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OF ABELIAN ALGEBRAIC NUMBER FIELDS WITH ODD DEGREE
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ABSTRACT. Let Ag, hx, Rk denote the discriminant, the class number, and
the regulator of the Abelian algebraic number field K = Q(a) with degree d,
respectively. In this note we prove that if d > 1, 2 { d, and the defining
polynomial of a has exactly r, real zeros and r, pairs of complex zeros, then
hg > w+/|Ag|/2"1(2%)"233Rk log 4|Ak|, where w is the number of roots of
unity in K.

Let Ax, hx, Rx denote the discriminant, the class number, and the regulator
of the Abelian algebraic number field K = Q(a) with degree d, respectively.
In this note we prove the following result:

Theorem. If d > 1, 2td, and the defining polynomial of a has exactly r, real
zeros and r, pairs of complex zeros, then

w/|Ak|
27 (21)"233Rx log 4[Ax |’
where w is the number of roots of unity in K .

(1) hg >

Upon applying the above theorem, we can improve some known results con-
cerning the lower bound of hx . For instance, Barrucand, Loxton, and Williams
[1] proved that if K = Q(D'/3), where D = n3 + m is not a cube, m and n
are nonzero integers with 3n2 =0 (modm), then

S 0.14|Ak|'*

7 Tog(IAx[/3) log(IAx]/27)
Notice that ry = 1,r, = 1, w = 2, and Rg < 3log(JAk|/3) in this case. By
(1), we get a better lower bound as follows:

hg > VIAx|
K = 1987 log(jAk[/3)log 4|Ak|

The proof of Theorem. Let {k(s) denote Dedekind’s {-function of K. By [3,
§42], if g > 1, then

h

() =3 2,

n=1
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where by =1 and b, >0 for n> 1. Since {x(2) > b, and

(1) = Y 2l 5

n=1

for m > 0, we have

2 k=Y am2-9", a>21,ax20,m>0,|s-2/<1.
m=0

Let X be the group of Dirichlet characters associated to K. It is a well-
known fact that {x(s) = {(s)¢k(s), where {(s) is the Riemann {-function,

é(s)= [[ Les, x),
XEX
X#X0
where xo is the trivial character and L(s, x) is the L-series attached to the
character x. Since {x(s) has only simple pole at s = 1 of residue &x(1), the
function g(s) = {x(s) —&x(1)/(s — 1) is regular. From (2), we get

(3) g(s) = (am —&(1))2—5)".
m=0
Forany 0 >0 andany x > 1, using Abel’s transformation,
_S(x, S(z,
4) o= 3 HD -t [FE 0,
1<n<x

where S(x, X) = Y 1<n<x X(n) . Let f; denote the conductor of x . By Péiya’s
theorem, |S(x, x)| < /f;log f; . By (4), we get

(5) |L(s, x)| < Z nid+'2\/f2$fx<l+xl—a— 2\/7;logfx

l1-0 x°

1<n<x

Putting x = /f; log f, . We get from (5) that

1/4 5/4 1
(6) ILGs, 0 < 4f*log fy < 4, 023,
since f, > 5. Furthermore, by the conductor-discriminant formula
(7 A=) I %4,
xEX

we get from (6) that

(8) el <| T £ =18, o
XEX
X#Xo0

Simultaneously, since |{(s)| < 1/|s — 1| +|s|/o for ¢ > 0, we have

\Y
N —

1K) <3,  |s-2/=3
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Therefore, by (8),
) Skl < 3)Axl*,  Is=-2I=3

Further, by a well-known fact that |L(1, x)| < log f, + 2, we get from (9) that

(10) 151 < 16x(6) + [ KD < ajags

for |s—2| = 3/2. Furthermore, by the maximum modulus principle, (10) holds
for |s — 2| < 3/2. Using Cauchy’s theorem, we find from (3) and (10) that

(11) an -l <4ide* (3) 7 m2o0.
Let M be an integer with M > 1. By (2) and (11), if 13/14 <0 < 1, then
£(0) = (x(o) - KU
M-1 (o)
<Y (am—E&(1)2-0)" = ) lam — (|2 - o)™
(12) " . .
<&l L2 -0 - sl 3 (3e-0)
m=0 m=M

M
~am 2 e (3)

Put
_ [log(140]Ak[%/4)
(13) M ‘[ log(7/5) ]“
We get from (12) and (13) that
M
(14) tx(o) > o5~ B2y,

By a recent result of Chen and Wang [2], 1f x is a complex character, then
L(s, x) has no zero in the range

1>6>1 - ——©t t>0,

log fy (1] +2)° -
where
19.09712
43.14093 + 12.169/1og f;(|t] + 2)

Since ¢ > 0.0553581 for f, > 5, we see that Z(o, x) # O for the range
1-1/18.0642l0og2f, < o < 1. Since 24d, all characters of X are complex
characters. Notice that d > 3. We get from (7) that |Ax| > f? for any
x € X. Hence, 4£(g, x) # 0 for 1 —1/9.0321log4|Ax| < g < 1. It implies
that {x(c) <0 for 1—1/9.03211log4|Ax| < g < 1, and by (14), we obtain

¢ = max (0.089193 , - 0.339) .

9(1 —a9)
10(2 — o)™’

(15) ck (1) >
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where 6o = 1 —1/9.0321log4|Ak|. Since d > 3 and |Ak| > 23, we get from

(13) that
)M = 1 )
log(2 — d0)™ = M'log (1 * 5.03211og ]|
< (1 + log140|AK|5/“) ( 1 )
T08(7/5) 9.0321log 4)Ax]
log 140 + 10g235/4) ( 1 )

< (1 * —0g(7/5) 9.032110g423) <17

and (2 - d9)M < 3.23. Substituting it into (15),
1

Thus, by (16) and the class number formula

_ wy/|Ag|
hK_WéK(1)>

we get (1) immediately. The theorem is proved.
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