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OSCILLATION AND NONOSCILLATION CRITERIA
FOR DELAY DIFFERENTIAL EQUATIONS

Á. ELBERT AND I. P. STAVROULAKIS

(Communicated by Hal L. Smith)

Abstract. Oscillation and nonoscillation criteria for the first-order delay dif-

ferential equation

x'{t)+p(t)x(T(t)) = 0, t > t0, T(0 < t,

are established in the case where

1
/   p(s) ds > -    and    lim  /    p(s) ds ■■

Jz(t) e í->°o yT(/)

1. Introduction

The qualitative properties of the solutions of the delay differential equation

(1) x'(t)+p(t)x(x(t)) = 0,       t>t0,

where r(t) < t, have been the subject of many investigations. The first system-

atic study was made by Myshkis [6]. Among others he has shown [5] that all

solutions of (1) oscillate if

p(t)>0,       limsup[í - t(/)] < oo,        liminf[t-T(t)]-liminfp(t) > -.
í-»oo '-*00 t-y°° e

Later these conditions were improved, by Ladas [4] and Koplatadze and Chan-

turija [3], to

/" 1
(2) liminf /    p(s)ds > -.

'^°°  Jx(t) e

Concerning the constant £ in (2) we mention that if the inequality
e

p(s)ds < -
'r(t)fJrli

holds, then, according to a result in [3], (1) has a nonoscillatory solution. To

the best of our knowledge there is no result in the case when we have

f 1 f' 1
(3) /    p(s)ds>-    and    lim /    p(s)ds--.

Jx(t) e '^°°Jx(t) e
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In connection with the delay function t(t) in (1) we suppose that r(t) is strictly

increasing on [to, oo), lim^oo z(t) = co, and its inverse is t_i (t) (t_i (t) > t).

Let T-k(t) be defined on [t0, oo) by

t_*_i(0 = t_i(t_*(0)    for* »1,2,...,

and let

(4) tk = x_k(to),        k=l,2,....

Clearly tk —y oo as k -» oo .
The coefficient p(t) is assumed to be a piecewise continuous function and

satisfies the relation
"        ,   y J 1

p(s)ds >LKO e

Let (p(t) be a continuous function on [t(ío), to]. A function x(t) is a so-
lution of (1), associated with the initial function (p(t), if x(t) — q>(t) on

tT(io) > ¿o] > ■*(*) is continuous on [f(io) , oo), is differentiable almost every-
where on (to, oo), and satisfies (1).

As is customary, a solution is called oscillatory if it has arbitrarily large zeros.

Otherwise it is called nonoscillatory.

Among the functions p(t) we define a set six for 0 < X < 1 as follows.

Definition. The piece-wise continuous function p(t) : [to, oo] —> [0, oo] belongs

to six if

/;Ali
p(s)ds > -,        f > fi,

'T(f) e

(5)f
/   p(s)ds>-+Xk(        p(s)ds--)    fortk < t < tk+x, k= 1, 2, ... ,
A(<) e \At e/

for some Xk > 0, and

lim inf Afc = A > 0.

We remark that if /'   p(s) ds is a nonincreasing function and jlt\P(s) ds >

j, then p(t) £ six, because we may have Xk = 1 in (5). However, the mono-

tonicity is not a necessary condition; e.g., in the case t(/) = t - 1 the function

(6) p(t) = ^ + (Ksin27it/ta),        A:>0and0<a<2,

belongs to six because //.(sin2 ns/sa)ds is a nonincreasing function.

Our main results are

Theorem 1. Assume that the function p(t) in (1) belongs to six for some X £
(0, 1] and

(7) ¿(£ p(s)ds- l-)=+°c.

Then every solution of (I) oscillates.
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In the next theorem we consider the case where the sum in (7) is convergent.

Theorem 2. Assume that p(t) £ six, for some 0 < X < 1 and either

2
(8) Xlimsnp kf^i [' p(s)ds--\ >

e

or

(9) Aliminf k ¿ ( /   P(s) ds - \ ) >™~^ U    *w™    eT2e-

Then every solution of (I) oscillates.

Note. If the function jlt)p(s)ds is monotone, then the value of A in conditions

(8) and (9) of Theorem 2 is equal to one.
In the following theorem we give a criterion for nonoscillation.

Theorem 3. Let x(t) — t - 1, p(t) — \ + a(t), and to =1 in (I); i.e., it has the

form

(1)' x'(t) + \\ + a(t)]x(t-\) = 0,       t>l.

Assume that

a(t) < I/Set2.

Then (I)' has a soluion x(t) > yfte~'.

The proofs of the above theorems and also some lemmas which will be used

in these proofs will be given in the next section.

2. Lemmas and proofs

The first two lemmas have origin in [3] (see also [2]).

Lemma 1. Assume that x(t) is a positive solution of (I) on [tk_2, tk+l] for some

k>2. Let N be defined by

A =    mm   —-—r—.
tk<t<tk+\    x(t)

Then N < (2e)2 .

Proof. Let L be the integral

-f
tk+i \

p(s)ds > -

By Lemma 3 in [2], we obtain N < ((1 + VI -L)/L)2. Since the right-hand
side is a decreasing function of L, we get

A'<((l + V/l-(l/e))/L)2<(2i')2.

Lemma 2. Assume that x(t) is a positive solution of (I) on [tk-j, tk+x] for some

k>3 and p(t) £six- Let M, N be defined by

M        min    *(T(0) m        min    *(TW)M —    min    —r-7—,        A =    min    ———.
'*-.<'<'*     X(t) tk<t<tk_x     X(t)
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Then

M > 1   and   N > exp ( M -+Xk[ (rPWäs-\)])>_M.

Proof. Following the lines of the proof of Lemma 1 in [2], we have min{Af, A7}

= M, and by (5) for tk <t < tk+x

x(m
x(t)

> exp   M /   p(s) ds J > exp ( M - + Xk ( /     p(s) ds — j   j ,

which implies the inequality concerning N. On the other hand the solution

x(t) is a strictly decreasing function on [tk^2, tk+x]. Hence x(r(t))/x(t) > 1
on [tk_x, tk], and therefore M > 1. The proof of the lemma is complete.

The next lemma deals with some properties of the following sequence.

Let the sequence {n}^ be defined by the recurrence relation

(10) r0=l,        ri+x=er'le    for i = 0, 1, 2, ....

Lemma 3. For the sequence {r,}°f!0 in (10) the following relations hold:

(a) r¡ < ri+x ;

(b) n<e;
(c) lim/^oo r,: = e ;

(d) n>e-2e/(i + 2).

Proof. The first two relations can be proved by induction. As a consequence of

(a) and (b) the lim,_0O r, = r exists and it is finite. Then by (10) we have

r = er/e.

It is easy to check that

(11) ex/e > x    for x 7¿e.

This inequality implies that the limit r equals e.
Now we give the proof of (d). For / = 0 and i = I it is immediate. For

i > 1 the proof goes by induction, so we have

ri+x=e«>e>el-2>V+2\

and it is sufficient to show

2e
e 1-2/(1+2) > e

i + 3'

or

Since

and

f(x) = e~2/x +- > 1    for x = / + 2.
v ; x+ 1

nx) = jL[e-Vx+x\(e-V*-

e x/x > 1 +

x+ I) \ x+l

1      x+ 1

X X

we have f'(x) < 0 and f(x) > lirn^oo f(x) - 1, which was to be shown.

The proof of the lemma is complete.
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Proof of Theorem 1. Suppose the contrary. Then we may assume, without loss

of generality, that there exists a solution x(t) such that x(t) > 0 for t > ijt-3
for some k > 3. Let the sequence {A7,}?^ be defined by

(12) Ai-      min     *#.
'*+,-! <t<tk+i       X(t)

By Lemma 2 we have No > 1 and

(13) Ni+i > exp (^j exp ( N,Xk+i ( jf * +' p(s) ds - X- J j > N¡ ;

therefore the sequence {A7,-}^ is nondecreasing. On the other hand, by Lemma

1, it is bounded. Consequently the sequence converges. Let

lim N¡ = N.
i—»oo

Then (13) implies

N > e\p(N/e).

Hence by (11) we have N = e and

(14) 1 < N0<NX <-<e.

From (13), in view of (11), we obtain

W*+< ( /
\Jtki

/'k+i+l Jp(s)ds--

Thus

f'*+/+i j

ftk+i

(15) ATi+1 - A7, > N2Xk+i (J''' +1 p(s) ds-l-j.

From the definition of six we know that A = lim inf^^ Xk > 0, so for any

sufficiently small e > 0 there exists a value Ke such that Xk+i > X - e for
k + i > kc . Thus, for such i's from (15) and (14), we have

NM - N, > N2(X - e) n'' +' p(s) rfj - i J ,

ATJ+2 - Ni+X > N2+x (X - 8) U'k +2 p(5) rfj - M

>N2(X-e)( p(s)ds
e

Summing up the inequalities above, we obtain

«21 / /•'*+;+! 1 \
(16) e-Nj>N2(X-e)J2[ p(s)ds--\    fork + i>Ke.

The last inequality contradicts assumption (7). The proof is complete.
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Proof of Theorem 2. Suppose the contrary. Then, as in the proof of Theorem
1, we have the sequence {A7,}^ such that inequalities (13)—(16) hold. In
particular, from (13) we have

Ni+x > cxo(Nile).

Comparing the last inequality with (10), we obtain by induction

No>ro=\,        Ni> r¡    for i= 1,2, ... .

Then by Lemma 3(d) we have

(17) e-Ni<e-n<2e/(i + 2).

Multiplying (16) by k + i we obtain

e

7p .22.   / fO+i
(k + i)j^y> Nf(X - e)(k + /) £     /     p(s) ds

1 + ¿ j=k+i V'J

for k + i > Ke

Taking the limit as / -> oo we get

«r^ ( f'1+1 1
2e > e2X lim sup k 2_, ( /     p(s)ds —

k^°°    j=k V'i e.

which contradicts (8).
Now let A be defined by

^(jf*«*-;)A = lim i
k

If A = oo, then, by (8), every solution oscillates. Therefore we consider the

case 0 < A < oo. So for any sufficiently small e > 0 there exists a value ke

such that for X = X - e > 0 and Â = A - e > 0

j=k V'J

(18)        Xk>X    and    Yl p(s)ds—) > T    for k>ke.

If we use the inequality

exp — > x + x exp (-)(l-)      for £ < x < e

in (13) we obtain for A7, > ¿; and k + i > ke

Ni+X > exp (J^j exp (n¡X (j^ p(s) ds - I j j

>   ^.+ lexp(í)(l-^)2] (l+Nix(j^%(s)ds-ty

Consequently

NM - N > I exp 0) (l - ^j  +ex (j^Mp(s)ds - l-\
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and summing up,

e

or

—>i«»e)£v*-*)'+f!f
In particular the last inequality yields

e-N> Uol(k + i),        Uo = ?XÂ.

By iteration we can improve this inequality to

(20) e-Ni>-^-i,       « = 0,1,2,....

Namely by (19) we have

1        fÇ\^f    U„    \2    ¡?XÂ
e-Nt>^exp   l   >     -77^-tt     +tiU* + ;)j

where

(21) C/„+1 = ^exp^)

2    KVey^Ve(^ + 7')7      ¿fc + J

2e2    P\e) k + i- + k + i~ k + i'

U2
+11xa,     » = o,i,2,:...

From this it is clear that the sequence {U„}%L0 is increasing. Moreover, com-

paring inequalities (17) and (20) we see that U„ <2e. Therefore the sequence
has a limit, say U, which satisfies the equation

t7=ëexp(!)+i2U

This is a quadratic equation with real roots and therefore the descriminant is
not negative; i.e.,

1 - 2eVe-2Ç2XÂ > 0.

Let e —y 0 and £, —» e. Then the last inequality becomes

1 -2eXA>0,

which contradicts (9).
The proof of the theorem is complete.

Proof of Theorem 3. The proof is based on known comparison theorems (see
Myshkis [6] or Elbert [1]). Let the functions A(t), B(t), C(t) be defined as

A(t) = - + a(t),

B(t) = i +
e     Set2

C(0 = --^===,
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By the assumption we have A(t) < B(t). We are going to show that the in-

equality B(t) < C(t) also holds. Namely, for 6 = ¿ £ (0, j), we have

03(102 _ 10 + 2)
C(t) - B(t) = Vl-4     ,  ;   ,_= > 0.

W W      ey/T=2d[l - 6 + (I + ±d2)y/r^20

Now we will compare the differential equations

x'(t) + A(t)x(t- 1) = 0,

z'(t) + B(t)z(t-l) = 0,

u'(t) + C(t)u(t-l) = 0.

Let us observe that the function u(t) = yfte~' is a solution of the last differential

equation. Let the initial function <p(t) be the function y/te~' on [0, 1], and let

x(t) and z(t) be the solutions of the first and the second differential equations

respectively, associated with this initial function tp(t). Then by the comparison
theorems mentioned above we have

x(t) > z(t) > u(t) = yfte~'    fori>l.

which was to be shown.

Remark 1. For (1)' we have tk — k + 1 and

l_

Te'
lim sup fc^    /    p(s)ds—    = lim sup k       a(t)dt<

Now the question arises naturally whether or not the bounds in conditions (8)

and (9) of Theorem 2 can be replaced by smaller ones.

Remark 2. It is to be emphasized that in Theorem 3 we require neither

r' i
p(t)>0    nor     /    p(s)ds>-.

Jx(t) e

Remark 3. Applying Theorems 1, 2 we see that, under (6), (1) oscillates for any

A">0if0<a<2 and for K > \ if a = 2. On the other hand it has a

nonoscillatory solution for K < ¿ if a = 2.
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