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THE MINIMAL NORMAL /¿-COMPLETE FILTER ON PKX
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(Communicated by Andreas R. Blass)

Abstract. We introduce the closed (resp. strongly closed) /¿-unbounded filter

CF£X (resp. SCF{fx) for a regular cardinal ß < k , which is a //-complete

analog of the closed (resp. strongly closed) unbounded filter on PKX . We give

their simple characterizations for the case p. = cox . We also study generators

of CF£X (resp. SCF^ ) over CF£X (resp. SCF£X) for the case co</i<u.

0. Introduction

The closed unbounded filter on PKX, denoted by CFKx, was introduced by
Jech [5] as a natural generalization of that on a regular cardinal k . Its funda-
mental characterization as the minimal normal /c-complete filter was established

by Carr [1]. At the same time, she reformulated a result of Menas [8] which

indicates the complexty of PKX relative to k , as the difference between CFKx

and the strongly closed unbounded filter SCFK)i introduced by herself. This
simple fact motivates our work in the present paper and [10].

In this note, we introduce their //-complete analogs for a regular cardinal

p < k , i.e., the closed /¿-unbounded filter CFj¡x and the strongly closed p-

unbounded filter SCF£Á . Our main concern is to stress the difference between

CF¿!Á and SCF£A through investigating the forms of their generators.

First we consider the case p-œx. For their own purposes, several people [2,

4, 6, 9] have already considered similar problems for CFKx, or more specifically
for CFWix . Among them, Matet [7] gave the simplest solutions to both cases.

By a rather different argument from his, we show that CF™¿ is generated by

the sets of the form {x : f"x2 c x}, where / : A2 -* A. This includes
both his results as immediate corollaries. We also show that SCF™xl can be
characterized by two unary functions on A but not by one unary function, in
contrast to CF^1 .

The same problem as above is meaningless for the case p > cox. Instead
we study generators of CF^ (resp.   SCF^ ) over CF»X (resp.   SCF^ ) for
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CF^

Table 1

CFV + A    =   CF" + B    = CF^ + C    d    CFV + D    D    CF»
Il U 40

il                          n                          n U iU

CF^+A   =   CF^+B =   CF^+C    D CFW^+D   D CF0"
n                       n                       n n                     m

CFœ + A    =   CF^ + B =   CFa + C    D CF^ + D    D CF°>

SCF»+
m

SCF^ + A   $  SCF^ + B D  SCFK + C   D SCF^ + D   D SCF»
m                       fö                      <U iU                  fU

n                        íU                       iU iU                   to

SCF^+A   D  SCF^+B 2  SCF^+C  D SCF°»+D  D SCF<°>
u                        n                        n n                    n

SCFm+A   D  SCFW+B 2  SCFW+C   2 SCFm+D   D SCFW

co < p < v . For example, it has been known to people including authors of [2,

4] that the set {x : x n k £ k} generates CFKx over CF^X'. We investigate
whether this statement would hold for other simply definable subsets of PKX.

Table 1 summarizes our result. Subscripts k and A are dropped for nota-
tional simplicity. We also abbreviate by A, B, C, and D the sets {x : o'^x c

Fx}, {x : x n p+ £ p+], {x : p c x}, and {x : |x| > p} respectively, where

C0X < p< K .

1. Preliminaries

Fix a regular cardinal k > co and a cardinal A > k . We begin by recalling

some basic notions on PKX = {x c X : \x\ < k} . F Ç PPKX is called a filter if it

is closed under intersections and supersets and is fine (i.e., {x : a £ x} £ F for
any a < X ). A subset of PKX is said to be closed (resp. strongly closed) if it is

closed under unions of chains (resp. subsets) of cardinality < k , and is said to

be unbounded if it is cofinal in the partially ordered set (PKX, c). A filter F is
said to be //-complete if it is closed under intersections of subsets of cardinality

< p and is said to be normal if it is closed under diagonal intersections (i.e.,

AaKxXa = {x : Va £ x x £ Xa] £ F for any {Xa : a < X] c F). CFkX
(resp. SCFKx ) is the filter generated by the closed (resp. strongly closed) and

unbounded subsets of PKX.
We use p and v (resp.   £ and C ) to denote an infinite regular cardinal

< k (resp. an uncountable cardinal < k ). We denote by F + X the filter

generated by F U {X} , where X c PKX is positive and copositive with respect

to a filter F (i.e., PKX - X, X & F).  a + ß (resp.  a • ß ) is the ordinal sum
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(resp. product) of a and ß. We fix a bijection n : A2 -> A. er : A -> A

and cr^ : A -+ [A]i denote the successor function and the function defined by

o¿a) = {a + ß : ß < {} respectively. By a -> [fl<» (resp. a -» [fl^ ),

we mean that for any / : [a]<0} -* Pyô (resp. / : [a]<0> —» y ) there exists

x £ [a]P with U/"[*]<Ctí Ï S (resp. |/"[x]<cu| < S ), where a, j?, y and 5

are all cardinals.

Before introducing /z-complete analogs of CFKx and SCFKx, it is appropri-
ate to recall the following characterizations of the original versions.

1.1. Proposition [1, 8]. CFKx (resp. SCFKx) is generated by the sets of the

form {x : f"x2 c Px} ( resp. {x : f"x c Px}), where f : X2 -* PKX ( resp.

f:X-yPKX).

Definition.  (1)   CF£X   (resp.  SCF£Á) is the filter generated by the sets of the

form {x : f"x2 c Px}   ( resp.   {x : f"x c Px}), where f : X2 -* PßX  ( resp.

/:A-P„A).
(2) X c PKX is p-unbounded in PKX iff Xn PßX is unbounded in PßX.

The same argument as in [1, 2, 4, 8] works for the following (see [10] for a

short proof of (2)).

1.2. Proposition. (1) CF£X (resp. SCF£X) is generated by the closed (resp.

strongly closed) and p-unbounded subsets of PKX.

(2) CF¿x = SCFK»i + {x:n"x2cx}.
(3) CF£X is the minimal normal p-complete filter on PKX.

(4) CF£X = CF™ + {x:xr\p£p}, where cox<p.

Proof. Let us give a combinatorial proof of (4), which is a prototype of later
arguments.

Fix f : X2 -y PftX. We define h : X2 -y PWX and show {x : x n p £

p and h"x2 c Px} C {x : f"x2 c Px} .

First define g : A3 -> A by g(a, ß,0) = \f(a, ß)\,{g(a, ß, y) : 0 < y <
\f(a,ß)\} = f(a,ß) and g(a,ß,y) = 0 for y > \f(a,ß)\. We show
{x : x n p £ p and g"x3 c x} c {x : f"x2 c Px} .

Let x £ PKX be closed under g and xDp £ p. Fix a, ß £ x . Then 0 £ x,

since x n p / 0 is an ordinal when a < p and since 0 = g(a, a, a) when

a > p. Hence \f(a, ß)\ + 1 ex, since \f(a, ß)\ = g(a, ß, 0) € x n p is an

ordinal. Thus f(a, ß) c {g(a ,ß,y):y< \f(a, ß)\} c x.
Define h : X2 — PWX by h(a, ß) = {n(a, ß),g(a, n~l(ß))}. Then {x :

h"x2 c Px} c {x : g"x3 c x} by the standard argument and hence we are

done.   D

Several people [2, 4, 6, 9] have already characterized CF™X or CFWix in
their own ways. Let us summarize some of them.

1.3. Proposition. The following are equivalent for X c PKX.

(1) X£CF%.
(2) X£CF%.
(3) {x : f"x<w cxjcl for some f:X<(°^X.
(4) {x : f"x«° c Px} c X for some f : X«° -» PWlX.
(5) {x : x < (A; /),<ß,)} c X for some structure (A; f)i<(0 with the universe
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A and finitary functions {/ : i < to} on X, where " < " denotes an elementary

substructure.

Proof. We show only equivalence of (1) and (2).   The other statements are

equivalent to (2) by standard arguments.

Define / : A -» PaX by f(a) = {0, a + 1}. Then {x : f"x c Px} c {x :
co c x} £ CFjfx . Hence CF£X is cox-complete by the standard argument using

normality of CF?X . Thus CF^ C CF"X by minimality of CF^ .   D

2. The case p = cox

In this section, we try to find the simplest form of generators of CF™X and

SCF™XX. It is easily seen by the methods in the last section that CF^xl can be

characterized by two binary functions on A. A closer coding yields that one

binary function suffices.

2.1. Theorem.  X £ CF"X< iff {x : f"x2 c x} c X c PKX for some f:X2^X.

Proof. We show the only-if part.
Fix f : X2 —y PWX. By Proposition 1.3, it suffices to define p : A2 —► A and

show {x : p"x2 c x} c {x : f"x2 c Px}.
First fix p : A2 -+ A such that p\{(a, ß) £ X2 : a ¿ ß} is a bijection to

A - {0} , p(a, a) = 0 for a < A, p(a ,0) is a limit ordinal for 0 < a < X, and
p(a, ß) > co for a < A and ß < co with a # ß.

Define g : A - P^X by g(0) = /(0, 0) and g(y) = f(p~\y)) U f(y, y) for
y > 0. We show {x : p"x2 c x and g"x c Px} c {x : f"x2 c Px} .

Let x £ PKX be closed under p and g . Fix a, ß £ x . Then f(a, ß) c x,

since /(a, ß) c g(/>(a, ß)) f°r Q ̂  A > and since /(a, a) c g(a).
For a < A, we can fix na < co such that n ^ a and />(a, n) £ g(a) for any

«a < " < (0, since {n < co : p(a, n) £ g(a)} is finite. Define h : X2 —y X by

h(a, 0) = a+ 1, {/j(a, n) : na < n < na + \g(a)\} = g (a) and A(a, /?) = 0 for

0 < ß < na and na + \g(a)\ < ß . We show {x : h"x2 c x} c {x : g"x C Fx} .

Let x £ PKX be closed under h . Fix a £ x . Then co c x, since 0 = h(a, a)

for a > 0 and n + 1 = h(n,0) for n < co. Thus g(a) c {h(a, n) : n < co} c

x.
Define ik : A -♦ A by k(0) = h(0, 0) and k(y) = h(p~x(y)) for y > 0. We

show {x : p"x2 c x and k"x c x} c {x : h"x2 c x}.
Let x £ PKX be closed under p and k . Fix a, ß £ x. Then h(a, ß) £ x ,

since h(a, ß) — k(p(a, ß)) for a ^ ß , since A(a, a) = p(a, a) = 0 for a > 0

and since A(0, 0) = *(0).
Define p : X2 -» A by /?(a, a) = fc(a) and p(a, ß) = p(a, ß) for a ¿ ß.

We show {x : p"x2 c x} c {x : p"x2 c x and k"x c x} .
Let x e PKX be closed under p . Fix a £ x . Then k(a) = p(a, a) £ x and

p(a, ß) - p(a, ß) £ x for ß £ x with a ^ ß . We show p(a, a) = 0 £ X .

We can assume a > 0. Put ô = h(ß, y), where p(ß, y) = a and ß ¿ y.

Then ô = k(a) £ x and S ± a, since h(ß, y) ^ p(ß, y) by the definition

of h and p.  Put n = p(ô, a).  Then r¡ > 0 and n = p(ô, a) ex, since

5 ^ a. Hence by the definition of h, 0 — h(S, a) = k(n) £ x when a > co.

When a < co, we have n > co by the definition of p. Put 6 — p(a, n). Then

6 > 0 and 6 - p(a, n) £ x, since a ^ n.  Hence by the definition of h,

0 = h(a, n) = k(9) £ x , since n > co.   D
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2.2. Corollary [7]. (I) X £ CF?X iff {x : xf\p £ p and f"x2 c x} c X c PKX

for some f : X2 —> A.
(2)  X £ CFaxx iff {x : f"x2 c x} c X c PUlX for some f:X2^X.

We need to introduce the successor function o : X —► A to get an analog of

Theorem 2.1 for SCF^ .

2.3. Theorem. X £ SCF™1 iff {x : o"x c x and f"x c x} c X c PKX for
some f : X—y X.

Proof. We show the only-if part.
Fix / : A -y PWlX. Define g : X -> A by g(co • a + n) - co • a for odd

n < co and {g(co • a + n) : n < co is even} = \Jm<(0f(co • a + m). We show

{x : a"x c x and g"x c x} c {x : f"x c Px} .
Let x £ PKX be closed under o and g. Fix co • a +1 £ x with I < co. Then

co • a £ x, since co • a = g(co • a + l) or g(o(co • a + I)) according to whether

/ is odd or even. Hence {co-a + n : n < co} c x, since x is closed under a.

Thus f(co • a + I) c Um<cu /(w -oc + m) c {g(co • a +n) : n < co} C x.   D

2.4. Corollary. (1) X £ SCFw¡x iff {x : o"x c x and f"x c x} c X c PW¡X
for some f : X—y X.

(2)  SCF%=SCF?X.

A simple observation yields that Theorem 2.3 is optimal with respect to the

number of characterizing functions.

2.5. Proposition,  {x : f"x c x} <£ {x : co c x} for any f : A —» A.

Proof. Let f : X -y X be a counterexample. Set x = {/m(0) : 0 < m < co},
where fm : A -> A is the m-fold iteration of /. Then co c x, since x is closed

under / and by the choice of /. Pick 0 < n < co with f"(0) = 0. Then
x = {fm(0) : 0 < m < n} is finite, contradicting towcx.   D

3. The case p > cox

We have already seen in the last section that CF™1 = CF¡fx and SCF^ =
SCF¡fx . This never happens for the pair (v , p) in place of (cox, co). Instead we
have four kinds of simply definable subsets of PKX which witness the difference

between CF»X (resp. SCF£X ) and CF*X (resp. SCF£X ) as a candidate for a
generator of the former over the latter.

The same argument as in Theorem 2.3 settles the first case where v = £+

and the candidate is {x : eri'x c Px}.

3.1. Theorem. X £ SCFfx  iff {x : o'¿x C Px and f"x c x} c X c PKX for

some f : X -» A.

3.2. Corollary.   (1)  SCF¡¿¡ = SCF™ + {x : o'¿x C Px}.

(2)  CF^ = CF-x + {x:a'¿xcPx}.

We have already seen in Proposition 1.2(4) the second case for CF£X where
the candidate is {x : x n v £ u} . An analog of Proposition 1.2(4) fails for
SCF£X as in Corollary 3.4(4). We have in fact the following stronger result.
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3.3. Theorem. SCF£X+ £ SCFfx + {x : x n k £ k} .

Proof. We show {x : a'^x c Px} £ SCF»X + {x : x n k £ k} .

Otherwise pick / : A -» F^A with {x : x n /c e k and /"x c Fx} c {x :
o'¿x c Px}.

Let x £ [X]K be the closure of k under /. Then we can pick ß - p-a < X

with aß(ß) n x = 0, since A is the disjoint union of {oM(p • a) : a < X} . Let

y £ PfiX be the closure of {/?} under /. Set z = \jn<wz„, where z„ £ PKX
is defined inductively by z0 = {ß} and z„+i = sup(z„ n k) U U/"zn • Then

ffi,(/#) c z, since zf)K£K and z is closed under / and by the choice of /.
On the other hand z c x Uy , since z„ c xUy by induction on n < co. Hence

CTß(ß) c y, since aß(ß) n x - 0, contradicting to y € PßX.   D

3.4. Corollary. Let p+ < v in (1) and p <£, in (2) and (3).

(1) SCF¿ + {x : x n v £ v} D SCF*X + {x : x n v £ v} .

(2) SCFJtl + {x : Ç c x} D SCF?X + {x : { c x} .

(3) SCFfx + {x : \x\ >Z}D SCF£X + {x : |x| > £} .
(4) SCF¿X D SCF£X + {x : x n v £ v} .

(5) SCFg D SCF?X + {x : f c x}.

(6) SCf£dSCF£ + {x:|x|>c;}.

The same argument as in Proposition 1.3 settles the third case for CF^X

where v — Ç+ and the candidate is {x : £, c x} .

3.5. Proposition.  CFfx = CF?X + {x : { c x} .

An analog of Proposition 3.5 fails for SCF£X as in Corollary 3.4(5). We
have in fact the following stronger result.

3.6. Theorem. Let p<£,. Then SCFfx + {x : x n£,+ £ £+} 2 SCF^ + {x : <f c
x}.

Proof. We show {x : x n £+ £ £,+} f SCF¡¡X + {x : <* c x} .
Otherwise pick / : A -+ P^X with {x : S, c x and f"x c Fx} c {x : x n ¿;+ e

í+}.
Let x £ [Xy* be the closure of ¿j under /. Set ß = xn¿;+ € í+ . Let y e P^X

be the closure of {ß + c;} under /. Then ß + Ç £ (x U y) n ¿;+ is an ordinal,

since £ c x Uy is closed under / and by the choice of /. Hence ß +Ç c x Uy .
Thus {ß + y :y <Q cy , since x n ( ß + ¿;) c /? , contradicting to y e F^A.   D

We need to generalize the notion of square bracket partition relations (see

[3]) to consider the forth case for CF£X where v = ¿;+ and the candidate is

{x : |x| > {} .

3.7. Theorem. Let p < f < £.    F/ze«  CF¿¡ c CF»X + {x : |x| > c;}  ij

Froo/. First observe that CF¿+ c CF£ + {* : |x| > £} iff {x : C C x} e CF& +
{x : |x| > £} iff there exists f : X2 -y P^X with {x : |x| > v and /"x2 c Fx} c

{x : C c x} iff there exists / : A2 —► F^A with Ç c xy for any y G [A]4 , where
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xz £ PKX is defined to be the closure of z G PKX under / iff (*) there exists

/ : A2 -> PßX with (J g"[y]<0> = C for any y G [A]« , where g : [X]<0> -» F/ is
defined by g(s) = x5 n (.

The last equivalence follows from the fact that xz = \Jse[z]<°>xs ^0T any

z G PKX, which we show.

Define xZ;„ G PKX inductively by xZ;0 = z and xZ;„+i = xZj„ U|J/"*!,« •

Then xz = \Jn<wxz,n and xz>„ c \Js€[z]<axs by induction on n < co.

Now we show that (*) holds iff A -h [f]^ .

7/parí. Let A : [X]<(0 -* FMÇ witness A /> ß]<® . Define / : A2 -» F„A

by /(a, /?) = {7r(a, /?)} u IJh"[ya]<0}, where ya G Fa.A is the closure of {a}

under 7t-1. We show that h(s) c xs for any s £ [X]<co-{0}, which immediately

implies that / witnesses (*).
Fix 5 = {a, :/<«}€ [A]<t0. Define /?, < A inductively for i < n by

/S0 = an and /?,+i = n(ßi, ai+x). Then /?, G Xj by induction on i < n , since

Xs is closed under n. Thus h(s) c f(ßn, ßn) c xs, since s G [yß„]<(0 .

Only-if part,    g : [X]<ü) -> PßC defined as in (*)  clearly witnesses A -/+

rag- °
It is easily seen that A -> [<j;]£™ iff A -> K]^™<;i a general form of Chang's

conjecture (see [3]).

3.8. Corollary. Let p < £. FAe«

(1) Cf£ + {x:|x|>£} = CF¿ + {x:|x|>¿} #AAK]<^.

(2) CF«; = CF?X + {x : \x\ >$} iff X-h [flg .

An analog of Corollary 3.8(2) fails for SCF^X regardless of partition relations

as in Corollary 3.4(6). We have in fact the following stronger result.

3.9. Theorem. Let p<£. Then SCF»X + {x:Çcx}D SCF?X + {x : \x\ > £} .

Proof. We show {x : £ c x} ¿ SCF?X + {x : \x\ > {} .
Otherwise pick f-.X^P^X with {x : |x| > £ and f"x c Px} c {x : <* c x} .
Let xa £ Pf¡X be the closure of {a} under / for a < A. Define g : A —> p

by g (a) = sup(xQ n p) + 1. Pick y G [A^ and y < p with g"y = {y} . Then

z - Uaey *o e W* is dosed under / and znp c\J g"y C y, contradicting to

the choice of /.   D
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