A LOWER BOUND FOR THE CLASS NUMBERS OF ABELIAN ALGEBRAIC NUMBER FIELDS WITH ODD DEGREE

LE MAOHUA

(Communicated by William Adams)

ABSTRACT. Let Δ_K , h_K , R_K denote the discriminant, the class number, and the regulator of the Abelian algebraic number field $K = \mathbb{Q}(\alpha)$ with degree d, respectively. In this note we prove that if d>1, $2 \nmid d$, and the defining polynomial of α has exactly r_1 real zeros and r_2 pairs of complex zeros, then $h_K > w\sqrt{|\Delta_K|}/2^{r_1}(2\pi)^{r_2}33R_K\log 4|\Delta_K|$, where w is the number of roots of unity in K.

Let Δ_K , h_K , R_K denote the discriminant, the class number, and the regulator of the Abelian algebraic number field $K = \mathbb{Q}(\alpha)$ with degree d, respectively. In this note we prove the following result:

Theorem. If d > 1, $2 \nmid d$, and the defining polynomial of α has exactly r_1 real zeros and r_2 pairs of complex zeros, then

(1)
$$h_K > \frac{w\sqrt{|\Delta_K|}}{2^{r_1}(2\pi)^{r_2}33R_K\log 4|\Delta_K|},$$

where w is the number of roots of unity in K.

Upon applying the above theorem, we can improve some known results concerning the lower bound of h_K . For instance, Barrucand, Loxton, and Williams [1] proved that if $K = \mathbb{Q}(D^{1/3})$, where $D = n^3 + m$ is not a cube, m and n are nonzero integers with $3n^2 \equiv 0 \pmod{m}$, then

$$h_K > \frac{0.14|\Delta_K|^{1/4}}{\log(|\Delta_K|/3)\log(|\Delta_K|/27)}$$
.

Notice that $r_1 = 1$, $r_2 = 1$, w = 2, and $R_K < 3\log(|\Delta_K|/3)$ in this case. By (1), we get a better lower bound as follows:

$$h_K > \frac{\sqrt{|\Delta_K|}}{198\pi \log(|\Delta_K|/3) \log 4|\Delta_K|}.$$

The proof of Theorem. Let $\zeta_K(s)$ denote Dedekind's ζ -function of K. By [3, §42], if $\sigma > 1$, then

$$\zeta_K(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s},$$

Received by the editors August 15, 1993.

1991 Mathematics Subject Classification. Primary 11R29, 11R20.

1348 LE MAOHUA

where $b_1 = 1$ and $b_n \ge 0$ for n > 1. Since $\zeta_K(2) \ge b_1$ and

$$(-1)^m \zeta_K^{(m)}(2) = \sum_{n=1}^{\infty} \frac{b_n (\log n)^m}{n^2} \ge 0$$

for m > 0, we have

(2)
$$\zeta_K(s) = \sum_{m=0}^{\infty} a_m (2-s)^m$$
, $a_0 \ge 1$, $a_m \ge 0$, $m > 0$, $|s-2| < 1$.

Let X be the group of Dirichlet characters associated to K. It is a well-known fact that $\zeta_K(s) = \zeta(s)\xi_K(s)$, where $\zeta(s)$ is the Riemann ζ -function,

$$\xi_K(s) = \prod_{\substack{\chi \in X \\ \chi \neq \chi_0}} L(s, \chi),$$

where χ_0 is the trivial character and $L(s, \chi)$ is the L-series attached to the character χ . Since $\zeta_K(s)$ has only simple pole at s=1 of residue $\zeta_K(1)$, the function $g(s) = \zeta_K(s) - \zeta_K(1)/(s-1)$ is regular. From (2), we get

(3)
$$g(s) = \sum_{m=0}^{\infty} (a_m - \xi_K(1))(2-s)^m.$$

For any $\sigma > 0$ and any $x \ge 1$, using Abel's transformation,

(4)
$$L(s, \chi) = \sum_{1 \le n \le x} \frac{\chi(n)}{n^s} - \frac{S(x, \chi)}{x^s} + s \int_x^{\infty} \frac{S(z, \chi)}{z^{s+1}} dz,$$

where $S(x, \chi) = \sum_{1 \le n \le x} \chi(n)$. Let f_{χ} denote the conductor of χ . By Pólya's theorem, $|S(x, \chi)| < \sqrt{f_{\chi}} \log f_{\chi}$. By (4), we get

$$(5) |L(s,\chi)| \leq \sum_{1 \leq n \leq x} \frac{1}{n^{\sigma}} + \frac{2\sqrt{f_{\chi}} \log f_{\chi}}{x^{\sigma}} < 1 + \frac{x^{1-\sigma} - 1}{1 - \sigma} + \frac{2\sqrt{f_{\chi}} \log f_{\chi}}{x^{\sigma}}.$$

Putting $x = \sqrt{f_{\chi}} \log f_{\chi}$. We get from (5) that

(6)
$$|L(s, \chi)| < 4f_{\chi}^{1/4} \sqrt{\log f_{\chi}} < f_{\chi}^{5/4}, \qquad \sigma \geq \frac{1}{2},$$

since $f_{\chi} \geq 5$. Furthermore, by the conductor-discriminant formula

(7)
$$\Delta_K = (-1)^{r_2} \prod_{\chi \in X} f_{\chi},$$

we get from (6) that

(8)
$$|\xi_K(s)| < \left| \prod_{\substack{\chi \in X \\ \chi \neq \chi_0}} f_\chi^{5/4} \right| = |\Delta_K|^{5/4}, \qquad \sigma \ge \frac{1}{2}.$$

Simultaneously, since $|\zeta(s)| \le 1/|s-1| + |s|/\sigma$ for $\sigma > 0$, we have

$$|\zeta(s)| \le 3$$
, $|s-2| = \frac{3}{2}$.

Therefore, by (8),

(9)
$$|\zeta_K(s)| < 3|\Delta_K|^{5/4}, \qquad |s-2| = \frac{3}{2}.$$

Further, by a well-known fact that $|L(1, \chi)| < \log f_{\chi} + 2$, we get from (9) that

(10)
$$|g(s)| \le |\zeta_K(s)| + \left| \frac{\xi_K(1)}{s-1} \right| < 4|\Delta_K|^{5/4}$$

for |s-2| = 3/2. Furthermore, by the maximum modulus principle, (10) holds for $|s-2| \le 3/2$. Using Cauchy's theorem, we find from (3) and (10) that

(11)
$$|a_m - \xi_K(1)| < 4|\Delta_K|^{5/4} \left(\frac{2}{3}\right)^m, \qquad m \ge 0.$$

Let M be an integer with M > 1. By (2) and (11), if $13/14 < \sigma < 1$, then

$$g(\sigma) = \zeta_{K}(\sigma) - \frac{\xi_{K}(1)}{\sigma - 1}$$

$$\leq \sum_{m=0}^{M-1} (a_{m} - \xi_{K}(1))(2 - \sigma)^{m} - \sum_{m=M}^{\infty} |a_{m} - \xi_{K}(1)|(2 - \sigma)^{m}$$

$$< 1 - \xi_{K}(1) \sum_{m=0}^{M-1} (2 - \sigma)^{m} - 4|\Delta_{K}|^{5/4} \sum_{m=M}^{\infty} \left(\frac{2}{3}(2 - \sigma)\right)^{m}$$

$$< 1 - \xi_{K}(1) \frac{(2 - \sigma)^{M} - 1}{1 - \sigma} - 14|\Delta_{K}|^{5/4} \left(\frac{5}{7}\right)^{M}.$$

Put

(13)
$$M = \left[\frac{\log(140|\Delta_K|^{5/4})}{\log(7/5)} \right] + 1.$$

We get from (12) and (13) that

(14)
$$\zeta_K(\sigma) > \frac{9}{10} - \frac{(2-\sigma)^M}{1-\sigma} \xi_K(1).$$

By a recent result of Chen and Wang [2], if χ is a complex character, then $L(s, \chi)$ has no zero in the range

$$1 \ge \sigma > 1 - \frac{c}{\log f_{\kappa}(|t|+2)}, \quad t \ge 0,$$

where

$$c = \max\left(0.089193\,,\, \frac{19.09712}{43.14093 + 12.169/\log f_\chi(|t|+2)} - 0.339\right)\,.$$

Since c>0.0553581 for $f_\chi\geq 5$, we see that $\angle(\sigma,\chi)\neq 0$ for the range $1-1/18.0642\log 2f_\chi\leq \sigma<1$. Since $2\nmid d$, all characters of X are complex characters. Notice that $d\geq 3$. We get from (7) that $|\Delta_K|\geq f_\chi^2$ for any $\chi\in X$. Hence, $\angle(\sigma,\chi)\neq 0$ for $1-1/9.0321\log 4|\Delta_K|\leq \sigma<1$. It implies that $\zeta_K(\sigma)<0$ for $1-1/9.0321\log 4|\Delta_K|\leq \sigma<1$, and by (14), we obtain

(15)
$$\xi_K(1) > \frac{9(1 - \sigma_0)}{10(2 - \sigma_0)^M},$$

1350 LE MAOHUA

where $\sigma_0 = 1 - 1/9.0321 \log 4|\Delta_K|$. Since $d \ge 3$ and $|\Delta_K| \ge 23$, we get from (13) that

$$\log(2 - \sigma_0)^M = M \log\left(1 + \frac{1}{9.0321 \log 4|\Delta_K|}\right)$$

$$< \left(1 + \frac{\log 140|\Delta_K|^{5/4}}{\log(7/5)}\right) \left(\frac{1}{9.0321 \log 4|\Delta_K|}\right)$$

$$\le \left(1 + \frac{\log 140 + \log 23^{5/4}}{\log(7/5)}\right) \left(\frac{1}{9.0321 \log 4.23}\right) < 1.17$$

and $(2 - \sigma_0)^M < 3.23$. Substituting it into (15),

(16)
$$\xi_K(1) > \frac{1}{33 \log 4|\Delta_K|}.$$

Thus, by (16) and the class number formula

$$h_K = \frac{w\sqrt{|\Delta_K|}}{2^{r_1}(2\pi)^{r_2}R_K}\xi_K(1),$$

we get (1) immediately. The theorem is proved.

REFERENCES

- P. Barrucand, J. Loxton, and H. C. Williams, Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant, Pacific J. Math. 128 (1987), 209-222.
- J.-R. Chen and T.-Z. Wang, On the distribution of zeros of Dirichlet L-functions, Sichuan Daxue Xuebao 26 (1989), Special Issue, 145-155.
- E. Hecke, Vorlesung über die Theorie der algebraischen Zahlen, Akademische Verlagsgesellschaft, Leipzig, 1923.

DEPARTMENT OF MATHEMATICS, HUNAN NORMAL UNIVERSITY, P.O. BOX 410081, CHANGSHA, HUNAN, PEOPLE'S REPUBLIC OF CHINA

Current address: Department of Mathematics, Zhanjiang Teachers College, P.O. Box 524048, Zhanjiang, Guangdong, People's Republic of China