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Abstract. In this paper, inspired by the work of Fort, the stability of the set

F(f) = {y e X : supx€Xf(x, y) < 0} (respectively, the set F(A, /) = {v €

A : s\xpx€A f(x, y) < 0} ) with / varying (respectively, with both f and

A varying) is studied where X is a non-empty compact convex subset of a

Hausdorff topological vector space (respectively, X is a Hausdorff topological

space and A is a non-empty compact subset of X ) and / : X x X -» K is

bounded.

1. Introduction

Let (X, d) be a compact metric space with fixed point property for continu-

ous mappings. In [6], Fort introduced the concept of essential fixed points of a

continuous mapping / on I. He proved that ( 1 ) every continuous mapping on

X can be arbitrarily approximated by a continuous mapping on X whose fixed

points are all essential and (2) if each fixed point of a continuous mapping f

on X is essential, then the fixed point set F(f) = {x € X : f(x) = x} of / is
stable: for each e > 0, there is ô > 0 such that for each continuous mapping g

on X, if p(f, g) = sup{¿(/(x), g(x)) :x£X}<5, then h(F(f), F(g)) < e
where h is the Hausdorff metric defined on all bounded closed subsets of X

induced by the metric d ; i.e., the fixed point set F(g) of g is " close " to the

fixed point set F(f) of / whenever g is " close " to /.
On the other hand, in [4], Ky Fan proved the following minimax inequality

which plays a very important role in nonlinear analysis (e.g., see Lin and Simons

[9]):

Theorem A. Let X be a non-empty compact convex subset of a Hausdorff topo-

logical vector space and /:IxI-»ß be such that

(a) for each fixed x £ X, y »-> f(x, y) is lower semicontinuous;

(b) for each fixed y £ X, x y-y f(x, y) is quasi-concave (i.e., for each

X £ R, the set {x £ X : f(x, y) > X} is convex).

Then infyeA- supxeA- f(x, y) < supx6A- f(x, x).
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It is clear that Ky Fan's minimax inequality Theorem A is equivalent to the
following:

Theorem B. Let X be a non-empty compact convex subset of a Hausdorff topo-
logical vector space and f : X x X -» R be such that

(i) f(x, x) < 0 for all x£X;
(ii) for each fixed x £ X, y >-> f(x, y) is lower semicontinuous;

(iii) for each fixed y £ X, xh f(x, y) is quasi-concave.

Then there exists y £ X such that f(x, y) < 0 for all x £'X.

We shall call such a point y in Theorem B the Ky Fan's point (in short, KF

point) of / in X and denote by F(f) the set of all KF points of f in X.
Thus F(f) is non-empty by Theorem B. Also, by the condition (ii) of Theorem

B, F(f) = nxex{y e X : f(x, y) < 0} is closed in X and is thus also compact.
Therefore, for each function /:IxI-»l satisfying the conditions (i), (ii)

and (iii) of Theorem B, one can associate a non-empty compact subset F(f),
the set of all solutions y e X of the inequality sup^g^ f(x, y) < 0, of X.

In this paper, we shall first discuss the stability of F(f) with / varying where

/ is a bounded real-valued function on X x X satisfying the conditions (i),

(ii), and (iii) in Theorem B and X is a non-empty compact convex subset of a

Hausdorff topological vector space. Next, if X is a Cech-complete space which
belongs to the class ¿2? (see definition below), we shall study the stability of

the set F (A, f) - {y e A : supx6^ f(x, y) < 0} with both / and A varying,
where f : X x X ->R is bounded and lower semicontinuous and A is a non-

empty compact subset of X. When X is a closed convex subset of a Frechet
space, as an application, the stability of the set F (A, f) is investigated, where
/:IxI-»l satisfies, in addition, the conditions (i) and (iii) of Theorem B
and the subset A is, in addition, compact convex.

Now we shall recall some definitions. If A' is a topological space, we shall
denote by K(X) and ¿Pq(X) the space of all non-empty compact subsets of X
and the space of all non-empty subsets of X respectively, both endowed with
the Vietoris topology (see Klein and Thompson [8]). If Z is another topological

space, then a mapping T : X —y ̂o(Z) is said to be (i) upper (respectively,

lower) semicontinuous at x € X, if for each open set G in Z with G D T(x)

(respectively, G<~) T(x) ^ 0 ), there exists an open neighborhood O(x) of x in

X such that G D T(x') (respectively, Gr\T(x') ¿ 0 ) for each x' e 0(x) ; (ii)
T is said to be almost lower semicontinuous at x £ X, if there exists z £ T(x)

such that for each open neighborhood N(z) of z in Z , there exists an open

neighborhood 0(x) of x in X with the property that N(z)C) T(x') ^ 0 for
each x' £ O(x) ; and (iii) T is an usco if T is upper semicontinuous with
non-empty compact values. Also, the space X is said (i) to be Cech-complete
if it can be embedded as a Gg subset of some compact Hausdorff space and (ii)

to belong to the class 3? (see Kenderov [7]) if for each Cech-complete space

Z, every usco mapping F : Z —> K(X) is almost lower semicontinuous on
some dense G¡ subset of Z .

By Theorem 2 of Fort [5], each completely metrizable space belongs to f?
and each Banach space with its weak topology (which is non-metrizable if it is
infinite dimensional) is also in S? (see Theorem 2 of Christensen [2]).
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2. Stability in the compact setting

Throughout this section, X denotes a non-empty compact convex subset of

a Hausdorff topological vector space. Let L(X) be the family of all bounded

real-valued functions on X x X. For f, g £ L(X), define

p(f,g)=  sup \f(x,y)-g(x,y)\.
x,y£X

Clearly, (L(X), p) is a complete metric space. Let

M = {/ £ L(X) : f satisfies the conditions (i), (ii), and (iii) of Theorem B}.

It is easy to show that M is closed in L(X). Thus we have:

Lemma 2.1.  (M, p) is a complete metric space.

Now for each / £ M, the set F(f) = {y £ X : supx€X f(x, y) < 0} is
non-empty and compact by Theorem B. Furthermore, we have:

Lemma 2.2. F : M —y K(X) is upper semicontinuous.

Proof. Since X is compact, we only need to prove that the graph of F is

closed in M x X. For any net {(fa, ya)}aer m Graph F with (fa,ya) —*

(f, y0) £ M x X, we have /«->/, ya -<• y0 and fa(x , ya) < 0 for all a £ T
and for all x £ X. Fix x £ X. Since y >-► f(x, y) is lower semicontinuous

at yo, for any e > 0, there exists an open neighborhood O(yo) of y o in

X such that for each y' 6 O(y0), f(x,y0) < f(x,y') + e/A. As fa-*f,
there exists a0 £ T such that for any a > a0, p(f, fa) < e/4 so that for

each y' e O(y0), fa(x, y0) < f(x, y0) + e/4 < f(x, y') + e/2 < /Q(x, y') +
3c/A. Since yQ -» yo, there exists ax > ao such that ya, e O(y0) ; it follows

that f(x, y0) = f(x, y0) - /a, (x, y0) + /«, (x, yo) - /a, (x, yQ1 ) + fai (x, ya, ) <

/>(/> A) + 3e/4 < e . Since e > 0 is arbitrary, f(x, yo) < 0 for all x £ X.
This implies that (/, yo) £ Graph F and hence Graph F is closed in M x X.

Therefore F is upper semicontinuous since X is compact.   G

Definition 2.1. For each / £ M, (i) a point y £ F(f) is A^.F-essential relative

to M if for each open neighborhood N(y) of y in X, there exists an open

neighborhood 0(/) of / in M such that F(f') n 7Y(y) ̂  0 for each /' e
0(/) ; (ii) / is weakly essential relative to M if there exists y £ F(f) which
is A'F-essential relative to M ; and (iii) / is essential relative to M if every

y £ F(f) is KF -essential relative to M.

The following result is due to Fort [5, Theorem 2]:

Lemma 2.3. // X is (completely ) metrizable, Z is a Baire space, and F : Z ->
A'(JSl') is an usco mapping, then the set of points where F is lower semicontinuous

is a (dense) residual set in Z .

Theorem 2.1. (i) F is almost lower semicontinuous at f £ M if and only if f

is weakly essential relative to M.
(ii) F is lower semicontinuous at f £ M if and only if f is essential relative

to M.
(iii) F is continuous at f £ M if and only if f is essential relative to M.

Proof, (i) F is almost lower semicontinuous at / e M if and only if there

exists y £ F(f) such that y is A'F-essential relative to M if and only if / is

weakly essential relative to M.
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(ii) F is lower semicontinuous at f £ M if and only if each y £ F(f) is

AF-essential relative to M if and only if / is essential relative to M.
(iii) This follows from (ii) and Lemma 2.2.   D

If X is metrizable by a metric d, then the Vietoris topology on K(X) coin-
cides with the topology generated by the Hausdorff metric h induced by d (e.g.,
see [8, Corollary 4.2.3, p. 41]). Then F is continuous at f £ M if and only if

for each e > 0 there is ô > 0 such that for each g £ M, h(F(f), F (g)) < e

whenever p(f, g) < ô; i.e., F(f) is stable: F (g) is "close" to F(f) when-

ever g is "close" to /. Theorem 2.1 (iii) shows that F(f) is stable if and
only if / is essential relative to M.

We shall give a sufficient condition that f £ M is essential relative to M :

Theorem 2.2. If f £ M is such that F(f) is a singleton set, then f is essential
relative to M.

Proof. Suppose F(f) = {x}. Let G be any open set in X such that F(f) n
G ^ 0 ; then x £ G so that F(f) c G. Since F is upper semicontinuous
at / by Lemma 2.2, there is an open neighborhood O(f) of f in M such

that F(f') c G for each f £ 0(f); in particular, GnF(f') ± 0 for each
/' £ 0(f). Thus F is lower semicontinuous at /. By Theorem 2.1(ii), / is

essential relative to M.   D

Theorem 2.3. (i) Suppose that X belongs to class Sf. Then there exists a dense

Gg subset Q of M such that f is weakly essential relative to M for each

f€Q.
(ii) Suppose that X is (completely) metrizable. Then there exists a (dense)

residual subset Q of M such that f is essential relative to M for each f £ Q.

Proof, (i) Since M is a complete metric space, M is Cech-complete. By

Lemma 2.2, the mapping F : M -» K(X) is upper semicontinuous. Since
X belongs to class S?, F is almost lower semicontinuous on some (dense) G¿

subset Q of M. By Theorem 2.1(i), / is weakly essential relative to M for

each f £Q.
(ii) By Lemma 2.2 and Lemma 2.3, F is lower semicontinuous on some

(dense) residual subset Q of M. By Theorem 2.1(ii), / is essential relative

to M for each f £Q.   D

We remark that if we define M = {f £ L(X) : f satisfies the condi-

tions (i) and (ii) of Theorem A} and F(f) = {y £ X : supx€A- f(x, y) <

suP;tex f(x > x)} for each f £ M, then all results in this section remain valid.

3. Stability in the non-compact setting

In section 2, we have studied the stability of the solution set F(f) of / in

X with / varying but X fixed. In this section we shall study the stability of

the solution set F(f) n A of / in A with both / and A varying.

Throughout this section, X denotes a Hausdorff topological space and L(X)

denotes the space of all bounded real-valued lower semicontinuous functions

on X x X. For each f,f2£ L(X), let

P(f\,fi)=     sup     \fi(x,y)-f2(x,y)\;
{x,y)€XxX

then clearly p is a metric on L(X).
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Let Y = K(X) x L(X). Now for each u = (A, f) £ Y, we consider the
following problem of finding y £ A such that

(*) sup/(x,y)<0.
xeA

Such a point y in A satisfying (*) is called a Ky Fan's point (in short, KF

point) of f in A.
Before we study the stability of the set F(u) of KF points of / in A for

u - (A, f) £ Y, we shall give several lemmas which will be used to prove our

main results later. The proof of the following result is routine and is hence

omitted.

Lemma 3.1.  (L(X), p) is a complete metric space.

Lemma 3.2. Suppose X is a non-empty subset of a Hausdorff topological vector

space. If {^4Q}aer is a net of compact and convex sets in K(X) which converges

to A £ K(X) in the Vietoris topology, then A is also convex.

Proof. Suppose that A were not convex. Then there exist xi, x2 £ A and

X £ (0, 1) such that Xx\ + (1 - X)x2 $ A . Since A is compact, there exist an
open set G in X containing A and an open neighborhood 0(Xxx + (1 -X)x2)

of Xxx + ( 1 - X)x2 in X such that 0(Xxx + ( 1 - X)x2) n G = 0 . Note that there
exist an open neighborhood 0(xx) of Xi in X and an open neighborhood

0(x2) of x2 in X such that AO(x0 + (l -X)0(x2) C 0(Xx{ + (l -X)x2). Since
xj, x2 £ A and Aa -> A, there exists c*o £ T such that for any a > ao,

0(xx) n Aa t¿ 0 and 0(x2) n Aa ^ 0. Since G D A, there exists ax £ T

such that for each a > ax , G D Aa. Now let a2 £ Y be such that a2 > ao

and a2 > ax. Then for any a > a2, 0(x\) F\Aa^0, 0(x2) n Aa ^ 0, and

4cG. Choose any zi e O(xi) n Aai and z2 e 0(x2) n Aa2. Since Aai is

convex, Azi + (1 - A)z2 £ ^a2 c G. But

Xzx + (l- X)z2 £ XO(xx) + (1 - X)0(x2) c 0(Axi + (1 - X)x2)

which contradicts 0(Axi + (1 - A)x2) n G - 0. Hence A must be convex.   D

The following result is Lemma 3.3 of Beer [1]; as it was stated without a

proof, we shall include its simple proof for completeness:

Lemma 3.3. Let {Aa}a€x~ be a net in K(X) which converges to A £ K(X) in

the Vietoris topology. Then any net {xQ}Q€r with xa £ Aa for each a £Y has

a cluster point in A.

Proof. Suppose that the net {xa}a(Er has no cluster point in A. Then for

each x £ A, there exist an open neighborhood O(x) of x in X and an

a(x) £ T such that xQ ^ 0(x) for all a > a(x). Since A c UxeA0(x)

and A is compact, there exist xi, x2, ... , xn £ A such that A c U"=10(x,).

Now let a' be such that a' > a(x¡) for i - 1,2,...,«. Then for any

a > a', xa $ 0(xi) for i = 1,2,...,«. Since U?=10(x,) is an open set

which contains A and Aa -y A in the Vietoris topology, there exists a" £ T

such that for any a > a", xa £ Aa C U"=lO(x¡). Now let a'" £ Y be such

that a'" > a' and a'" > a" ; then xa»> £ 0(x¡) for / = 1,2,...,« which

contradicts xa<" e Aa„, c Uf=10(x;). Hence {xQ}aer has a cluster point in
A.   D
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Now define the subspace M of Y by M = {(A, /) € Y : there exists y £ A

such that supx6j4 f(x, y) < 0} . Then we define a mapping F : M -> &o(X)

by .F(m) = {y € ^4 : supx€/4 /(x, y) < 0} for each u- (A, f) e M.

Lemma 3.4. M is closed in Y.

Proof. Suppose that {(Aa, fa)}aer is a net in M such that (Aa, fa) -* (A, f)

£ Y. For each a £ Y, let ya £ Aa be such that s\ivx€Aa fa(x, ya) < 0.

Since Aa —y A in the Vietoris topology, the net {ya}Qer has a cluster point

yo £ A by Lemma 3.3. Now we shall show that supx6^ f(x, yo) < 0. Suppose

that this is not true; then there would exist e0 > 0 and x0 £ A such that

f(xo, yo) > eo • Since / is lower semicontinuous at (xo, yo), there exist an
open neighborhood 0(xo) of xo in X and an open neighborhood O(yo) of yo

in X such that f(x, y) > e0 for any (x, y) £ O(x0) x O(y0). Since fa—yf,
there exists a0 £ Y such that for any a > a0, \fa(x, y) - f(x, y)\ < eo/2 for

all (x, y) £ X x X. Therefore fa(x, y) > f(x, y) - e0/2 > e0 - eo/2 = e0/2
for each (x,y) £ O(xo) x O(yo). As Aa -» A, there exists ax > ao such

that O(xo) n Aa ,¿ 0 for all a > ax. Note that y0 £ A is a cluster point

of {yalaer and that there exists q2 > ax such that yai £ O(y0). Choose

any xai £ O(xo) n Aai ; we have fa2(xa2, yQ2) > eo/2 which contradicts the

choice of yai £ Aai that supx€/4a fa(x, ya) < 0. Therefore we must have that

SUP*€.4 f(x, yo) < 0. Hence (A, f) £ M and M is thus closed in Y. D

Lemma 3.5. If X is Cech-complete, then M is Cech-complete.

Proof. The space L(X) is Cech-complete since L(X) is a complete metric
space by Lemma 3.1. Since X is Cech-complete, K(X) is also Cech-complete
by Lemma 2.2 of Beer [1]. Therefore the product space K(X) x L(X) is Cech-
complete by Theorem 3.9.8 of Engelking [3]. By Lemma 3.4 and Theorem 3.9.6
of Engelking [3], M is also Cech-complete.   D

Lemma 3.6. F(u) £ K(X) for each u £ M.

Proof. For each u = (A, f) £ M, since F(u) c A, it is sufficient to prove
that F(u) is closed in A. Let {yQ}a€r be a net in F(u) which converges to

a point yo £ A. By the definition of F, we have supxeAf(x, ya) < 0 for

each q e T. By the lower semicontinuity of y i-> supx€/4 f(x, y), we have

snpx€^ f(x, yo) < 0. Hence y0 £ F(u) so that F(u) is a closed subset of
A.   D

Lemma 3.7. The correspondence F : M -» Ä"(X) ¿s wpper semicontinuous.

Proof. Suppose that F is not upper semicontinuous at some point u = (A, f) £

M ; then there would exist an open subset G of X with G D F(u) and a net

{"a}aer in Af with ua ^ u £ M such that for each a e T, there exists

ya £ F(ua) with ya £ G. Denote ua = (Aa, fa) ; then fa^f and Aa -+

^4. Since ya e ^4a for each a £ Y, by Lemma 3.3, the net {yQ}a€r has a

cluster point y0 £ A. Since ya £ G for each a e T, we have yo £ G.

Therefore sup^.6^ f(x, yo) > 0, so that there exist e0 > 0 and xo £ A such that
f(xo, yo) > e0 . Since (x, y) >-+ f(x, y) is lower semicontinuous at (xo, yo),
there exist an open neighborhood O(xo) of Xo in X and an open neighborhood

O(y0) of y0 in X such that for any (x, y) £ O(x0) x O(y0), f(x, y) > e0.

Since fa-+f, there exists ax £ Y such that for any a > ax , \fa(x, y) -

f(x ,y)\< e0/2 for any (x, y) e X x X. Therefore fa(x, y) > f(x, y) - e0/2
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for all (x, y) £ XxX. Since 0(xo)r\A ^ 0 and Aa —> A, there exists a2 > ai

such that for any a> a2 , O(xo) D ̂ 4a ,¿ 0. Note that yo is a cluster point of

the net {ya}aer and that there exists 03 > q2 with ya} £ O(yo) ■ Now choose

any xQ3 £ O(x0) n ^a3 ; we have /«3(xa3, ya3) > /(x„3, yQ3) - e0/2. Therefore

fa,(xai, yai) > f(xa} ,ya})- Co 12 > e0 - e0/2 = e0/2 > 0 which contradicts the

fact that y„3 £ F(ua}). Therefore F must be upper semicontinuous.   D

Now let Mx be a non-empty closed subset of M.

Definition 3.1. For each u £ Mx, (i) a point y £ F(u) is ÄF-essential relative

to Mx if for each open neighborhood 0(y) of y in X, there exists an open

neighborhood 0(u) of u in Mx such that F(u') n O(y) / 0 for each 1/ e
0(u) ; (ii) « is weakly essential relative to Mx if there exists y 6 F(u) which
is AT-essential relative to Mx ; and (iii) u is essential relative to Mx if every

y £ F(u) is ÄF-essential relative to Mx.

Theorem 3.1. (i) F is almost lower semicontinuous at u £ Mx if and only if u
is weakly essential relative to Mx.

(ii) F is lower semicontinuous at u £ Mx if and only if u is essential relative

to Mx.
(iii) F is continuous at u £ Mx if and only if u is essential relative to Mx.

Proof, (i) F is almost lower semicontinuous at u £ Mx if and only if there

exists y € F(u) such that y is ÄF-essential relative to Mx if and only if u is
weakly essential relative to Mx.

(ii) F is lower semicontinuous at u £ Mx if and only if each y £ F(u) is

A'F-essential relative to Mx if and only if u is essential relative to Mx .
(iii) This follows from (ii) and Lemma 3.7.   D

A proof analogous to that of Theorem 2.2 gives us the following result and

is thus omitted:

Theorem 3.2. If u £ Mx is such that F(u) is a singleton set, then u is essential
relative to Mx.

Theorem 3.3. (i) Let X be Cech-complete and belong to the class J2?. Then

there exists a dense Gs subset Q of Mx such that u is weakly essential relative
to Mx for each u £ Q.

(ii) Let X be (completely) metrizable. Then there exists a (dense) residual
subset Q of Mx such that u is essential relative to Mx for each u £ Q.

Proof. Note that F is an usco by Lemma 3.6 and Lemma 3.7.
(i) Since X is Cech-complete, Lemma 3.5 implies that M is also Cech-

complete. Since Mx is closed in M, Mx is also Cech-complete by Theorem

3.9.6 [3]. Since X £ S?, there is a dense Gg subset Q of Mx such that F is
almost lower semicontinuous at each u £ Q. By Theorem 3.1(i), u is weakly

essential relative to Mx for each u £ Q.

(ii) By Lemma 2.3, there exists a (dense) residual subset Q of Mx such that

F is lower semicontinuous at each u £ Q. By Theorem 3.1 (ii), u is essential
relative to Mx for each u £ Q.   O

If A" is a complete metric space with metric d, then A'(A') is a complete
metric space when equipped with the Hausdorff metric « induced by d. By
Corollary 4.2.3 [8, p. 41], the Vietoris topology on K(X) coincides with the
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topology induced by the Hausdorff metric « . By Lemma 3.1, it follows that
Y — K(X) x L(X) and hence M and Mx are also complete metric spaces when

equipped with the metric D defined by

D(u,u') = p(f,f') + h(A,A')

for u = (A,f) and u' = (A', f). We note then, the mapping F : Mx — K(X)
is continuous at u = (A, f) £ Mx if and only if for each e > 0, there is ô > 0

such that h(F(u), F(u')) < e whenever u' £ Mx and D(u, u') < S ; i.e., the

solution set F(u) of u is stable: F(u') is close to F(u) whenever u' is close

to u for all u' e Mx. Theorem 3.1 (iii) implies that if it £ Mx, then u is
essential relative to Mx if and only if the solution set F(u) is stable.

Now let I bea non-empty closed and convex subset of a Frechet space E

equipped with a translation invariant metric d. Denote

CK(X) = {A£ K(X) : A is convex },

CL(X) = {/ e L(X) : f satisfies (i) and (iii) of Theorem B},

M' = CK(X) x CL(X).

The following is an application of the results obtained in this section:

Theorem 3.4. (i) M' is a non-empty closed subset of M.
(ii) There exists a dense Gg subset Q of M' such that u is essential relative

to M' for each u £ Q.

Proof, (i) Clearly M' is non-empty. If u = (A, f) £ M', then by Ky Fan's
minimax inequality Theorem B, there exists y £ A such that sup^€/1 f(x, y) <

0 ; thus u £ M so that M' c M. Now if {(An , fn)}™=x is a sequence in M'

such that (An , fn) -y (A, f) £ M, then f„—yfonX. Since for each y £ X,
x y-y fn(x, y) is quasi-concave, it is also easy to see that x i-> f(x, y) is also

quasi-concave. By Lemma 3.2, A is also convex. Thus (A, /) e M' so that

M' is closed in M.
Now (ii) follows from (i) and Theorem 3.3(ii).   D

Finally, we remark that if we define M = {(A, /) £ Y : there exists y £ A

such that swpxeA f(x, y) < sup^ex f(x, x)} , F(u) = {y £ A : supx€y4 f(x, y)

< supxexf(x,x)} for each u = (A,f) £ M and CL(X) = {f £ L(X) : f
satisfies (i) and (ii) of Theorem A } , then all results in this section remain valid.

For the study of stability of coincident points of upper semicontinuous mul-

tivalued mappings, stability of production economies, and the solutions in mul-

tiobjective optimization problems, we refer to the references [10], [11], and

[12].
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