND THE ADDITIVITY NUMBER OF THE REAL LINE

KYRIAKOS KEREMEDIS

(Communicated by Andreas R. Blass)

Abstract

We show that the real line R cannot be covered by k many nowhere dense sets iff whenever $D=\left\{D_{i}: i \in k\right\}$ is a family of dense open sets of R there exists a countable dense set G of R such that $\left|G \backslash D_{i}\right|<\omega$ for all $i \in k$. We also show that the union of k meagre sets of the real line is a meagre set iff for every family $D=\left\{D_{i}: i \in k\right\}$ of dense open sets of R and for every countable dense set G of R there exists a dense set $Q \subseteq G$ such that $\left|Q \backslash D_{i}\right|<\omega$ for all $i \in k$.

1. Notation and terminology

The notation and terminology which we will use is standard and can be found in [8] or [9]. In particular, if A, B are sets and λ any cardinal finite or infinite, then $[A]^{\lambda},[A]^{<\lambda}$, and $[A]^{\leq \lambda}$ denote the sets of all subsets of A of size $\lambda,<\lambda$, and $\leq \lambda$ respectively. ω^{ω} denotes the Baire space, i.e., the set of all functions ${ }^{\omega} \omega$ together with the topology, having as a base the collection of all (clopen) sets of the form

$$
[p]=\left\{f \in{ }^{\omega} \omega: p \subseteq f\right\}, \quad p \in \omega^{<\omega}=\bigcup\left\{{ }^{n} \omega: n \in \omega\right\} .
$$

We say that the family $A \subseteq[\omega]^{\omega}$ has the countable π-base property (c $\pi \mathrm{bp}$), iff there exists a $B \in\left[[\omega]^{\omega}\right]^{\omega}$, call it a π-base, such that

$$
(\forall a \in A)(\forall b \in B)(\exists d \in B)(d \subseteq a \cap b) .
$$

In order to avoid confusion, let us remark that the notions of $c \pi b p$ and a filter A of $[\omega]^{\omega}$ having a countable base are not the same. B need not be included in A. In fact, B may contain disjoint sets.
$A \subseteq[\omega]^{\omega}$ has the strong finite intersection property (sfip), iff $|\cap Q|=\omega$ for every $Q \in[A]^{<\omega}$.

We say that a set $S \in[\omega]^{\omega}$ is an infinite pseudointersection of the family $A \subseteq[\omega]^{\omega}$ iff $(\forall a \in A)(|S \backslash a|<\omega)$.

[^0]Let k, m be any infinite cardinal numbers less than the power of the continuum c. We define the following combinatorial statements: $\operatorname{PS}(k) \equiv$ Every $A \in\left[[\omega]^{\omega}\right]^{\leq k}$ with the $\mathrm{c} \pi \mathrm{bp}$ has an infinite pseudointersection.

We remark here that it is consistent with ZFC that there exist sets $A \subseteq[\omega]^{\omega}$ having the sfip but no countable π-base (there are filters having no countable base). Indeed, let (M, \in) be a model of ZFC such that $M \vDash \mathfrak{p}=\omega_{1}+\operatorname{cov}(R)=$ ω_{2} (see [9, Theorem 3]), where \mathfrak{p} is the pseudointersection number and $\operatorname{cov}(R)$ the covering number of the real line. Then there exists a set $A \subseteq[\omega]^{\omega},|A|=$ ω_{1}, having the sfip but no infinite pseudointersection. If $B=\left\{b_{n}: n \in \omega\right\} \subseteq$ [$\omega]^{\omega}$ were a π-base for A, then, using $\operatorname{cov}(R)>\omega_{1}$, one can easily construct a pseudointersection S for A which is a contradiction.
$\operatorname{SPS}(k) \equiv$ For every $A \in\left[[\omega]^{\omega}\right]^{\leq k}$ and for every π-base $B \in\left[[\omega]^{\omega}\right]^{\omega}$ for A there exists an infinite pseudointersection S of A meeting each member of B is an infinite set.
$\operatorname{Equal}(k) \equiv\left(\forall F \in\left[{ }^{\omega} \omega\right]^{\leq k}\right)\left(\exists h \epsilon^{\omega} \omega\right)(\forall f \in F)\left(\exists^{\infty} n\right)(f(n)=h(n))$, where $\exists^{\infty} n$ abbreviates the statement "there are infinitely many".

Equal $^{*}(k) \equiv\left(\forall F \in\left[{ }^{\omega} \omega\right]^{\leq k}\right)\left(\exists h_{n} \in^{\omega} \omega\right)(\forall f \in F)\left(\forall^{\infty} n\right)(\exists m \in \omega)(f(n)=$ $\left.h_{n}(n)\right)$, where $\forall^{\infty} n$ abbreviates the statement "for all but finitely many".

Bounded $(k) \equiv\left(\forall F \in\left[{ }^{\omega} \omega\right]^{\leq k}\right)\left(\exists h \in^{\omega} \omega\right)(\forall f \in F)\left(\forall^{\infty} n\right)(f(n) \leq h(n))$.
Weak Bounded $(k) \equiv\left(\forall F \in\left[{ }^{\omega} \omega\right]^{\leq k}\right)\left(\exists h \in^{\omega} \omega\right)(\forall f \in F)\left(\exists^{\infty} n\right)(f(n)<h(n))$.
The bounding number \mathfrak{b} and the dominating number \mathfrak{d} are the least cardinal numbers k for which the statements Bounded (k) and Weak Bounded (k) fail respectively.

Let (X, T) be a topological space. A dense subset Q of the poset $(T \backslash(\varnothing)$, $\subseteq)$ is called a π-base for X.

A set $N \subseteq X$ is called nowhere dense $\operatorname{iff} \operatorname{int}(\bar{N})=\varnothing$, and a set $A \subseteq X$ is called meagre iff A is the union of countable many nowhere dense sets. The covering number, $\operatorname{cov}(X)$, and the additivity number, $\operatorname{add}(X)$, of the space X are given by:
$\operatorname{cov}(X) \equiv \min \{|D|: D$ is a family of dense open sets in X with $\bigcap D=\varnothing\}$,
$\operatorname{add}(X) \equiv \min \{|D|: D$ is a family of meagre sets of X but $\cup D$ is not a meagre set of $X\}$ respectively.

All undefined terms are used as in [5, 8, 10].

2. INTRODUCTION AND PRELIMINARY RESULTS

The covering number, $\operatorname{cov}(R)$, of the real line may be a singular cardinal number [11]. In this case, it has been shown by A. W. Miller in [13] that $\operatorname{cov}(R)$ has uncountable cofinality, and T. Bartoszynski and J. I. Ihoda have shown in [3] that its cofinality is greater than or equal to $\operatorname{add}(\mathbf{L})$, where $\operatorname{add}(\mathbf{L})$ is the additivity number of the ideal \mathbf{L} of all Lebesque null sets of the real line. It is an open question (see $[3,4,15])$ whether $\operatorname{cf}(\operatorname{cov}(R))$ can be less than $\operatorname{add}(R)$. Note that if $\operatorname{cov}(R) \leq \mathfrak{b}$, then by Lemma 3 we have $\operatorname{cov}(R)=\operatorname{add}(R)$ and that if $\operatorname{cov}(R)=\mathfrak{d}$, then $\operatorname{cf}(\mathfrak{d}) \geq \mathfrak{b}$ (see [5, Theorem 3.1(d), p. 116]). Thus the above-mentioned question is nontrivial only in case $\mathfrak{b}<\operatorname{cov}(R)<\mathfrak{d}$ (it is known (see [7]) that $\operatorname{cov}(R) \leq \mathfrak{d})$.

The technology that exists in this area seems to be inadequate in answering the above-mentioned question. The aim of this paper is mainly to find new characterisations of the cardinals $\operatorname{cov}(R)$ and $\operatorname{add}(R)$ and then reformulate the
problem in terms of these new characterisations. Such characterisations may be raised from simple combinatorial statements holding true in the presence of the continuum hypothesis $\mathbf{C H}$; e.g.,

For every family $\mathbf{D},|\mathbf{D}|<\mathbf{c}$, of dense open sets of the real line R there exists a countable dense set $G \subseteq R$ such that $|G \backslash D|<\omega$ for all $D \in \mathbf{D}$.

For every family $\mathbf{D},|\mathbf{D}|<\mathfrak{c}$, of dense open sets of the real line R and for every countable dense set $Q \subseteq R$ there exists a countable infinite set $G \subseteq Q$ such that $|G \backslash D|<\omega$ for all $D \in \mathbf{D}$.

For every family $\mathbf{D},|\mathbf{D}|<\mathfrak{c}$, of dense open sets of the real line R and every countable dense set $Q \subseteq R$ there exists a countable dense set $G \subseteq Q$ such that $|G \backslash D|<\omega$ for all $D \in \mathbf{D}$.

Let us recall some characterisations of $\operatorname{cov}(R)$ and $\operatorname{add}(R)$ which we will use in the sequel.

Lemma 1 ([1], Miller-Bartoszynski). $\operatorname{cov}(R)>k$ iff Equal (k).
Lemma $2([6]) . \operatorname{add}(R)>k$ iff for every family $D=\left\{D_{i}: i \in k\right\}$ of dense open sets of R there exists a family $Q=\left\{Q_{n}: n \in \omega\right\}$ of dense open sets of R such that for every $i \in k$ there exists $n \in \omega$ with $Q_{n} \subseteq D_{i}$.
Lemma 3 ([14], Miller-Truss). $\operatorname{add}(R)>k$ iff $\operatorname{Bounded}(k)$ and $\operatorname{cov}(R)>k$.
As a corollary to Exercise C4 from [10, p. 242], one can easily establish the following lemma.
Lemma 4. Let (P, \leq) and (Q, \leq) be any two countable nonatomic posets. Then there exist dense sets $P^{\prime} \subseteq P$ and $Q^{\prime} \subseteq Q$ such that $\left(P^{\prime}, \leq\right)$ and $\left(Q^{\prime}, \leq\right)$ are isomorphic as posets. (There exists a bi-injective function $H: P^{\prime} \rightarrow Q^{\prime}$ such that $H(p) \leq H(q)$ iff $p \leq q$ for all $p, q \in P^{\prime}$.)

3. Characterisations of $\operatorname{cov}(R)$

Theorem 1. The following are equivalent for every cardinal k :
(1) $\operatorname{cov}(R)>k$.
(2) $\operatorname{Equal}(k)$.
(3) For every family $\mathbf{D},|\mathbf{D}|<k$, of dense open sets of the real line R there exists a countable dense set $G \subseteq R$ such that $|G \backslash D|<\omega$ for all $D \in \mathbf{D}$.
(4) For every family $\mathbf{D},|\mathbf{D}|<k$, of dense open sets of the real line R there exists a countable infinite set G such that $|G \backslash D|<\omega$ for all $D \in \mathbf{D}$.
(5) Equal $^{*}(k)$.
(6) $\operatorname{PS}(k)$.
(7) MA_{k} (countable) (Martin's Axiom restricted to countable posets).
(8) For every family $\mathbf{D},|\mathbf{D}|<k$, of dense open sets of the real line R and for every countable dense set $Q \subseteq R$ there exists a countable infinite set $G \subseteq Q$ such that $|G \backslash D|<\omega$ for all $D \in \mathbf{D}$.
(9) For every T_{1} space X of countable π-weight and every family $D=$ $\left\{D_{i}: i \in k\right\}$ of dense open sets in X there exists a countable infinite set $G \subseteq X$ such that $\left|G \backslash D_{i}\right|<\omega$ for all $i \in k$.
Proof. (1) $\leftrightarrow(2)$ and (1) \leftrightarrow (7) are well known. (1) $\leftrightarrow(2)$ is Lemma 1, and $(1) \leftrightarrow(7)$ is a consequence of Lemma 4.
$(1) \rightarrow(3)$ and $(3) \rightarrow(4)$ are straightforward.
(4) $\rightarrow(5)$. Fix $F=\left\{f_{i}: i \in k\right\} \subseteq^{\omega} \omega$. For every $i \in k, D_{i}=\left\{f \epsilon^{\omega} \omega\right.$: $f_{i}(n)=f(n)$ for some $\left.n \in \omega\right\}$ is clearly a dense open subset of ${ }^{\omega} \omega$. Using (4), Lemma 4, and standard density arguments one can easily verify that there exists a countable infinite set $G \subseteq{ }^{\omega} \omega$ such that $|G \backslash D|<\omega$ for all $i \in k$. It is not hard to see that G satisfies Equal ${ }^{*}(k)$ for the collection F as required.
$(5) \rightarrow(2)$. First we need to show
Claim. Equal ${ }^{*}(k) \rightarrow$ Weak Bounded (k).
Proof. Let $F \subseteq \omega^{\omega}$ be a family of size k. Using the assumption choose a family $\left\{g_{n}: n \in \omega\right\}$ such that

$$
(\forall f \in F)\left(\forall^{\infty} n\right)(\exists \kappa)\left(g_{n}(\kappa)=f(\kappa)\right)
$$

By passing to a subsequence we can assume that, for every $n, g_{n}(n), g_{n+1}(n)$, $g_{n+2}(n), \ldots$ are all equal or pairwise different.

Subclaim. For every $f \in F$ there exists n and $\kappa \leq 2 n$ such that $g_{\kappa}(n)=$ $f(n)$.
Proof. Suppose not, and let $f \in F$ be such that $g_{\kappa}(n) \neq f(n)$ for $\kappa \leq 2 n$. Find κ_{0} and a sequence $\left\{n_{\kappa}: \kappa \geq \kappa_{0}\right\}$ such that $g_{\kappa}\left(n_{\kappa}\right)=f\left(n_{\kappa}\right)$ for $\kappa \geq \kappa_{0}$. By the assumption, $\kappa>2 n_{\kappa}$. Consider terms $n_{\kappa_{0}}, n_{\kappa_{0}+1}, \ldots, n_{2 \kappa_{0}}$. Note that all these terms are smaller than κ_{0}. Thus, for some $i<j, n_{\kappa_{0}+i}=n_{\kappa_{0}+j}=n^{*}$. It follows that

$$
g_{\kappa_{0}+i}\left(n^{*}\right)=g_{\kappa_{0}+j}\left(n^{*}\right)=f\left(n^{*}\right)
$$

In particular, $g_{n^{*}}\left(n^{*}\right)=f\left(n^{*}\right)$, a contradiction finishing the proof of the subclaim.

To finish the proof of the claim define

$$
g(n)=\max \left\{g_{\kappa}(n): \kappa \leq 2 n\right\}+1 \quad \text { for } n \in \omega .
$$

Clearly

$$
(\forall f \in F)(\exists n)(f(n)<g(n)) .
$$

This shows that F cannot be dominating as required.
To complete the proof of (5) \rightarrow (2), fix $F=\left\{f_{i}: i \in k\right\} \subseteq{ }^{\omega} \omega$ and let $A=\left\{A_{j}: j \in \omega\right\} \subseteq[\omega]^{\omega}$ be a partition of ω. For every $j \in \omega$ let $G_{j}=$ $\{g(j, n): n \in \omega\}$ satisfy $\operatorname{Equal}^{*}(k)$ for the collection $F_{j}=\left\{f_{i} \mid A_{j}: i \in k\right\}$. Define a function $h_{j}: \omega \rightarrow \omega$ by requiring

$$
h_{i}(j)=\min \left(\left\{m:(\forall l \geq m)\left(\exists u \in A_{j}\right)\left(g(j, l)(u)=f_{i}(u)\right)\right\}\right) .
$$

Let, by the claim, $h: \omega \rightarrow \omega$ satisfy Weak $\operatorname{Bounded}(k)$ for the collection $H=\left\{h_{i}: i \in k\right\}$, and define a function $g: \omega \rightarrow \omega$ by letting

$$
g / A_{j}=g(j, h(j))
$$

Clearly g satisfies Equal (k) for the collection F as required.
(7) \rightarrow (6). Fix a set $A=\left\{A_{i}: i \in k\right\} \subseteq[\omega]^{\omega}$, and let $B=\left\{b_{n}: n \in\right.$ $\omega\} \subseteq[\omega]^{\omega}$ be a π-base for A. Clearly $D_{i}=\left\{b \in B: b \subseteq A_{i}\right\}$ is dense in (B, \subseteq) for all $i \in k$. Using (7), one can easily verify that there exists a filter $G=\left\{b_{n}: n \in \omega\right\}$ of (B, \subseteq) meeting each D_{i} nontrivially. Via an easy induction pick for every $n \in \omega$,

$$
s_{n} \in\left(b_{n} \backslash\left\{s_{m}: m \in n\right\}\right)
$$

Clearly, $S=\left\{s_{n}: n \in \omega\right\}$ is an infinite pseudointersection for A as required.
(6) $\rightarrow(8)$. Let $D=\left\{D_{i}: i \in k\right\}, Q$, and B be a family of dense open sets, a countable dense set, and a countable base for R, respectively.

Put

$$
A_{i}=D_{i} \cap Q \text { for all } i \in k
$$

and

$$
B_{b}=b \cap Q \text { for all } b \in B
$$

Clearly $B^{*}=\left\{B_{b}: b \in B\right\}$ is a π-base for $A=\left\{A_{i}: i \in k\right\}$. Thus, by (6), there exists an infinite pseudointersection $G \subseteq Q$ for A. This certainly implies that $\left|G \backslash D_{i}\right|<\omega$ for all $i \in k$ as required.
$(8) \rightarrow(4)$ and $(6) \rightarrow(9)$ are straightforward.
To finish the proof of the theorem it suffices to show
(9) \rightarrow (6). Fix $A=\left\{A_{i}: i \in k\right\} \subseteq[\omega]^{\omega}$, and let $B=\left\{B_{n}: n \in \omega\right\} \subseteq[\omega]^{\omega}$ be a π-base for A. Without loss of generality we may assume that $\bigcup A=$ $\bigcup B=\omega$. For every $x, n \in \omega$, we let $B_{n}(x)=B_{n} \backslash\{x\}$ and put

$$
F=\left\{B_{n}(x): n, x \in \omega\right\}
$$

Clearly the topology T_{F} which is produced from the subbase F is T_{1} and second countable. Furthermore, A is a family of dense open sets in the topological space $\left(\omega, \mathbf{T}_{F}\right)$. Thus by (9) there exists a set $G \subseteq X,|G|=\omega$, such that $\left|G \backslash A_{i}\right|<\omega$ for all $i \in k$ as required.

As an easy corollary of Theorem 1(4) we have $\operatorname{cf}(\operatorname{cov}(R))>\omega$. In fact, more than that is true. Namely, let $\mathbf{s}_{\boldsymbol{c}}$ denote the least k for which the following statement fails.

For every family $G \subseteq{ }^{\omega} \omega,|G|<\mathfrak{d}$, and every family $F=\left\{f_{i}: i \in k\right\} \subseteq{ }^{\omega} \omega$ there exists a family $H=\left\{h_{n}: n \in \omega\right\} \subseteq{ }^{\omega} \omega$ such that for every $g \in G$ if g meets all but less than k many members of F, then g meets all but finitely many members of H

Then, we have:
Corollary 1. If $\operatorname{add}(R) \leq \mathbf{s}_{\mathrm{c}}$, then $\operatorname{cf}(\operatorname{cov}(R)) \geq \operatorname{add}(R)$.
Proof. Assume on the contrary, and let

$$
\operatorname{cf}(\operatorname{cov}(R))=\lambda<\operatorname{add}(R) \leq \mathbf{s}_{\mathrm{c}} .
$$

In view of [5, Theorem 3.1(d), p. 116], we may assume that $k=\operatorname{cov}(R)<\mathfrak{d}$. Fix, by Theorem 1, a family

$$
G=\left\{g_{i}: i \in k\right\} \subseteq{ }^{\omega} \omega
$$

such that

$$
\left(\forall H \in\left[{ }^{\omega} \omega\right]^{\omega}\right)(\exists i \in k)\left(\exists^{\infty} h \in H\right)\left(h \cap g_{i}=\varnothing\right) .
$$

Fix $\left\{\lambda_{j}: j \in \lambda\right\}$ a cofinal set in k. For every $j \in \lambda$ let $f_{j}: \omega \rightarrow \omega$ be such that

$$
\left(\forall i \in \lambda_{j}\right)\left(\exists^{\infty} n\right)\left(g_{i}(n)=f_{j}(n)\right) .
$$

Put $F=\left\{f_{j}: j \in \lambda\right\}$, and note that

$$
(\forall i \in k)\left(\left(\forall^{\infty} j \in \lambda\right)\left(f_{j} \cap g_{i} \neq \varnothing\right)\right)
$$

Fix, by $\mathbf{s}_{\mathbf{c}}>\lambda$, a set $H \in\left[{ }^{\omega} \omega\right]^{\omega}$ satisfying

$$
(\forall i \in k)\left(\forall^{\infty} h \in H\right)\left(h \cap g_{i} \neq \varnothing\right) .
$$

This contradicts the choice of G and finishes the proof.

4. Characterisations of $\operatorname{add}(R)$

Theorem 2. The following are equivalent for every cardinal k :
(1) $\operatorname{add}(R)>k$.
(2) $\operatorname{SPS}(k)$.
(3) For every family $\mathbf{D},|\mathbf{D}|<k$, of dense open sets of the real line R and every countable dense set $Q \subseteq R$ there exists a countable dense set $G \subseteq Q$ such that $|G \backslash D|<\omega$ for all $D \in \mathbf{D}$.
(4) Equal ${ }^{*}(k)$ and $\operatorname{Bounded}(k)$.
(5) Equal (k) and $\operatorname{Bounded}(k)$.
(6) MA_{k} (countable) and $\operatorname{Bounded}(k)$.
(7) For every T_{1} space X of countable π-weight, every family $D=\left\{D_{i}\right.$: $i \in k\}$ of dense open sets in X, and every countable dense set $Q \subseteq X$ there exists a dense set $G \subseteq Q$ such that $\left|G \backslash D_{i}\right|<\omega$ for all $i \in k$.
Proof. (1) \rightarrow (3) follows immediately from Lemma 2.
(3) \rightarrow (4). In view of Theorem 1 and Lemma 3, we only have to show that (3) implies Bounded (k). Fix $F=\left\{f_{i}: i \in k\right\} \subseteq{ }^{\omega} \omega$. Without loss of generality we may assume that each f_{i} is a strictly increasing function. It is easy to see that

$$
\mathbf{D}_{i}=\left\{f \in{ }^{\omega} \omega: f(n)>f_{i}(n) \text { for some } n \in \omega\right\}
$$

is a dense open set of the Baire space ω^{ω}. Let

$$
G=\left\{g_{n}: n \in \omega\right\} \subseteq^{\omega} \omega,
$$

where g_{n} is eventually equal to zero. Clearly G is dense in ω^{ω}. By (3), Lemma 4, and standard density arguments, there exists a dense set $Q=\left\{q_{n}\right.$: $n \in \omega\} \subseteq G$ such that

$$
\left|Q \backslash D_{i}\right|<\omega \text { for all } i \in k .
$$

Choose a subsequence $Q^{\prime}=\left\{q_{n_{v}}: v \in \omega\right\}$ of Q such that

$$
\left(\forall u \geq n_{v}\right)\left(q_{n_{v}}(u)=0\right) \wedge(\forall v \in \omega)\left(\left(q_{n_{v+1}} \mid n_{v}\right)=0\right) .
$$

On the basis of Q^{\prime} we define a function $f: \omega \rightarrow \omega$ by requiring

$$
f(u)=\max \left\{q_{n_{v}}(t): v \leq u+1, t \in \operatorname{Dom}\left(q_{n_{v}}\right)\right\} .
$$

f dominates F. Indeed, fix $i \in k$, and let $v^{\prime} \in \omega$ satisfy

$$
\left(\forall v \geq v^{\prime}\right)\left(q_{n_{v}} \in D_{i}\right) .
$$

This means that

$$
\left(\forall v \geq v^{\prime}\right)\left(\exists n \in\left[n_{v-1}, n_{v}\right)\right)\left(q_{n_{v}}(n)>f_{i}(n)\right) .
$$

Thus, if $v>v^{\prime}$, then we have

$$
f(u) \geq \max \left\{q_{n_{u+1}}(n): n \in\left[n_{u}, n_{u+1}\right)\right\}>f_{i}\left(n_{u}\right)>f_{i}(u),
$$

and the desired result follows.
Implications (4) $\rightarrow(5) \rightarrow(6) \rightarrow$ (1) are clear (Theorem 1 and Lemma 3).
(6) \rightarrow (2). Fix $A=\left\{A_{i}: i \in k\right\} \subseteq[\omega]^{\omega}$, and let $B=\left\{b_{n}: n \in \omega\right\} \subseteq[\omega]^{\omega}$ be a base for A. For every $n \in \omega$, by (6), fix $S_{n}=\{s(n, m): n \in \omega\} \subseteq b_{n}$ an infinite pseudointersection for A. For every $i \in k$ define a function $f_{i}: \omega \rightarrow \omega$ by requiring

$$
f_{i}(n)=\min \left\{v: s(n, m) \in D_{i} \text { for all } m \geq v\right\} .
$$

Put $F=\left\{f_{i}: i \in k\right\}$. By Lemma $3(k<\operatorname{add}(R) \leq \mathfrak{b})$, there exists a function $f: \omega \rightarrow \omega$ such that

$$
(\forall i \in k)\left(\forall^{\infty} n\right)\left(f_{i}(n) \leq f(n)\right)
$$

On the basis of f we define a set S by letting

$$
S=\{s(n, m): n \in \omega, \quad m \geq f(n)\} .
$$

It can be readily verified that S is a pseudointersection of A meeting every member of B in an infinite set as required.
(2) \rightarrow (3). Fix $D=\left\{D_{i}: i \in k\right\}$ and G as in (3). By Lemma 2, there is a family $Q=\left\{Q_{n}: n \in \omega\right\}$ of dense open sets of R such that

$$
(\forall i \in k)(\exists n \in \omega)\left(Q_{n} \subseteq D_{i}\right)
$$

Let $B=\left\{B_{n}: n \in \omega\right\}$ be a base for the topology of R. By induction, choose a set

$$
T=\left\{t_{n}: n \in \omega\right\} \subseteq G
$$

such that

$$
t_{n} \in\left(\left(B_{n} \cap\left(\bigcap\left\{Q_{m}: m \leq n\right\}\right) \cap G\right) \backslash\left\{t_{m}: m<n\right\}\right)
$$

Clearly T is dense in R, and $\left|T \backslash Q_{n}\right|<\omega$ for all $n \in \omega$. This, when combined with the above, finishes the proof of $(2) \rightarrow(3)$.
(7) \rightarrow (3) is straightforward.
(6) \rightarrow (7). It suffices in view of Theorem 1 to show that $\operatorname{PS}(k)$ and Bounded (k) together imply (2). This can be established as in (6) \rightarrow (2) of the present theorem.

Let $\operatorname{PS}\left(\omega_{1}, k\right)$ be the generalisation of $\operatorname{PS}(k)$ to the next higher cardinal with the additional requirement that B be a countable closed base ($\cap Q \in B$ for every $Q \in[B]^{\omega}$) of size ω_{1}. Of course the continuum hypothesis must be assumed here. Also, let $\omega^{*}=\beta \omega \mid \omega$ denote the remainder of the Stone-Čech compactification of ω with the discrete topology.
Question 1. Assume CH. Does $\operatorname{PS}\left(\omega_{1}, k\right)$ imply $\operatorname{cov}\left(\omega^{*}\right)>k$?
Question 2. Can $\mathbf{s}_{\boldsymbol{c}}$ be strictly less than $\operatorname{add}(R)$?

Acknowledgments

The author wishes to thank Professor D. H. Fremlin for all his communications and the referee for some valuable remarks concerning the notions of $\operatorname{cov}(R)$ and $\operatorname{add}(R)$ and for shaping the paper in its present form.

References

1. T. Bartoszynski, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 81 (1984), 209-213.
2. __, Combinatorial aspects of measure and category, Fund. Math. 127 (1987), 225-239.
3. T. Bartoszynski and J. I. Ihoda, On the cofinality of the smallest covering of the real line by meagre sets, J. Symbolic Logic 54 (1989), 828-832.
4. T. Bartoszynski, J. I. Ihoda, and S. Shelah, The cofinality of cardinal invariants related to measure and category, J. Symbolic Logic 54 (1989), 719-726.
5. E. K. van Douwen, The integers and topology, Handbook of Set Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 113-167.
6. D. H. Fremlin, The partially ordered sets of measure and category and Tukey's ordering, preprint.
7. Cichon's diagram, Seminaire d'Initiation a l'Analyse (G. Choque, M. Rogalski, and J. Saint Raymond, eds.), 23eme anne: 1983-1984, Université Pierre et Marie Curie, (Paris-VI), Paris, expose 5.
8. T. Jech, Set theory, Academic Press, New York, 1978.
9. K. Keremedis, Partition reals and the consistency of $t<\operatorname{add}(R)$, Math. Log. Quart. 39 (1993).
10. K. Kunen, Set theory, North-Holland, Amsterdam, 1983.
11. \qquad , Random and Cohen reals, Handbook of Set Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 887-911.
12. A. W. Miller, A characterisation of the least cardinal number for which the Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982), 498-502.
13. \qquad , The Baire category theorem and cardinals of countable cofinality, J. Symbolic Logic 47 (1982), 275-288.
14. __, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114.
15. J. E.Vaughan, Small uncountable cardinals and topology, Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, Amsterdam, 1990.

Department of Mathematics, University of Aegean, Karlovasi 83200, Samos, Greece
E-mail address: kker@pythagoras.aegean.ariadne-t.gr.

[^0]: Received by the editors April 1, 1993 and, in revised form, September 10, 1993; presented to the 3rd Greek Conference on Mathematical Analysis held in Ioannina, May 28-29, 1993.

 1991 Mathematics Subject Classification. Primary 03E35; Secondary 03E40.
 Key words and phrases. Covering number, additivity number, nowhere dense, meagre, bounding number, dominating number.

