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ON THE COVERING AND THE ADDITIVITY NUMBER
OF THE REAL LINE
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(Communicated by Andreas R. Blass)

Abstract. We show that the real line R cannot be covered by k many no-

where dense sets iff whenever D = {D¡ : i e k} is a family of dense open sets

of R there exists a countable dense set G of R such that \G\D¡\ < co for
all i e k. We also show that the union of k meagre sets of the real line is a

meagre set iff for every family D = {D¡ : i £ k} of dense open sets of R and

for every countable dense set G of R there exists a dense set Q ç G such that

\Q\Di\ <w for all i£k.

1. Notation and terminology

The notation and terminology which we will use is standard and can be found

in [8] or [9]. In particular, if A, B are sets and X any cardinal finite or infinite,

then [A]x , [A]<Á , and [A]-À denote the sets of all subsets of A of size X, < X,

and < X respectively, co03 denotes the Baire space, i.e., the set of all functions
uco together with the topology, having as a base the collection of all (clopen)
sets of the form

[p] = {f£œco:pçf},       p£co<0J = lJ{nco:n£co}.

We say that the family A C [co]03 has the countable n-base property (C7tbp),

iff there exists a F g [[ca]Cí,]CÜ, call it a n-base, such that

(Va G A)Cyb £ B)(3d £ B)(d Qanb).

In order to avoid confusion, let us remark that the notions of orbp and a filter
A of [co]01 having a countable base are not the same. B need not be included

in A. In fact, B may contain disjoint sets.

A ç [co]03 has the strong finite intersection property (sfip), iff | f| Q\ - co for
every Q £ [A]<(0.

We say that a set S £ [co]w is an infinite pseudointersection of the family

A ç [co]03 iff (Va G A)(\S\a\ < co).
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Let k, m be any infinite cardinal numbers less than the power of the con-

tinuum c. We define the following combinatorial statements:

PS(fc) = Every A £ [[co]03]-k with the cnbp has an infinite pseudointersection.

We remark here that it is consistent with ZFC that there exist sets A ç [co]03

having the sfip but no countable n-base (there are filters having no countable

base). Indeed, let (M, g) be a model of ZFC such that M t= p = cox +cov(R) -
co2 (see [9, Theorem 3]), where p is the pseudointersection number and cov(F)

the covering number of the real line. Then there exists a set A ç [co]03, \A\ -

cox, having the sfip but no infinite pseudointersection. If B = {b„ : n £ co} ç

[co]03 were a 7t-base for A, then, using cov(F) > cox, one can easily construct

a pseudointersection S for A which is a contradiction.
SPS(rc) = For every A £ [[co]wpk and for every 7r-baseF g [[co]03]03 for A

there exists an infinite pseudointersection S of A meeting each member of B

is an infinite set.

Equal(fc) = (VF G ["cop^h G0 <y)(V/ G F)(3°°n)(f(n) = h(n)), where
3°°n abbreviates the statement "there are infinitely many".

Equal*(Ä:) = (VF G [a>copk)(3hn £m tu)(V/ G F)(V°°«)(3m G co)(f(n) =

hn(n)), where V°°« abbreviates the statement "for all but finitely many".

Bounded(rc) = (VF G [aœpk)(3h £m co)(Vf G F)(V°°n)(f(n) < h(n)).

Weak Bounded(fc) = (VF G [aœ]^k)(3h g" co)(\lf G F)(3~n)(/(«) < h(n)).
The bounding number b and the dominating number ö are the least cardinal

numbers k for which the statements Bounded^/:) and Weak Bounded(Ac) fail

respectively.
Let (X, T) be a topological space. A dense subset Q of the poset (T\(0),

C) is called a n-base for X.
A set N C X is called nowhere dense iff int(N) = 0, and a set A C X is

called meagre iff A is the union of countable many nowhere dense sets. The

covering number, cov(^T), and the additivity number, add(X), of the space X
are given by:

cov(X) = min{|7)| : D is a family of dense open sets in X with f\D = 0} ,
add(X) = min{|7)| : Z) isa family of meagre sets of X but \JD is not a

meagre set of X} respectively.

All undefined terms are used as in [5, 8, 10].

2. Introduction and preliminary results

The covering number, cov(F), of the real line may be a singular cardinal
number [11]. In this case, it has been shown by A. W. Miller in [13] that cov(F)

has uncountable cofinality, and T. Bartoszynski and J. I. Ihoda have shown in

[3] that its cofinality is greater than or equal to add(L), where add(L) is the

additivity number of the ideal L of all Lebesque null sets of the real line. It is
an open question (see [3, 4, 15]) whether cf(cov(F)) can be less than add(F).
Note that if cov(F) < b, then by Lemma 3 we have cov(F) = add(F) and
that if cov(F) = D, then cf(5) > b (see [5, Theorem 3.1(d), p. 116]). Thus
the above-mentioned question is nontrivial only in case b < cov(R) < d (it is
known (see [7]) that cov(F) < D).

The technology that exists in this area seems to be inadequate in answering
the above-mentioned question. The aim of this paper is mainly to find new

characterisations of the cardinals cov(F) and add(F) and then reformulate the
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problem in terms of these new characterisations. Such characterisations may
be raised from simple combinatorial statements holding true in the presence of
the continuum hypothesis CH ; e.g.,

For every family D, |D| < c, of dense open sets of the real line R there exists

a countable dense set GCR such that \G\D\ < co for all D £ D.
For every family D, |D| < c, of dense open sets of the real line R and for

every countable dense set Q ç R there exists a countable infinite set G ç Q

such that \G\D\ < co for all D G D.
For every family D, |D| < c, of dense open sets of the real line R and every

countable dense set Q ç R there exists a countable dense set G ç Q such that

\G\D\ < co for all 7)gD.
Let us recall some characterisations of cov(F) and add(F) which we will

use in the sequel.

Lemma 1 ([1], Miller-Bartoszynski).  cov(F) > k iff Equal(fc).

Lemma 2 ([6]). add(F) > k iff for every family D - {D¡ : i G k} of dense open
sets of R there exists a family Q = {Q„: n £co} of dense open sets of R such
that for every i £ k there exists n £ co with Qn ç D¡.

Lemma 3 ([14], Miller-Truss).  add(F) > k iff Bounded(rc) and cov(R) > k.

As a corollary to Exercise C4 from [10, p. 242], one can easily establish the
following lemma.

Lemma 4. Let (P, <) and (Q, <) be any two countable nonatomic posets.

Then there exist dense sets P' ç P and Q' ç Q such that (P', <) and (Q1, <)

are isomorphic as posets. (There exists a bi-injective function 77: F' —> Q' such

that H(p) < H(q) iff p < q for all p, q £ P'.)

3. Characterisations of cov(F)

Theorem 1. The following are equivalent for every cardinal k :

(1)    COv(Fv)>rC.

(2) Equal(fc).
(3) For every family D, |D| < k, of dense open sets of the real line R there

exists a countable dense set G ç R such that \G\D\ < co for all D G D.

(4) For every family D, |D| < k, of dense open sets of the real line R there

exists a countable infinite set G such that \G\D\ < co for all DeD.
(5) Equal*(it).
(6) PS(fc).
(7) MAfc (countable) (Martin's Axiom restricted to countable posets).

(8) For every family D, |D| < k, of dense open sets of the real line R and

for every countable dense set Q ç R there exists a countable infinite set

GCQ such that \G\D\ < co for all D G D.
(9) For every Tx space X of countable n-weight and every family D =

{Dj : i £ k} of dense open sets in X there exists a countable infinite set

GCX such that \G\D¡\ < co for all i£k.

Proof. (1) <-► (2) and (1) <-► (7) are well known. (1) <-♦ (2) is Lemma 1, and
(1) *-y (7) is a consequence of Lemma 4.

(1) —► (3) and (3) -> (4) are straightforward.
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(4) -* (5). Fix F = {fi : i £k} C03 co. For every j € k, D¡ = {/ £a co :

f(n) = /(«) for some n £ co} is clearly a dense open subset of "w. Using
(4), Lemma 4, and standard density arguments one can easily verify that there

exists a countable infinite set G ç "co such that \G\D\ < co for all i £ k. It is
not hard to see that G satisfies Equal* (k) for the collection F as required.

(5) -* (2). First we need to show

Claim. Equal* (k) -* Weak Bounded(zc).

Proof. Let F C co03 be a family of size k. Using the assumption choose a

family {gn:n £ co} such that

(VfeF)(Yx>n)(3K)(g„(K) = f(K)).

By passing to a subsequence we can assume that, for every n , gn(n), gn+\(n),

gn+i(n), ... are all equal or pairwise different.

Subclaim. For every f £ F there exists n and k <2n such that gK(n) =

An).

Proof. Suppose not, and let f £ F be such that gK(n) ^ f(n) for k < 2n.
Find Ko and a sequence {nK : k > k0} such that gK(nK) - f(nK) for k > k0 .

By the assumption, k > 2nK . Consider terms nKo, nKo+x,... , n2Ko. Note that

all these terms are smaller than /c0 • Thus, for some i < j, nKo+¡ - nKo+j = n*.

It follows that

gKo+i(n*) = gKo+j(n*) = f(n*).

In particular, gn* («*) = /(«*), a contradiction finishing the proof of the sub-

claim.
To finish the proof of the claim define

g(n) - max{gK(n) : k < 2n} + 1   for n £ co.

Clearly
(Vf £ F)(3n)(f(n) < g(n)).

This shows that F cannot be dominating as required.
To complete the proof of (5) —y (2), fix F = {/ : i e k} ç wco and let

A = {Aj : j G co} ç [co]03 be a partition of co. For every j £ co let (7, =

{g(j ) n) : n e. co} satisfy Equal* (k) for the collection F, = {f\A} : i £ k}.
Define a function h¡ : co -y co by requiring

hi(i) = min({m : (V/ > m)(3u G Aj)(g(j, l)(u) = /,(«))}).

Let, by the claim, h: co —y co satisfy Weak Bounded(/c) for the collection

H = {h,r : i G k} , and define a function g: co —► co by letting

g/Aj = g(j,h(j)).

Clearly g satisfies Equal(/c) for the collection F as required.

(7) -> (6). Fix a set A = {A¡ : i g k} ç [co]03, and let B = {bn : n G

co} ç [co]03 be a 7t-base for A. Clearly D¡ = {b £ B : b ç A¡} is dense
in (B, C) for ail i £ k. Using (7), one can easily verify that there exists a
filter G - {bn : n £ co} of (B, ç) meeting each £>, nontrivially. Via an easy

induction pick for every n £ co,

s„ £ (bn\{sm : m £ «}).

Clearly, S = {s„ : n £ co} is an infinite pseudointersection for A as required.
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(6) -+ (8). Let D = {D, : i £ k} , Q, and F be a family of dense open sets,
a countable dense set, and a countable base for R, respectively.

Put
A¡ = A n ô for all i £ k

and
Bb = b n Q for all b £ B.

Clearly B* - {Bb : b £ B} is a n-base for A - {A¡ : i £ k} . Thus, by (6), there
exists an infinite pseudointersection G ç Q for A . This certainly implies that

\G\Dj\ < co for all i £ k as required.
(8) —y (4) and (6) -» (9) are straightforward.
To finish the proof of the theorem it suffices to show

(9) -> (6). Fix A = [Ai :i£k}C [co]03, and let B = {Bn : n £ co} ç [co]03

be a 7t-base for A. Without loss of generality we may assume that (J A =

UB = co. For every x, n £ co, we let B„(x) = Bn\{x} and put

F = {B„(x) :n, x £co}.

Clearly the topology Tf which is produced from the subbase F is Tx and
second countable. Furthermore, A is a family of dense open sets in the topo-

logical space (co, Tf). Thus by (9) there exists a set G ç X, \G\ — co, such

that |t7\y4,-| < co for all i £ k as required.   G

As an easy corollary of Theorem 1(4) we have cf(cov(F)) > co. In fact, more

than that is true. Namely, let sc denote the least k for which the following

statement fails.

For every family G ç 03co, \G\ < 3, and every family F = {f : i £ k} ç 03co
there exists a family 77 = {h„ : n £ co} ç "co such that for every g £ G if g

meets all but less than k many members of F, then g meets all but finitely

many members of 77
Then, we have:

Corollary 1. If add(R) < sc, then cf(cov(R)) > add(F).

Proof. Assume on the contrary, and let

cf(cov(Fv)) = X < add(Fv) < sc.

In view of [5, Theorem 3.1(d), p. 116], we may assume that k = cov(R) < D.

Fix, by Theorem 1, a family

G = {g¡ :i£k}c03co

such that

(V77 G [Bwf)(3¡ G k)(3°°h G H)(h n g¡ = 0).

Fix {Xj : j G X} a cofinal set in k . For every j G X let f■■: co -» co be such that

(Vi€Xj)(3°°n)(gi(n) = fj(n)).

Put F — {fj : j £ X} , and note that

(Vi£k)((v°°j£X)(fjngni0)).

Fix, by sc > X, a set H £ [^co]03 satisfying

(V/ g k)(V°°h £ H)(h n gi ¿ 0).

This contradicts the choice of G and finishes the proof.   D
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4. Characterisations of add(R)

Theorem 2. The following are equivalent for every cardinal k :

(1) add(R)>k.
(2) SPS(fc).
(3) For every family D, |D| < k, of dense open sets of the real line R

and every countable dense set Q ç R there exists a countable dense set

GCQ such that \G\D\ < co for allD g D.
(4) Equal* (k) and Bounded(fe).
(5) Equal(/c) and Bounded(fc).
(6) MA*, (countable) and Bounded(Zc).
(7) For every Tx space X of countable n-weight, every family D = {D¡ :

i G k} of dense open sets in X, and every countable dense set Q ç X

there exists a dense set G ç Q such that \G\D¡\ < co for all i £k.

Proof.  (1) —y (3) follows immediately from Lemma 2.

(3) —► (4). In view of Theorem 1 and Lemma 3, we only have to show that

(3) implies Bounded(fc). Fix F = {/ : i G k} C ^co. Without loss of generality
we may assume that each f is a strictly increasing function. It is easy to see
that

D, = {f £03co: f(n) > f(n) for some n £ co}

is a dense open set of the Baire space co03. Let

G = {gn:neco}çtoco,

where g„ is eventually equal to zero. Clearly G is dense in co03. By (3),

Lemma 4, and standard density arguments, there exists a dense set Q = {qn :

n £co} CG such that

\Q\D¡\ < co   for all i £ k.

Choose a subsequence Q' = {q„v : v £ co} of Q such that

(Vw > nv)(qnv(u) = 0) A (Vu G co)((q„v+¡ | nv) = 0).

On the basis of Q we define a function f.co^co by requiring

f(u) = max{q„v(t) : v < u + 1, t € Dom(tf„J}.

/ dominates F. Indeed, fix i £ k , and let v' £ co satisfy

(Vu > v')(qnv £ Di).

This means that

(Vu > u')(3« G [/!„_,, nv))(qnv(n) > /(«)).

Thus, if u > v', then we have

f(u) > max{qnu+l(n) :n£[nu, nu+x)} > f(nu) > f(u),

and the desired result follows.

Implications (4) —> (5) -> (6) -► (1) are clear (Theorem 1 and Lemma 3).
(6) -► (2). Fix A = {Ai :i£k}c [co]03, and let B = {b„ : n £ co} ç [co]03

be a base for A . For every n £ co, by (6), fix S„ = {s(n, m) : n £ co} ç b„ an

infinite pseudointersection for A . For every i G k define a function / : co —> co
by requiring

fi(n) = min{u : s(n, m) £ D¡ for all m > v}.
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Put F - {f : i £ k} . By Lemma 3 (k < add(F) < b), there exists a function
f: co —y co such that

(Vz G k)(V°°n)(fi(n) < /(»)).

On the basis of / we define a set 5" by letting

S = {s(n, m) : n £co, m > /(«)}.

It can be readily verified that S is a pseudointersection of A meeting every
member of B in an infinite set as required.

(2) -* (3). Fix D = {D¡ : i £ k} and G as in (3). By Lemma 2, there is a
family Q - {Qn : n £ co} of dense open sets of R such that

(Vz G k)(3n £ co)(Q„ ç D¡).

Let B = {B„ :n£co} be a base for the topology of R. By induction, choose a
set

F = {tn : n £ co} C G

such that

tn e [(b„ n (f|{ßm : rn < «}) n G) \{im : m < «}).

Clearly F is dense in R, and |F\Q„| < co for all n £ co. This, when combined
with the above, finishes the proof of (2) -» (3).

(7) -+ (3) is straightforward.
(6) -+ (7). It suffices in view of Theorem 1 to show that PS(/c) and

Bounded(/c) together imply (2). This can be established as in (6) -» (2) of
the present theorem.   D

Let PS(ct>i, k) be the generalisation of PS(/c) to the next higher cardinal

with the additional requirement that F be a countable closed base (f]Q £ B

for every Q £ [B]03) of size cox. Of course the continuum hypothesis must be

assumed here. Also, let co* = ßco \ co denote the remainder of the Stone-Cech
compactification of co with the discrete topology.

Question 1. Assume CH. Does PS(a>i, k) imply cov(<y*) > /c?

Question 2. Can sc be strictly less than add(F) ?
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