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AN ESTIMATION OF SINGULAR VALUES
OF CONVOLUTION OPERATORS
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(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we determine the asymptotic order of singular values

of convolution operators /0X k(x - y) • dy , where k(x) = xa~xL(l/x) (0 <

a < 1/2) and L is a slowly varying function from some class.

1. Introduction

Let %A be a separable Hubert space over C and A be a compact operator.
The singular values of A (sn(A)) are the eigenvalues of the operator (A*A)X/2

(or (AA*)1'2).
V. Faber and G. M. Wing [3, 4] have found an upper bound on the singular

values of fractional integral operators and of some other similar operators.
In [2] an exact asymptotic of the singular values of the fractional integral

operator Ia = yhä IoX(x ~ y)a~l ' dy is found. In this paper we find the asymp-

totic order of the singular values of the operator J0X k(x - y) • dy acting on

%f = L2(0, 1) whose kernel has power singularity and singularity arising from

a slowly varying function L in the point x = 0. In what follows for given se-

quences {a„} , {b„}  (a„ > 0, b„ > 0) we write an x b„ if there exist constants

Cx, c2 > 0 such that cx < a„/b„ < c2 for all n e N. By Ja m(x, y) • dy we

denote the integral operator on L2(a, b) with the kernel m(x, y).

2. Main result

Let L e Cx[l, oo) be a nondecreasing function on [1, oo), let

lim xL'(x)IL(x) = 0,
X—» + 00

and let x .-> xL'(x)/L(x) be a nonincreasing function for x large enough.

Define the operator A: L2(0, 1) -> L2(0, 1) by

Af(x)= fXk(x-y)f(y)dy
Jo
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where

k(x) = xa-xL^j        (a>0).

Theorem 1. // 0 < a < 1/2, then s„(A) x L(n)/na.

Proof. Case A: L is not a bounded function. Then limJC_+00 L(x) = +co .

Observe that if we smoothly extend L from [1, oo) to [0, oo) the new

operator A has the same singular values as the old one (because it acts on

%A = L2(0, 1)). Because ofthat we can assume L e Cx[0, oo) and that L is a
linear function on [0, 1]. Without loss of generality we can assume that L > 0

on [0, oo) (because sn(Ia) x l/na [2]). Lex a > 1 be a fixed number and let

f L(x), x>a,
Lia\X) —

L'(a)x + L(a)-aL'(a),    0<x<a.

Let B and Ba be linear operators on L2(0, 1) defined by

Bf(x)=  f\x-y\a-lL(Y-^)f(y)dy,
Jo \\x-y\j

Baf(x)=  f\x-yrlLa(Y-^—)f(y)dy.
Jo \\x-y\j

Before the proof of Theorem 1 we give the following lemma.

Lemma 1. If 0 < a < 1/2 and a is large enough, then

n^oo S„(Ba)

Proof Let P: L2(0, 1) -+ L2(0, 1) be a linear operator defined by Pf(x) =
X[o,i¡á\(x)f(x) and Q = I-P. (Here X[a,b] is the characteristic function of
[a, b].) Then

Ba = (P + Q)Ba(P + Q)

= PBaP + QBaP + PBaQ + QBaQ

and

B = (P + Q)B(P + Q)
= PBP + QBP + PBQ + QBQ.

Since La(l/x) = L(l/x) for 0 < x < 1/a, we obtain PBaP = PBP and

(2) B = Ba + Q(B- Ba)P + P(B - Ba)Q + Q(B - Ba)Q.

From the definition of La it follows that Q(B - Ba)P and Q(B - Ba)Q are
Hubert Schmidt operators and hence

(3) sn(Q(B - Ba)P + P(B - Ba)Q + Q(B - Ba)Q)

-«■-">-.(-«?)   (o«,<i)

If we show that

(4) lim -£-sn(Ba) = co¿0,
n-»oo L(n)
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then from (2), (3), (4), and the Ky Fan Theorem [5] follows (1). Now we prove

(4) (with Co = n~ar(a) cos(an/2)) if 0 < a < 1/2 and a is large enough.

Consider the operator B'a : L2(-l, 1) -> L2(-l, 1) defined by

B'af(x) = j  ka(\x-y\)f(y)dy

where

ka(t) = f-xLa (j)       (t>0).

LeX

Ka(£,)= fe^ka(\t\)dt
Jr

and
oo

Ha(x,y)=  Y, (ka(\x - y + 4n\) - ka(\x + y + 4n + 2\)).
n=—oo

By direct computation we conclude that

/i
Ha(x, y)<p„(y)dy = Ka (-^) y>n(x)

where
,  ,          nn(l +x)

(p„(x) = sm—^- '        neN.

(The system {<?„}£!. is an orthonormal basis of L2(-l, 1).) We shall demon-

strate that the following conditions are satisfied:

Io . Ka(q ~ const-L(i)/{° when i -» +oo .

2°. If a is large enough, the function Ka is decreasing if £, is large enough.

3°. The operator D: L2(0, 2) -» L2(0, 2) defined by

Df(x)= [ ka(x + y)f(y)dy
Jo

has the property s„(D) = o(L(n)/na)   (0 < a < 1/2).

4°. The function T,n^0;n^-i(ka(\x - y+ 4n\) - ka(\x + y + 4n + 2\)) is

bounded on [-1, l]2.

The property 4° is the consequence of the linearity of La on [0, a]. Simple

computation yields

/    /   \K(x + y)\2 dxdy < oo        (for every a > 0)
Jo Jo

and hence

sn(D) = o(n-xl2) = o{^)        (0<«<l)-

By a substitution we obtain
/»OO 1

Ka(i) = 2^-a       r«-1 cos -.La(üt)dt.
Jo l

We shall prove now

(6)
/•OO 1 /»oo

Qß)=       x~a-x cos-La(c;x)dx~L(c;) /    ^-"-'cos-úíx       (£^+oo).
Jo X Jo x
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/• + 00 i

Qi(0= /     x-a-lco&-La(Zx)dx
Jl/n X

02(0= /  *x~a-x cos-La(clx)dx.
Jo x

Then by Theorem 2.6, p. 63 in [6] we get

COO 1
-a-lx a    cos — dx + tr(l)

(7)

i(«=a)|c

= L(Ç) I rx~a~x cos- dx + o(l)\

By partial integration, we get

ß2(f) = (  \in--x-aLa(clx)
Jo x

1 -a +
ixL'adx)

La(ÍX)
dx,

i.e.,

&(i»=(i-»)/"*x-"si„ii?(ëi</,
JoLad)

pl/jl

10fJo

x La(Z)

1    La(Zx)   ixL'a(c;x)

x    La(i)       La(Çx)
dx.

Since La is a nondecreasing function and limt-,+00tLa(t)/La(t) = 0, by the
Lebesgue Dominated Convergence Theorem

D (<?1 /■■/'t /"■p"[ i
^7tv-»(!-«)/     x~asin-dx= x~a-xcosAdx
Lad) Jo x JO X

Q2(cl) = La(c:) U 1/nx-a-x cos ^dx + o(l)\

= L(flN,/Va-1cos±rfx + ff(l)J .

Therefore

(8)

Since
/•OO

JO

and ß = öi + ßi • from (7) and (8) we obtain (6) and

1 cos — dx = F (a) cos -r
x 2

(9)

which proves Io.

tfa(»i) = 2r(a)cos^^(l2    £,a
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Now we prove property 2° of Ka . Since
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r°° i
K'ad) = -2ac;-a-x /    x~a~x cos-La(c¡x)dx

Jo x
1-+0O i

+ 2<Ta /      x~a cos -La(Sx)dx
Jo x

= 2Lad)

it suffices to prove that

/   .  _,  ,       an        .,,      f°°   _a_,        ltxL'JÇx). \
-2ar(a)cos^- + a(l)+       x a 'cos-       a¿   ' dx    ,

\ 2 Jo X     La(Q) )

(10) I [°° x-a-x cos l^L"gx) dx\ < 2aT(a) cos ̂
|7o •*     -La(ç) 2

if a and £ are large enough. Since

I00x-a~x cos l^«^) dx^O       (i-»+oo)
Jl -*      -Lai1»)

and

Jo

_Q_,       1 frZ¿(fr)
x       cos ■

x    £,„(<*)

inequality (10) will follow from

/    JC~a

(£-+oo),

(11)
-lco;l¿a(W    fr¿,(fr)

X   Lad) Ladx)

_  _.  .        arc
< 2ar(a) cos —

(a large enough and £ > a). Applying twice the Bonet Mean Value Theorem

(the functions x i-+ La(x) and x i-+ x • L'a(x)ILa(x) are nondecreasing and

decreasing on [0, oo) and [xo, oo) respectively) we get

/   x^-'cos-^
Ja/Z x   La

I Ladx)   ixL'adx)

d) Ladx)
<

aL'(a) | fc*

L(a)
r   -a-l        !
/     X COS —

Jcx X
dx

where a/£ < Cx < c2 < 1.

Since the integral /0°° x~a~x cos ¿ 6?x is convergent and

lim x T; ! = 0,
*-»+oo      L(X)

(11) holds if a is fixed and large enough and £ > a is large enough. From Io,

2°, and (5) it follows that

(12) sjr iHa(x,y)-dy)~2r(a)cos^I$L

From 3° we get

(13)
s«(S!.xka(\x + y + 2\).dy)=o(!$),

sn(jlxk*(\x+y-2\)-dy) = °{!¥)-
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The function

R(x,y) = ka(\x-y-4\)+     £    (ka(\x - y + 4n\) - ka(\x + y + 4n + 2\))
n¿0;n¿-l

is bounded on [-1, l]2 (a consequence of 4o), hence /_, R(x, y) • dy is a

Hubert Schmidt operator and

(14) s„ (/' R(x, y) ■ dy\ = o(n~xl2) = o (^) .

From (12), (13), (14), and the Ky Fan Theorem it follows that

(15) *"'W-Tä:'

From (15) and from

^(|)^*-2n«)«?^{i+^))
by substitution in the eigenvalue relation Bae„ = X„en, we obtain

i\c\ id \     -rt \      an L(n)
(16) sn(Ba)~r(a)cos-j-^.

Lemma 1 is proved.

From now on suppose a is a fixed and large enough number such that (1)
holds.

Proof of Theorem 1 in Case A. Since

Af(x)= f k(x-y)f(y)dy,
Jo

we have

(A + A*)f = Bf= f k(\x-y\)f(y)dy.
Jo

By Lemma 1 we get

lim^^p-l
n^oo S„(Ba)

and so

S2n(B) > c[s2n(Ba)

(c\ does not depend on n). The last inequality and (16) imply

s2n(B) > C] —^    (c\ does not depend on n).

Since s2n(B) < s„(A) + s„(A*) = 2sn(A), we obtain

Now we prove the following inequality

(18) s„(A) < const —^—-    (const does not depend on n).

Here we use the following lemma proved in [4].
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Lemma 2. Let K„(x, y) be a sequence of functions integrable to x and to y

individually, 0 < x, y < 1. Let K(x,y) be a similar function, and suppose

that for almost all y

[ \K(x, y) - Kn(x, y)\dx < ßn       (ß„^0)
Jo

and also that for almost all x

f \K(x,y)-Kn(x,y)\dy<yn       (y„->0).
Jo

Finally, suppose that for each n

3An=\ Kn(x,y)-dy
Jo

is a compact operator on L2(0, 1 ). Then 3A = /J K(x ,y)'dy is also a compact

operator on L2(0, 1) and

sn(&)<s„m + y/ßM.

Now let us put

and

Kn(x,y) = {{x-y+»r~lL(^)>   y<X'

I 0, .    y>x,

K(x,y) = {{X-y)a-lL(^)>   ><*•

l0, y>x.

The function t »-► ta~xL(l/t) is decreasing (for 0 < a < I) and hence

j\K(x-y)-Kn(x,y)\dy = J  "í°-1l(jJ dt-J'    V>zYy)rf/

fl/n /i\ c+oo

I L"-'L\A>d"L r'"mdl
and

/+0Cra-xL(t)dt~-^       (x^+oo),
Jx a  Xa '

we get

(19) /   \K(x ,y)-K„(x, y)\dy < c3——   (c3 does not depend on n) .
Jo na

Similarly,

(20) /   |ÄT„(x,y)-Kn(x, y)\dx < c4——   (c4 does not depend on ri) .
Jo na
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From (19), (20), and Lemma 2 we obtain

(21) s„(A)<y/clci^-+Sn(Xl).

Now, we can estimate the norm \\<%A„\\2 (Hubert Schmidt norm). We have

fn\\\ = j I \Kn(x,y)\2dxdy

<-í
Jl/n

'+""^(i))V

From this inequality by simple computation we get

WXiWl < c5nx~2a(L(n))2   (c5 does not depend on n).

Since ns2(3An) < \\3An\\2, we obtain

(22) s„(JA„) < Cè-^-J-   (Cf, does not depend on ri).

Now (18) follows from (21) and (22). The theorem is proved for the case when
the function L is not bounded.

Case B: The function L is bounded.   Since L is nondecreasing we have
lim^_+00 L(x) = d < oo . By assumption of Theorem 1 we get d > 0.

Lemma 3. Suppose r e C[0, 1],  r(0) = 0, and G is a linear operator on

L2(0,1) defined by

Gf(x)= [X(x-yr-xr(x-y)f(y)dy.
Jo

If 0<a< 1/2, then

(23) lim nasn(G) = 0.
n—»oo

Proof of Lemma 3. Let us represent G as

• i

where

Gf(x)= ¡ \x-y\a-xM(x,y)f(y)dy
Jo

M{x-^'{T.~V)'
i>y>x>o.

LeX e > 0. Then there exists S > 0 such that \M(x, y)\ < e if |x — y\ < ô
Put

Q, = [0, l]2\{(x, y): \x-y\ < S},       Q2 = [0, 1]2\Q,.

Suppose Gx, G2 are linear operators on L2(0, 1) defined by

Gtf(x)= f \x-y\a-xXai(x,y)M(x,y)f(y)dy,        ¿=1,2
Jo

(Xsii are characteristic functions of Q,, i = 1,2).
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Then G = Gx + G2 and

(24) s2n(G)<sn(Gx)+sn(G2).

By Lemma 1 from [1] we obtain

\ 1/2-
rl/n (   roo \

J     ta-xdt + n-xl2[j    t2a~2dt\Sn(G\) < const-e

i.e. (since 0 < a < 1/2),

(25) s„(Gx) < const »e • —     (const does not depend on n ).

On the other hand, G2 is a Hubert Schmidt operator and hence

sn(G2) < c7(S) - n-1'2.

From the previous inequality we get (for 0 < a < 1/2)

(26) nasn(G2) < e

if n is large enough.

From (24), (25), and (26) we obtain

lim nas2n(G) = 0
n—»oo

and
lim nasn(G) = 0.

n—»oo

Proof of Theorem 1 in Case B. Put r(x) = L(l/x)-d. Applying Lemma 3 we

get

w  A"*5«{io{x-yr~iK^y-d)-dy)=°-

In [2] it is proved that

sn y\x - y)a~l • rfy) ~ r(a)(nn)-a .

From (27), the previous asymptotic formula, and the Ky Fan Theorem we con-

clude

Sn (f(x - y)a~lL (-^y . ¿y) ~ d » T(a)(nn)-a.

Theorem 1 is proved.

Remark. From the proof it is evident that if L is bounded, then it is enough

to suppose that L is continuous and limx_oo L(x) = d ^ 0.

Theorem 2. Suppose function L satisfies conditions from the beginning of this pa-
per. Let r e Cx[0, 1], r(0) = 0, kx(x) = k(x)-(l+r(x)) (k(x) = xa~xL(l/x)),

and let Ax : L2(0, 1) -> L2(0, 1) be a linear operator defined by

Axf(x)= ¡Xkx(x-y)f(y)dy.
Jo

If 0<a< 1/2, then sn(A\)^ L(n)/na .
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Lemma 4. Suppose A and B are composed operators on Hubert space %A

such that s„(A) x L(n)/nß (L is a slowly varying function, ß > 0) and

lim^oo ^„(B) = 0. Then sn(A + B) x L(ri)/n^ .

Proof of Lemma 4. From conditions sn(A) x L(n)/n? it follows that there

exists constants dx > 0 and d2 > 0 such that

(28) dimisM)sdm^

For arbitrary k e N, n = (k + l)m + j, j = 0,1,2,... ,k, by properties of
singular values [5], we have

s{k+x)m+j(A + B)< skm+j(A) + sm+x(B),

i.e.,

s(k+x)m+j(A + B) <(l+ sm+x(B) \      skm+J(A)

S(k+x)m+j(A)      - \      skm+j(A)J   s{k+x)m+j(A)

From (28) we get

s(k+x)m+j(A + B) < /       sm+x(B)\   dx ((k + l)m + j\ß     L(km + j)

s{k+x)m+j(A)      ~\      skm+j(A)J   d2\    km + j    J   L((k+l)m + j)'

Since jt^ts„(A) -> 0 (or equivalently sn(B)/sn(A) -» 0) we obtain

msn(A + B) ^dx (k + l^ß
s„(A) d2\   k

As k is arbitrary, we get

hm S"{A,+ B) < 4
5n(A)

Similarly, we get

hmSAA + B1>d2^
„-z^,    s„(A) dx

Lemma 4 is proved.

Proof of Theorem 2. Since reC'[0,l] and r(0) = 0, ¡Qx k(x - y)r(x - y) -dy
is a Hubert Schmidt operator and therefore

(29) sn Qf k(x - y)r(x - y) • ¿y) = a(n~xl2) = a (^¡p)     {o < a < I) .

From Theorem 1 we have

(30) Sn[J*k(x-y).dy)*^.

The statement of Theorem 2 follows from (29), (30), and Lemma 4.

Example. Let L(x) = (lnx/, ß > 0, and let the function r satisfy r e
Cx[0, l], r(0)¿0. We consider the operator T: L2(0, 1)->L2(0, 1) defined
by

Tf(x)= ¡X(x-y)a-x(-ln(x-y))h(x-y)f(y)dy   (0<a<l/2).
Jo

Then sn(T) x (In n)t*/na .



estimation of singular values of convolution operators 1409

References

1. F. Cobos and T. Kühn, Eigenvalues of weakly singular operators, J. London Math. Soc. (2)

41 (1990), 323-335.

2. M. R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators,

J. Math. Anal. Appl. 175 (1993), 380-391.

3. V. Faber and G. M. Wing, Asymptotic behavior of singular values of convolution operators,

Rocky Mountain J. Math. 16 (1986).

4._, Singular values of fractional integral operators: A unification of Theorems of Hille,

Tamarkin, and Chang, J. Math. Anal. Appl. 120 (1986), 745-760.

5. I. C Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators,

Amer. Math. Soc, Providence, RI, 1969.

6. E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, Heidelberg, and New York,

1976.

MatematiCki Fakultet, Studentski TRG 16, Belgrade, Serbia


