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COMMUTATION OF VARIATION AND DUAL PROJECTION

DAVID NEAL

(Communicated by Richard Durrett)

Abstract. For a raw process of integrable variation V, taking values in a

Banach space E having the Radon-Nikodyn property, the variation of the pre-

dictable (optional) dual projection is the predictable (optional) dual projection

of the variation. An analogous result holds for the associated stochastic mea-

sures. The result is applied to the stochastic integral of a real, optional process

H with respect to V when V is adapted.

1. Introduction

In a series of articles [4-7], Dinculeanu has detailed the theory of Banach-
valued stochastic processes. In particular, given a raw process of integrable

variation V, the existence of predictable and optional dual projections, denoted
by Vp and Vo respectively, is established [6, Theorems 14 and 15]. The

variations of these processes satisfy the inequalities \VP\ < \V\P and |K°| <

\V\° [6].
In this article, we use an alternate construction of the dual projection to

show that in fact \VP\ — \V\P and \V°\ = \V\° . We obtain analogous equalities
for the associated stochastic measures pp and p0 , which improves upon the

inequalities in Lemma 1 from [7]. Lastly, we apply this commutation result to
provide a sufficient condition for a real optional process H to be stochastically
integrable with respect to an adapted process of integrable variation V.

Throughout, we let (il, 5F, P) be a probability space with a filtration (^¡)

which satisfies the usual conditions. We let F be a Banach space which has the
Radon-Nikodym property and let V be an F-valued, raw process of integrable

variation which is also separably valued.

2. The variation of the projection

We proceed immediately with the result on commutation of variation and

dual projection.
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Theorem 1. The variation of the predictable (resp. optional) dual projection of V

equals the predictable (resp. optional) dual projection of the variation. That is,

\Vp\ = \V\P (resp. \V°\ = \V\°).

Proof. We prove the result for the predictable projection. The other case is anal-

ogous. We define a stochastic measure p on the predictable a -algebra by p(-) =

E[f°° 1(.) dVs] and note that its variation is given by \p\(-) = E[f°° 1(.) d\V\s]
[4, Theorem 3.2]. Since p is absolutely continuous with respect to \p\, we

let Q — dp/d\p\ be an F-valued predictable density such that ||Q|| = 1, \p\
almost everywhere. Then for all predictable sets B,

/oo "i r   /-oo

lBdVs   =EU     lBQsd\V\

We now let W — \V\P. Then for every real, bounded, measurable process

77, with predictable projection PH,

/oo
dVs = E

= E

= E

/oo
pHsQsd\V

/OO

p(HsQs)d\V\

/oo 77,ß :dW,

Thus,   Vf — j'QsdWs.   However, since  W is an increasing process,  dWs

defines a scalar-valued measure on B(R+)  (for each w).   Hence, the total

variation of Vp is given by \V>\, = ¡' \\QS\\ dWs [3, §10.9, Theorem 6, p. 186].
On the other hand, since |||ßs|| - 1| is a predictable process,

r \Qs\\-l\dws
■*[/■

-¡na

\\\Qs\\-l\d\V\s

-l\d\p\ = 0;

hence, ¡°° \\\QS\\ - l\dWs = 0 a.e. It follows that /'||ai|rf^ and fldlVs

are indistinguishable. Hence, \VP\ = /' dWs = \V\p .

Corollary. Let E be separable and let p bean E-valued P-measure on B(R+)x

£F with finite variation \p\, with predictable (resp. optional) projection denoted

by pp (resp. p0). Then, \pp\ = \p\p (resp. \p0\ = \p\0).

Proof. We let V be the associated raw process of integrable variation associated
with p which satisfies the following [4, Theorems 4.1, 5.1]:

p(.) = E f l(-)dVs \p\(.) = E^Ja0lt.)d\V\s

Then since Vp is the process associated with pp , we have

i^i(.)=F[y00i(.)</i^i,

■=^[/°°i(.)^i^i
= \rl\P(-)-

The argument is analogous for the optional projection.   D
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3. Optional stochastic integration

As an application of Theorem 1, we shall prove a sufficient condition for a
real-valued optional process 77 to be stochastically integrable, as defined in [8]

with respect to an adapted process of integrable variation V. We also describe
the form of the stochastic integral 77 • V.

Theorem 2. Let 77 be a real-valued optional process such that PH exists and let

V bean E-valued, adapted process of integrable variation. If Etf00 \Hs\d\V\s] <

oo and E[j°°p\Hs\d\V\s] < oo, then H £ 3\(Iv) and the optional stochastic
integral of H with respect to V is given by

(77 • V)t = j' Hs dVs - (J Hs dVs)   + J'"HS dVp.

Proof. From [8], the measure Iy is defined on the optional cr-algebra tf by

Iy(B) = /°° lBdVs - (f hdVs)^ + ¡00p(lB)dVsp , where B £ 0, and hence

:u-v)t j l Bl{o,t]dlv = f l BdVs-U lBdv\   + j' '(U)dVf

By additivity, the result holds for the generating class of processes H of the

form l[Sl,Tt[ H-\-l[sn,T„[, where S¡, T¡ are stopping times with Sx <TX <

• •■ < Sn < Tn . We shall use a monotone class argument to first show the result

for bounded 77, since if 77 is bounded then PH exists and is also bounded [2,

VI.43]. Consequently, both E[j°° \Hs\d\V\s] and E[f°°P\Hs\d\V\s] are finite
since V is of integrable variation.

If the theorem holds for a nonnegative sequence {77"} which is uniformly
bounded and increases to H, or for a sequence converging uniformly to 77,

then by dominated convergence {77"} will also converge to H in the Lebesgue

space Lx(Iy). Thus, the Li(F)-valued stochastic integrals {(77" • V)t} will
converge for each í to (77 • V)t since

||(77" - V)t - (H- V)t\\LÁE) = |/(77" -H)ll0tt]dh

< ||(77" -77)||Ll(M.

Li(E)

We see that all three pieces of 77" • V will converge in T-i(F) to the appro-

priate pieces of H ■ V. For if we let Wtn = J'(HS" - Hs) dVs, then E[\\ Wt"\\] <

F[/°° \H? - Hs\ d\V\s] -y 0, by dominated convergence. Also,

FlV)ill]<F

= E

= E

<E

/oo d\(Wn

/oo
d\W\

/OO

d\Wn\

/OO

177;-77,1 ¿m
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hence, (W")P —» 0 in LX(E). Moreover, since Vp is also of integrable varia-

tion,

F [I / p(Hn-H)sdVp     <e\ í°°\p(Hn-H)s\d\Vp\

< E^j™ P\H? - Hs\d\Vp\s

= E^j°°\H?-Hs \d\Vp\

0.

Hence, in Fi(F),

(H • V), = lim (Hn ■ V), = lim

-fB.ir,-[j

fHZdV.-J H?dv\   +f'H!dV,'

f'B.HsdVs\   + ■dVp.

We thus obtain equality outside of a null set for each t ; but by right continuity,

we obtain indistinguishability. Thus, 77 itself satisfies the theorem and by the

monotone class theorem, the result holds for all bounded 77.
Now suppose 77 satisfies the hypotheses of the theorem. We let f £Jï?00(E*)

and let Y be a cadlag version of the martingale E(f\&t~). We denote the LX(E)-

valued measure Iy by m . The real-valued measure mf defined on tf is given

by mf(B) - (/, m(B)) = E[f ■ m(B)]. From [1, p. 360], the LX(IV) norm of
77 is given by

Whair) = sup   ¡\H\d\mf\,

where ||/|| is the L^E*) norm of /. Thus, 77 £ 5f\(Iy), and hence is

stochastically integrable, if and only if this norm is finite. However, letting

At = ¡' 1B dVs, for a fixed B £cf, then

mf(B) =E¡f (¿„o -Ap00 + j°°p(lB)dVpy^

=Ey°°fdASj-EycofdAp +Ey°°fp(iB)dvp

.    =E^¡°°°(f)dA^-E^J°°p(f)dAs\+E
/OO

p(f)p(lB)dVf

= E

= E

AYsdAs

AYslBdVs

AYslBdVs

+ E

+ E

+ E

j°° Ys.p(lB)dVp^

y°°p(Ys-lB)dVsp

/OO

Ys-lBdVf

We see that m/ can be written as the sum of two stochastic F-measures:

mf(B) = o(B) + r(B). Hence, \mjf\ < \a\ + \x\. But since we take ||/|| < 1,
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||T|| < 1  also; hence,  |<j|(£) < E[JO0\\AYs\\lBd\V\s] < F[/°°2 \B \dVs\] and

\z\(B) < E[riBd\Vp\s] = E[r IBd\V\ps], for all f.
Finally, we obtain

\\H\\Ll{Ir)< I\H\d\o\ + j\H\d\x\

r f°° i      r f°°
\J    \Hs\d\V\s  +E  j    \Hs\d\V\

j    \Hs\d\V\s   +E   I    p\Hs\d\V

<2E

= 2E

< oo.

Lastly, if we let 77" = 771{|#|<„}, then {77"} are bounded, converge to 77
in LX(IV), and {77" • V} satisfies the stated form of the theorem. By taking

limits as in the monotone class argument, we see that 77 • V also satisfies the

theorem.   G
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