AN ESTIMATION OF SINGULAR VALUES OF CONVOLUTION OPERATORS

MILUTIN R. DOSTANIC

(Communicated by Palle E. T. Jorgensen)

Abstract

In this paper we determine the asymptotic order of singular values of convolution operators $\int_{0}^{x} k(x-y) \cdot d y$, where $k(x)=x^{\alpha-1} L(1 / x) \quad(0<$ $\alpha<1 / 2$) and L is a slowly varying function from some class.

1. Introduction

Let \mathscr{H} be a separable Hilbert space over \mathbb{C} and A be a compact operator. The singular values of $A\left(s_{n}(A)\right)$ are the eigenvalues of the operator $\left(A^{*} A\right)^{1 / 2}$ (or $\left(A A^{*}\right)^{1 / 2}$).
V. Faber and G. M. Wing [3, 4] have found an upper bound on the singular values of fractional integral operators and of some other similar operators.

In [2] an exact asymptotic of the singular values of the fractional integral operator $I^{\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-y)^{\alpha-1} \cdot d y$ is found. In this paper we find the asymptotic order of the singular values of the operator $\int_{0}^{x} k(x-y) \cdot d y$ acting on $\mathscr{H}=L^{2}(0,1)$ whose kernel has power singularity and singularity arising from a slowly varying function L in the point $x=0$. In what follows for given sequences $\left\{a_{n}\right\},\left\{b_{n}\right\} \quad\left(a_{n}>0, b_{n}>0\right)$ we write $a_{n} \asymp b_{n}$ if there exist constants $c_{1}, c_{2}>0$ such that $c_{1} \leq a_{n} / b_{n} \leq c_{2}$ for all $n \in \mathbb{N}$. By $\int_{a}^{b} m(x, y) \cdot d y$ we denote the integral operator on $L^{2}(a, b)$ with the kernel $m(x, y)$.

2. Main result

Let $L \in C^{1}[1, \infty)$ be a nondecreasing function on $[1, \infty)$, let

$$
\lim _{x \rightarrow+\infty} x L^{\prime}(x) / L(x)=0
$$

and let $x \mapsto x L^{\prime}(x) / L(x)$ be a nonincreasing function for x large enough. Define the operator $A: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by

$$
A f(x)=\int_{0}^{x} k(x-y) f(y) d y
$$

Received by the editors July 2, 1993.
1991 Mathematics Subject Classification. Primary 47A70.
Key words and phrases. Singular values, convolution operators, slowly varying function.
where

$$
k(x)=x^{\alpha-1} L\left(\frac{1}{x}\right) \quad(\alpha>0)
$$

Theorem 1. If $0<\alpha<1 / 2$, then $s_{n}(A) \asymp L(n) / n^{\alpha}$.
Proof. Case A: L is not a bounded function. Then $\lim _{x \rightarrow+\infty} L(x)=+\infty$.
Observe that if we smoothly extend L from $[1, \infty)$ to $[0, \infty)$ the new operator A has the same singular values as the old one (because it acts on $\left.\mathscr{H}=L^{2}(0,1)\right)$. Because of that we can assume $L \in C^{1}[0, \infty)$ and that L is a linear function on $[0,1]$. Without loss of generality we can assume that $L>0$ on $[0, \infty)$ (because $s_{n}\left(I^{\alpha}\right) \asymp 1 / n^{\alpha}$ [2]). Let $a>1$ be a fixed number and let

$$
L_{a}(x)= \begin{cases}L(x), & x \geq a \\ L^{\prime}(a) x+L(a)-a L^{\prime}(a), & 0 \leq x \leq a\end{cases}
$$

Let B and B_{a} be linear operators on $L^{2}(0,1)$ defined by

$$
\begin{aligned}
B f(x) & =\int_{0}^{1}|x-y|^{\alpha-1} L\left(\frac{1}{|x-y|}\right) f(y) d y \\
B_{a} f(x) & =\int_{0}^{1}|x-y|^{\alpha-1} L_{a}\left(\frac{1}{|x-y|}\right) f(y) d y
\end{aligned}
$$

Before the proof of Theorem 1 we give the following lemma.
Lemma 1. If $0<\alpha<1 / 2$ and a is large enough, then.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{s_{n}(B)}{s_{n}\left(B_{a}\right)}=1 \tag{1}
\end{equation*}
$$

Proof. Let $P: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be a linear operator defined by $\operatorname{Pf}(x)=$ $\chi_{[0,1 / a]}(x) f(x)$ and $Q=I-P$. (Here $\chi_{[a, b]}$ is the characteristic function of $[a, b]$.) Then

$$
\begin{aligned}
B_{a} & =(P+Q) B_{a}(P+Q) \\
& =P B_{a} P+Q B_{a} P+P B_{a} Q+Q B_{a} Q
\end{aligned}
$$

and

$$
\begin{aligned}
B & =(P+Q) B(P+Q) \\
& =P B P+Q B P+P B Q+Q B Q .
\end{aligned}
$$

Since $L_{a}(1 / x)=L(1 / x)$ for $0<x \leq 1 / a$, we obtain $P B_{a} P=P B P$ and

$$
\begin{equation*}
B=B_{a}+Q\left(B-B_{a}\right) P+P\left(B-B_{a}\right) Q+Q\left(B-B_{a}\right) Q \tag{2}
\end{equation*}
$$

From the definition of L_{a} it follows that $Q\left(B-B_{a}\right) P$ and $Q\left(B-B_{a}\right) Q$ are Hilbert Schmidt operators and hence

$$
\begin{align*}
& s_{n}\left(Q\left(B-B_{a}\right) P+P\left(B-B_{a}\right) Q+Q\left(B-B_{a}\right) Q\right) \tag{3}\\
& \quad=\sigma\left(n^{-1 / 2}\right)=\sigma\left(\frac{L(n)}{n^{\alpha}}\right) \quad\left(0<\alpha<\frac{1}{2}\right)
\end{align*}
$$

If we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{L(n)} s_{n}\left(B_{a}\right)=c_{0} \neq 0 \tag{4}
\end{equation*}
$$

then from (2), (3), (4), and the Ky Fan Theorem [5] follows (1). Now we prove (4) (with $c_{0}=\pi^{-\alpha} \Gamma(\alpha) \cos (\alpha \pi / 2)$) if $0<\alpha<1 / 2$ and a is large enough.

Consider the operator $B_{a}^{\prime}: L^{2}(-1,1) \rightarrow L^{2}(-1,1)$ defined by

$$
B_{a}^{\prime} f(x)=\int_{-1}^{1} k_{a}(|x-y|) f(y) d y
$$

where

$$
k_{a}(t)=t^{\alpha-1} L_{a}\left(\frac{1}{t}\right) \quad(t>0)
$$

Let

$$
K_{a}(\xi)=\int_{\mathbb{R}} e^{i t \xi} k_{a}(|t|) d t
$$

and

$$
H_{a}(x, y)=\sum_{n=-\infty}^{\infty}\left(k_{a}(|x-y+4 n|)-k_{a}(|x+y+4 n+2|)\right)
$$

By direct computation we conclude that

$$
\begin{equation*}
\int_{-1}^{1} H_{a}(x, y) \varphi_{n}(y) d y=K_{a}\left(\frac{n \pi}{2}\right) \varphi_{n}(x) \tag{5}
\end{equation*}
$$

where

$$
\varphi_{n}(x)=\sin \frac{n \pi(1+x)}{2}, \quad n \in \mathbb{N} .
$$

(The system $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis of $L^{2}(-1,1)$.) We shall demonstrate that the following conditions are satisfied:
$1^{\circ} . K_{a}(\xi) \sim$ const $\cdot L(\xi) / \xi^{\alpha}$ when $\xi \rightarrow+\infty$.
2°. If a is large enough, the function K_{a} is decreasing if ξ is large enough.
3°. The operator $D: L^{2}(0,2) \rightarrow L^{2}(0,2)$ defined by

$$
D f(x)=\int_{0}^{2} k_{a}(x+y) f(y) d y
$$

has the property $s_{n}(D)=\sigma\left(L(n) / n^{\alpha}\right) \quad(0<\alpha<1 / 2)$.
4°. The function $\sum_{n \neq 0 ; n \neq-1}\left(k_{a}(|x-y+4 n|)-k_{a}(|x+y+4 n+2|)\right)$ is bounded on $[-1,1]^{2}$.

The property 4° is the consequence of the linearity of L_{a} on $[0, a]$. Simple computation yields

$$
\int_{0}^{2} \int_{0}^{2}\left|k_{a}(x+y)\right|^{2} d x d y<\infty \quad(\text { for every } \alpha>0)
$$

and hence

$$
s_{n}(D)=\sigma\left(n^{-1 / 2}\right)=\sigma\left(\frac{L(n)}{n^{\alpha}}\right) \quad\left(0<\alpha<\frac{1}{2}\right)
$$

By a substitution we obtain

$$
K_{a}(\xi)=2 \xi^{-\alpha} \int_{0}^{\infty} t^{-\alpha-1} \cos \frac{1}{t} \cdot L_{a}(\xi t) d t
$$

We shall prove now

$$
\begin{equation*}
Q(\xi)=\int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} L_{a}(\xi x) d x \sim L(\xi) \int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} d x \quad(\xi \rightarrow+\infty) \tag{6}
\end{equation*}
$$

Let

$$
Q_{1}(\xi)=\int_{1 / \pi}^{+\infty} x^{-\alpha-1} \cos \frac{1}{x} L_{a}(\xi x) d x
$$

and

$$
Q_{2}(\xi)=\int_{0}^{1 / \pi} x^{-\alpha-1} \cos \frac{1}{x} L_{a}(\xi x) d x
$$

Then by Theorem 2.6, p. 63 in [6] we get

$$
\begin{align*}
Q_{1}(\xi) & =L_{a}(\xi)\left(\int_{1 / \pi}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} d x+\sigma(1)\right) \tag{7}\\
& =L(\xi)\left(\int_{1 / \pi}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} d x+\sigma(1)\right)
\end{align*}
$$

By partial integration, we get

$$
Q_{2}(\xi)=\int_{0}^{1 / \pi} \sin \frac{1}{x} \cdot x^{-\alpha} L_{a}(\xi x)\left[1-\alpha+\frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi x)}\right] d x
$$

i.e.,

$$
\begin{aligned}
\frac{Q_{2}(\xi)}{L_{a}(\xi)}= & (1-\alpha) \int_{0}^{1 / \pi} x^{-\alpha} \sin \frac{1}{x} \frac{L_{a}(\xi x)}{L_{a}(\xi)} d x \\
& +\int_{0}^{1 / \pi} x^{-\alpha} \sin \frac{1}{x} \cdot \frac{L_{a}(\xi x)}{L_{a}(\xi)} \cdot \frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi x)} d x
\end{aligned}
$$

Since L_{a} is a nondecreasing function and $\lim _{t \rightarrow+\infty} t L_{a}^{\prime}(t) / L_{a}(t)=0$, by the Lebesgue Dominated Convergence Theorem

$$
\frac{Q_{2}(\xi)}{L_{a}(\xi)} \rightarrow(1-\alpha) \int_{0}^{1 / \pi} x^{-\alpha} \sin \frac{1}{x} d x=\int_{0}^{1 / \pi} x^{-\alpha-1} \cos \frac{1}{x} d x
$$

Therefore

$$
\begin{align*}
Q_{2}(\xi) & =L_{a}(\xi)\left(\int_{0}^{1 / \pi} x^{-\alpha-1} \cos \frac{1}{x} d x+\sigma(1)\right) \tag{8}\\
& =L(\xi)\left(\int_{0}^{1 / \pi} x^{-\alpha-1} \cos \frac{1}{x} d x+\sigma(1)\right)
\end{align*}
$$

Since

$$
\int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} d x=\Gamma(\alpha) \cos \frac{\alpha \pi}{2}
$$

and $Q=Q_{1}+Q_{1}$, from (7) and (8) we obtain (6) and

$$
\begin{equation*}
K_{a}(\xi)=2 \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(\xi)}{\xi^{\alpha}}(1+\sigma(1)), \quad \xi \rightarrow+\infty \tag{9}
\end{equation*}
$$

which proves 1°.

Now we prove property 2° of K_{a}. Since

$$
\begin{aligned}
K_{a}^{\prime}(\xi)= & -2 \alpha \xi^{-\alpha-1} \int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} L_{a}(\xi x) d x \\
& +2 \xi^{-\alpha} \int_{0}^{+\infty} x^{-\alpha} \cos \frac{1}{x} L_{a}^{\prime}(\xi x) d x \\
= & 2 \frac{L_{a}(\xi)}{\xi^{\alpha+1}}\left(-2 \alpha \Gamma(\alpha) \cos \frac{\alpha \pi}{2}+\sigma(1)+\int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} \frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi)} d x\right)
\end{aligned}
$$

it suffices to prove that

$$
\begin{equation*}
\left|\int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} \frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi)} d x\right|<2 \alpha \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \tag{10}
\end{equation*}
$$

if a and ξ are large enough. Since

$$
\int_{1}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} \frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi)} d x \rightarrow 0 \quad(\xi \rightarrow+\infty)
$$

and

$$
\begin{aligned}
& \int_{0}^{a / \xi} x^{-\alpha-1} \cos \frac{1}{x} \frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi)} \\
& \quad=L_{a}^{\prime}(a) \frac{\xi}{L_{a}(\xi)} \int_{0}^{a / \xi} x^{-\alpha} \cos \frac{1}{x} d x \rightarrow 0 \quad(\xi \rightarrow+\infty)
\end{aligned}
$$

inequality (10) will follow from

$$
\begin{equation*}
\left|\int_{a / \xi}^{1} x^{-\alpha-1} \cos \frac{1}{x} \frac{L_{a}(\xi x)}{L_{a}(\xi)} \cdot \frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi x)}\right|<2 \alpha \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \tag{11}
\end{equation*}
$$

(a large enough and $\xi>a$). Applying twice the Bonet Mean Value Theorem (the functions $x \mapsto L_{a}(x)$ and $x \mapsto x \cdot L_{a}^{\prime}(x) / L_{a}(x)$ are nondecreasing and decreasing on $[0, \infty)$ and $\left[x_{0}, \infty\right)$ respectively) we get

$$
\left|\int_{a / \xi}^{1} x^{-\alpha-1} \cos \frac{1}{x} \frac{L_{a}(\xi x)}{L_{a}(\xi)} \cdot \frac{\xi x L_{a}^{\prime}(\xi x)}{L_{a}(\xi x)}\right| \leq \frac{a L^{\prime}(a)}{L(a)}\left|\int_{c_{1}}^{c_{2}} x^{-\alpha-1} \cos \frac{1}{x} d x\right|
$$

where $a / \xi<c_{1}<c_{2}<1$.
Since the integral $\int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} d x$ is convergent and

$$
\lim _{x \rightarrow+\infty} x \frac{L^{\prime}(x)}{L(x)}=0
$$

(11) holds if a is fixed and large enough and $\xi>a$ is large enough. From 1°, 2°, and (5) it follows that

$$
\begin{equation*}
s_{n}\left(\int_{-1}^{1} H_{a}(x, y) \cdot d y\right) \sim 2 \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(n)}{(n \pi / 2)^{\alpha}} \tag{12}
\end{equation*}
$$

From 3° we get

$$
\left\{\begin{array}{l}
s_{n}\left(\int_{-1}^{1} k_{a}(|x+y+2|) \cdot d y\right)=\sigma\left(\frac{L(n)}{n^{\alpha}}\right), \tag{13}\\
s_{n}\left(\int_{-1}^{1} k_{a}(|x+y-2|) \cdot d y\right)=\sigma\left(\frac{L(n)}{n^{\alpha}}\right)
\end{array}\right.
$$

The function

$$
R(x, y)=k_{a}(|x-y-4|)+\sum_{n \neq 0 ; n \neq-1}\left(k_{a}(|x-y+4 n|)-k_{a}(|x+y+4 n+2|)\right)
$$

is bounded on $[-1,1]^{2}$ (a consequence of 4°), hence $\int_{-1}^{1} R(x, y) \cdot d y$ is a Hilbert Schmidt operator and

$$
\begin{equation*}
s_{n}\left(\int_{-1}^{1} R(x, y) \cdot d y\right)=\sigma\left(n^{-1 / 2}\right)=\sigma\left(\frac{L(n)}{n^{\alpha}}\right) . \tag{14}
\end{equation*}
$$

From (12), (13), (14), and the Ky Fan Theorem it follows that

$$
\begin{equation*}
s_{n}\left(B_{a}^{\prime}\right) \sim 2 \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(n)}{(n \pi / 2)^{\alpha}} \tag{15}
\end{equation*}
$$

From (15) and from

$$
\int_{\mathbf{R}} k_{a}\left(\frac{|t|}{2}\right) e^{i t \xi} d t=2 \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(2 \xi)}{(2 \xi)^{\alpha}}(1+\sigma(1))
$$

by substitution in the eigenvalue relation $B_{a} e_{n}=\lambda_{n} e_{n}$, we obtain

$$
\begin{equation*}
s_{n}\left(B_{a}\right) \sim \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(n)}{(n \pi)^{\alpha}} \tag{16}
\end{equation*}
$$

Lemma 1 is proved.
From now on suppose a is a fixed and large enough number such that (1) holds.
Proof of Theorem 1 in Case A. Since

$$
A f(x)=\int_{0}^{x} k(x-y) f(y) d y
$$

we have

$$
\left(A+A^{*}\right) f=B f=\int_{0}^{1} k(|x-y|) f(y) d y
$$

By Lemma 1 we get

$$
\lim _{n \rightarrow \infty} \frac{s_{n}(B)}{s_{n}\left(B_{a}\right)}=1
$$

and so

$$
s_{2 n}(B) \geq c_{1}^{\prime} s_{2 n}\left(B_{a}\right)
$$

(c_{1}^{\prime} does not depend on n). The last inequality and (16) imply

$$
s_{2 n}(B) \geq c_{1} \frac{L(n)}{n^{\alpha}} \quad\left(c_{1} \text { does not depend on } n\right)
$$

Since $s_{2 n}(B) \leq s_{n}(A)+s_{n}\left(A^{*}\right)=2 s_{n}(A)$, we obtain

$$
\begin{equation*}
s_{n}(A) \geq \frac{c_{1}}{2} \frac{L(n)}{n^{\alpha}} \tag{17}
\end{equation*}
$$

Now we prove the following inequality

$$
\begin{equation*}
s_{n}(A) \leq \text { const } \frac{L(n)}{n^{\alpha}} \quad(\text { const does not depend on } n) . \tag{18}
\end{equation*}
$$

Here we use the following lemma proved in [4].

Lemma 2. Let $K_{n}(x, y)$ be a sequence of functions integrable to x and to y individually, $0 \leq x, y \leq 1$. Let $K(x, y)$ be a similar function, and suppose that for almost all y

$$
\int_{0}^{1}\left|K(x, y)-K_{n}(x, y)\right| d x \leq \beta_{n} \quad\left(\beta_{n} \rightarrow 0\right)
$$

and also that for almost all x

$$
\int_{0}^{1}\left|K(x, y)-K_{n}(x, y)\right| d y \leq \gamma_{n} \quad\left(\gamma_{n} \rightarrow 0\right)
$$

Finally, suppose that for each n

$$
\mathscr{K}_{n}=\int_{0}^{1} K_{n}(x, y) \cdot d y
$$

is a compact operator on $L^{2}(0,1)$. Then $\mathscr{K}=\int_{0}^{1} K(x, y) \cdot d y$ is also a compact operator on $L^{2}(0,1)$ and

$$
s_{n}(\mathscr{K}) \leq s_{n}\left(\mathscr{K}_{n}\right)+\sqrt{\beta_{n} \gamma_{n}} .
$$

Now let us put

$$
K_{n}(x, y)= \begin{cases}\left(x-y+\frac{1}{n}\right)^{\alpha-1} L\left(\frac{1}{x-y+1 / n}\right), & y<x \\ 0, & y \geq x\end{cases}
$$

and

$$
K(x, y)= \begin{cases}(x-y)^{\alpha-1} L\left(\frac{1}{x-y}\right), & y<x \\ 0, & y \geq x\end{cases}
$$

The function $t \mapsto t^{\alpha-1} L(1 / t)$ is decreasing (for $0<\alpha<1$) and hence

$$
\begin{aligned}
\int_{0}^{1}\left|K(x-y)-K_{n}(x, y)\right| d y & =\int_{0}^{1 / n} t^{\alpha-1} L\left(\frac{1}{t}\right) d t-\int_{x}^{x+1 / n} t^{\alpha-1} L\left(\frac{1}{t}\right) d t \\
& <\int_{0}^{1 / n} t^{\alpha-1} L\left(\frac{1}{t}\right) d t
\end{aligned}
$$

Since

$$
\int_{0}^{1 / n} L^{\alpha-1} L\left(\frac{1}{t}\right) d t=\int_{n}^{+\infty} t^{-\alpha-1} L(t) d t
$$

and

$$
\int_{x}^{+\infty} t^{-\alpha-1} L(t) d t \sim \frac{1}{\alpha} \frac{L(x)}{x^{\alpha}} \quad(x \rightarrow+\infty)
$$

we get

$$
\begin{equation*}
\int_{0}^{1}\left|K(x, y)-K_{n}(x, y)\right| d y \leq c_{3} \frac{L(n)}{n^{\alpha}} \quad\left(c_{3} \text { does not depend on } n\right) \tag{19}
\end{equation*}
$$

Similarly,
(20) $\quad \int_{0}^{1}\left|K_{n}(x, y)-K_{n}(x, y)\right| d x \leq c_{4} \frac{L(n)}{n^{\alpha}} \quad\left(c_{4}\right.$ does not depend on $\left.n\right)$.

From (19), (20), and Lemma 2 we obtain

$$
\begin{equation*}
s_{n}(A) \leq \sqrt{c_{3} c_{4}} \frac{L(n)}{n^{\alpha}}+s_{n}\left(\mathscr{K}_{n}\right) \tag{21}
\end{equation*}
$$

Now, we can estimate the norm $\left\|\mathscr{K}_{n}\right\|_{2}^{2}$ (Hilbert Schmidt norm). We have

$$
\begin{aligned}
\left\|\mathscr{K}_{n}\right\|_{2}^{2} & =\int_{0}^{1} \int_{0}^{1}\left|K_{n}(x, y)\right|^{2} d x d y \\
& =\int_{1 / n}^{1+1 / n} y^{2 \alpha-2}\left(L\left(\frac{1}{y}\right)\right)^{2} \cdot\left(1-y+\frac{1}{n}\right) d y \\
& \leq \int_{1 / n}^{1+1 / n} y^{2 \alpha-2}\left(L\left(\frac{1}{y}\right)\right)^{2} d y
\end{aligned}
$$

From this inequality by simple computation we get

$$
\left\|\mathscr{K}_{n}\right\|_{2}^{2} \leq c_{5} n^{1-2 \alpha}(L(n))^{2} \quad\left(c_{5} \text { does not depend on } n\right)
$$

Since $n s_{n}^{2}\left(\mathscr{K}_{n}\right) \leq\left\|\mathscr{K}_{n}\right\|_{2}^{2}$, we obtain

$$
\begin{equation*}
s_{n}\left(\mathscr{K}_{n}\right) \leq c_{6} \frac{L(n)}{n^{\alpha}} \quad\left(c_{6} \text { does not depend on } n\right) \tag{22}
\end{equation*}
$$

Now (18) follows from (21) and (22). The theorem is proved for the case when the function L is not bounded.

Case B: The function L is bounded. Since L is nondecreasing we have $\lim _{x \rightarrow+\infty} L(x)=d<\infty$. By assumption of Theorem 1 we get $d>0$.

Lemma 3. Suppose $r \in C[0,1], r(0)=0$, and G is a linear operator on $L^{2}(0,1)$ defined by

$$
G f(x)=\int_{0}^{x}(x-y)^{\alpha-1} r(x-y) f(y) d y
$$

If $0<\alpha<1 / 2$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{\alpha} s_{n}(G)=0 \tag{23}
\end{equation*}
$$

Proof of Lemma 3. Let us represent G as

$$
G f(x)=\int_{0}^{1}|x-y|^{\alpha-1} M(x, y) f(y) d y
$$

where

$$
M(x, y)= \begin{cases}r(x-y), & 0<y \leq x<1 \\ 0, & 1 \geq y \geq x \geq 0\end{cases}
$$

Let $\varepsilon>0$. Then there exists $\delta>0$ such that $|M(x, y)|<\varepsilon$ if $|x-y|<\delta$. Put

$$
\Omega_{1}=[0,1]^{2} \backslash\{(x, y):|x-y|<\delta\}, \quad \Omega_{2}=[0,1]^{2} \backslash \Omega_{1}
$$

Suppose G_{1}, G_{2} are linear operators on $L^{2}(0,1)$ defined by

$$
G_{i} f(x)=\int_{0}^{1}|x-y|^{\alpha-1} \chi_{\Omega_{i}}(x, y) M(x, y) f(y) d y, \quad i=1,2
$$

($\chi_{\Omega_{i}}$ are characteristic functions of $\Omega_{i}, i=1,2$).

Then $G=G_{1}+G_{2}$ and

$$
\begin{equation*}
s_{2 n}(G) \leq s_{n}\left(G_{1}\right)+s_{n}\left(G_{2}\right) \tag{24}
\end{equation*}
$$

By Lemma 1 from [1] we obtain

$$
s_{n}\left(G_{1}\right) \leq \operatorname{const} \cdot \varepsilon\left[\int_{0}^{1 / n} t^{\alpha-1} d t+n^{-1 / 2}\left(\int_{1 / n}^{\infty} t^{2 \alpha-2} d t\right)^{1 / 2}\right]
$$

i.e. (since $0<\alpha<1 / 2$),

$$
\begin{equation*}
s_{n}\left(G_{1}\right) \leq \operatorname{const} \cdot \varepsilon \cdot \frac{1}{n^{\alpha}} \quad(\text { const does not depend on } n) \tag{25}
\end{equation*}
$$

On the other hand, G_{2} is a Hilbert Schmidt operator and hence

$$
s_{n}\left(G_{2}\right) \leq c_{7}(\delta) \cdot n^{-1 / 2}
$$

From the previous inequality we get (for $0<\alpha<1 / 2$)

$$
\begin{equation*}
n^{\alpha} s_{n}\left(G_{2}\right)<\varepsilon \tag{26}
\end{equation*}
$$

if n is large enough.
From (24), (25), and (26) we obtain

$$
\lim _{n \rightarrow \infty} n^{\alpha} s_{2 n}(G)=0
$$

and

$$
\lim _{n \rightarrow \infty} n^{\alpha} s_{n}(G)=0
$$

Proof of Theorem 1 in Case B. Put $r(x)=L(1 / x)-d$. Applying Lemma 3 we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{\alpha} s_{n}\left(\int_{0}^{x}(x-y)^{\alpha-1}\left(L\left(\frac{1}{x-y}\right)-d\right) \cdot d y\right)=0 \tag{27}
\end{equation*}
$$

In [2] it is proved that

$$
s_{n}\left(\int_{0}^{x}(x-y)^{\alpha-1} \cdot d y\right) \sim \Gamma(\alpha)(n \pi)^{-\alpha}
$$

From (27), the previous asymptotic formula, and the Ky Fan Theorem we conclude

$$
s_{n}\left(\int_{0}^{x}(x-y)^{\alpha-1} L\left(\frac{1}{x-y}\right) \cdot d y\right) \sim d \cdot \Gamma(\alpha)(n \pi)^{-\alpha} .
$$

Theorem 1 is proved.
Remark. From the proof it is evident that if L is bounded, then it is enough to suppose that L is continuous and $\lim _{x \rightarrow \infty} L(x)=d \neq 0$.

Theorem 2. Suppose function L satisfies conditions from the beginning of this paper. Let $r \in C^{1}[0,1], r(0)=0, k_{1}(x)=k(x) \cdot(1+r(x)) \quad\left(k(x)=x^{\alpha-1} L(1 / x)\right)$, and let $A_{1}: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be a linear operator defined by

$$
A_{1} f(x)=\int_{0}^{x} k_{1}(x-y) f(y) d y
$$

If $0<\alpha<1 / 2$, then $s_{n}\left(A_{1}\right) \asymp L(n) / n^{\alpha}$.

Lemma 4. Suppose A and B are composed operators on Hilbert space \mathscr{H} such that $s_{n}(A) \asymp L(n) / n^{\beta} \quad(L$ is a slowly varying function, $\beta>0)$ and $\lim _{n \rightarrow \infty} \frac{n^{\beta}}{L(n)} s_{n}(B)=0$. Then $s_{n}(A+B) \asymp L(n) / n^{\beta}$.
Proof of Lemma 4. From conditions $s_{n}(A) \asymp L(n) / n^{\beta}$ it follows that there exists constants $d_{1}>0$ and $d_{2}>0$ such that

$$
\begin{equation*}
d_{2} \frac{L(n)}{n^{\beta}} \leq s_{n}(A) \leq d_{1} \frac{L(n)}{n^{\beta}} . \tag{28}
\end{equation*}
$$

For arbitrary $k \in \mathbb{N}, n=(k+1) m+j, j=0,1,2, \ldots, k$, by properties of singular values [5], we have

$$
s_{(k+1) m+j}(A+B) \leq s_{k m+j}(A)+s_{m+1}(B),
$$

i.e.,

$$
\frac{s_{(k+1) m+j}(A+B)}{s_{(k+1) m+j}(A)} \leq\left(1+\frac{s_{m+1}(B)}{s_{k m+j}(A)}\right) \cdot \frac{s_{k m+j}(A)}{s_{(k+1) m+j}(A)} .
$$

From (28) we get

$$
\frac{s_{(k+1) m+j}(A+B)}{s_{(k+1) m+j(A)}} \leq\left(1+\frac{s_{m+1}(B)}{s_{k m+j}(A)}\right) \cdot \frac{d_{1}}{d_{2}}\left(\frac{(k+1) m+j}{k m+j}\right)^{\beta} \frac{L(k m+j)}{L((k+1) m+j)} .
$$

Since $\frac{n^{\beta}}{L(n)} s_{n}(A) \rightarrow 0$ (or equivalently $s_{n}(B) / s_{n}(A) \rightarrow 0$) we obtain

$$
\varlimsup_{n \rightarrow \infty} \frac{s_{n}(A+B)}{s_{n}(A)} \leq \frac{d_{1}}{d_{2}}\left(\frac{k+1}{k}\right)^{\beta} .
$$

As k is arbitrary, we get

$$
\varlimsup_{n \rightarrow \infty} \frac{s_{n}(A+B)}{s_{n}(A)} \leq \frac{d_{1}}{d_{2}} .
$$

Similarly, we get

$$
\underline{\lim }_{n \rightarrow \infty} \frac{s_{n}(A+B)}{s_{n}(A)} \geq \frac{d_{2}}{d_{1}} .
$$

Lemma 4 is proved.
Proof of Theorem 2. Since $r \in C^{1}[0,1]$ and $r(0)=0, \int_{0}^{x} k(x-y) r(x-y) \cdot d y$ is a Hilbert Schmidt operator and therefore
(29) $s_{n}\left(\int_{0}^{x} k(x-y) r(x-y) \cdot d y\right)=\sigma\left(n^{-1 / 2}\right)=\sigma\left(\frac{L(n)}{n^{\alpha}}\right) \quad\left(0<\alpha<\frac{1}{2}\right)$.

From Theorem 1 we have

$$
\begin{equation*}
s_{n}\left(\int_{0}^{x} k(x-y) \cdot d y\right) \asymp \frac{L(n)}{n^{\alpha}} . \tag{30}
\end{equation*}
$$

The statement of Theorem 2 follows from (29), (30), and Lemma 4.
Example. Let $L(x)=(\ln x)^{\beta}, \beta \geq 0$, and let the function r satisfy $r \in$ $C^{1}[0,1], r(0) \neq 0$. We consider the operator $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ defined by

$$
T f(x)=\int_{0}^{x}(x-y)^{\alpha-1}(-\ln (x-y))^{\beta} r(x-y) f(y) d y \quad(0<\alpha<1 / 2) .
$$

Then $s_{n}(T) \asymp(\ln n)^{\beta} / n^{\alpha}$.

References

1. F. Cobos and T. Kühn, Eigenvalues of weakly singular operators, J. London Math. Soc. (2) 41 (1990), 323-335.
2. M. R. Dostanić, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993), 380-391.
3. V. Faber and G. M. Wing, Asymptotic behavior of singular values of convolution operators, Rocky Mountain J. Math. 16 (1986).
4. __, Singular values of fractional integral operators: A unification of Theorems of Hille, Tamarkin, and Chang, J. Math. Anal. Appl. 120 (1986), 745-760.
5. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Amer. Math. Soc., Providence, RI, 1969.
6. E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, Heidelberg, and New York, 1976.

Matematički Fakultet, Studentski TRG 16, Belgrade, Serbia

