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AN ELEMENTARY PROOF OF THE TRACZYK-TOKOTA CRITERIA
FOR PERIODIC KNOTS

JÓZEF H. PRZYTYCKI

(Communicated by Ronald Stern)

Abstract. Traczyk used the first coefficient of the skein (Homfly) polynomial

to find powerful criteria for r periodic knots. The criteria were extended by

Yokota to (r - l)/2 first coefficients of the skein polynomial. We give here a

short, elementary proof of the Traczyk-Yokota criteria. The main tool is the

Jaeger composition product, the same product which is a base for Turaev's Hopf

algebra structure of links in a handlebody.

An oriented link L in S3 is said to be /"-period (r an odd, prime number)

if it has a diagram which is invariant under the rotation, (p, of R2 by a 2s

angle. Let lk(L, y) denote the linking number of L with the rotation axis, y .
The skein polynomial of oriented links, Pi £ Z[v±x, z±l], is character-

ized by the properties: Pj„ = (v ~v)n~{, where T„ is the trivial link of n

components, and v~xPL+ - vPl_ — zPi^, where L+, L_ , and Lo make up

the standard skein triple. If K is a knot, then Pk = ]C¡=o^2i(^)z2í, where

P2i(K) £ Z[v±2].

Traczyk [4] and Yokota [5] proved the following property of the skein poly-

nomial of periodic knots:

Theorem 1. Let K be an r-periodic knot and k = lk(L, y). Then:
(a) (Traczyk) If P0(K) = ¿^a^v2' then a2i = a2i+2modr except possibly

when 2/ + 1 = ±k mod r.
(b) (Yokota) P2¡(K) = b2iPo(K) mod r for 2i < r - I, where numbers b2i

depend only on r and on k mod r.

Notice that because K isa knot, therefore k is coprime with r. The crucial
part of the proof, by Traczyk and Yokota, is an involved analysis of the skein

polynomial of torus knots (using the Jones formula [2]). In our proof we do

not need a reduction to torus knots at all and instead use the Jaeger composi-

tion product formula [1] (we should stress that Jaeger proved his formula by

elementary considerations involving Reidemeister moves).

It is convenient to work with the following regular isotopy variant of the
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skein polynomial:

QD(V , Z) = zcom(D)-lv-Tait(D)(v-l _ v)pDfv > z)

where com(D) is the number of link components and Tait(D) is the algebraic

sum of the signs of the crossings of D. It is also convenient to add the empty
link, 0, to the set of links and put Q0(v , z) — I. Qd(v , z) satisfies the skein

relation

/ Qd0       in the case of a selfcrossing,

I z2Qd0   in the case of a mixed crossing

and Qduo = (v~x - v)QD . The advantage of working with QD(v, z) is that
Qd(v , z) £ Z[v±x, z2] (no negative powers of z) and that the Jaeger compo-

sition product has a nice simple form. We will write now the formula and its
reduction modulo (r, zr~x) in the case of r-periodic knots.

Theorem 2 (Jaeger [1]). Let D be a diagram of an oriented link in S3. Then:

Qd(vxv2,z)=    Y,   (D\f)vr20'{D^QDf¡(vx,z)v¡-rot{^^QDf2(v2,z)

f£tbI(D)

where the meaning of the used symbols is as follows: To define lbl(D), consider
D as a A-valent graph. Let Edg(D) denote the set of the graph D. By a 2-

labelling of D we mean a function f : Edg(D) -» {1,2} such that around a

vertex the following labellings are allowed:

(possibly i = j)

The set of 2-labellings of D is denoted by lbl(D). The edges of D with label
i form an oriented link diagram denoted by Df ,. The vertices of D which are
neither in Df x nor Df 2 are called f-smoothing vertices of D. Let |/|_ (resp.,

|/1+) denote the number of negative (resp., positive) f-smoothing vertices of D.
Let   l/l   =   |/_| + 1/1+   and   (D\f)   =   {-\)\f\-z\f\-com{DfA)-com(Dft2)+com(D)_

Finally let rot(D) be the rotational number of D, i.e., rot(D) is the sum of

the signs of the Seifert circles of D where the sign of such a circle is 1 if it is
oriented counterclockwise and -1 otherwise.

Corollary 3. Let D be an r-periodic knot diagram in R2. Then Jaeger's com-

position product reduces to

Qd(viv2,z)=     £     (-l)l/l-<<»'.'>

felblspec(D)

x QDfl(vx, z)v-rot{D'^QDfi(v2, z)mod(r, zr~x)

where f £ lblspec(D) if f £ lbl(D) and the following conditions hold:

(a) / is a tp-invariant labelling,
(b) exactly one component of DfAuDft2 is tp invariant (other components

are permuted by <p).
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Proof, (a) tp acts on the set of labellings and orbits of the action have r ele-

ments or one ^-invariant labelling. Elements of the same orbit introduce the
same to the formula, so modulo r we are left with ^-invariant labellings.

(b) Let / be a ^-invariant labelling. <p acts on the set of components of the

link diagrams Df i, Df 2 and orbits of this action have one or r elements. Let

C be the number of 1-element orbits. Then |/| - com(Df x) - com(Df2) +
com(D) > (r - l)(C - 1) ; in particular, if C > 1 then we can ignore / in the

sum considered modulo zr~x. To prove the above inequality let us consider a

graph, G, whose vertices are components of DfXöDf<2 and edges correspond

to /-smoothed crossings. q> acts on G with the quotient G». Furthermore the

action on edges of G is free (so orbits have r elements) and the <p action on
vertices has C fixed points. Because D is a knot diagram, com(D) — 1 and

both G and G* are connected. In particular E(G*) > V(G*) - 1. Comparing
the number of edges and vertices in G and G», one gets: |/| = E(G) -

rE(G.) > rV(Gt) - r = V(G) + rC - C - r = com(DfA) + com(Df<2) +
(r - l)(C - 1) - 1. This completes the proof of (b).   Q

Corollary 4. Let D be an r-periodic knot diagram, f £ lblspecD and Kf be the

unique (p-invariant component of Dft x U Df 2 (see Corollary 3(b)). Let lbl¡pec

be the subset of lblspecD such that Kf is in Df , and f is not constant. Then

QD(vxv2, z) = vr20tDQD(vx, z) + vx-rotDQD(v2, z)

+   £   vk2QKf(vx,z)(v2x-v2)rQ^(v{,vr2)

feibi^l

+   ¿2   v{kQKf(v2,z)(vïl-viYQ^(vrltvÇimoair,zr--1),

/6/MjJJ«

where Q^(vx, v2), QW(vx, v2) £ Z[vfx, vf1].

Proof. Assume that / £ lbl¡pec. Let D^ be a sublink of Df x - Kf which

contains exactly one component from each orbit of the tp action on components

of Df ! — Kf. Similarly let Dy be a sublink of Df 2 which contains exactly

one component from each tp orbit. Then, as noted in [4, 5],

(QdW(v,z)\
QDfl(v,z)=3(v-x-vyl    vf_x_v    1   QK{(v,z)mod(r,z2"-2),

(QDm(v, z)\r

QDi,2(v,z) = (v~x -v)r I    v'_l_v    1  mod(r, z2r~2).

Similar formulas hold in the case of / £ lbl¡p'ec.

To finish the proof of Corollary 4, note that for any r-periodic link diagram
L one has rot(L) = lk(L, j>)modr where y is the axis of the rotation.   D

Before we prove Theorem 1 we formulate first some elementary properties

of polynomials which we use when applying the Jaeger composition product:

Lemma 5. Let R denote a commutative ring with 1, let Q(v) bean R Laurent
polynomial in variable v, and let s be an integer coprime with r :
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(a)//
Q(vxv2) = vs2Q(vx) + v~sQ(v2) mods,

where S = {0} or (v2r - 1, v2r - 1), then Q(v) = c(v~s - v^modJf' for

some c £ R, where JF' = {0} or (v2r - 1).

m if
Q(vxv2) = vs2Qx(vx, v2r) + vx-sQ2(v2r, v2)

where QX,Q2£ R^1, vfx], then Q(v) = vsQ'(v2r) + v~sQ"(v2r) for some

Q'(v),Q"(v)£R[v±x].
(c) //(b) holds and additionally Qx(vx, 1) = Q(vx) and Q2(l, v2) = Q(v2),

then Q(v) = (v~s - vs)Q'"(v2r) + (vs - v-s+2r)Q<-iv\v2r) for some Q'"(v),

QW(v)£R[v±x].

Proof. Let Q(v) = ¿Zcivi.
(a) The only possible nonzero terms are csvs and c-sv~s. Furthermore

cs + c-s — 0, so we can put c = c-s. Q(v) for which Lemma 5(a) holds is said

to be primitive modulo J^ .

(b) We compare terms on the left and right sides of the equation. On the left

side we have only terms with the same exponent of vx as that of v2, so the
only monomials on the right side which can survive are of the form v2+2rtv\+2rt

and vl~s+2rt v2s+2rt , which completes the proof of Lemma 5(b).

(c) This follows because 0(^1^2) satisfies (a) when considered modulo
(v2r - 1, v2r - 1) and thus Q(v) = c(v~s - vs) mod(v2r - 1).   D

Lemma 6. For s coprime with r, there is the unique polynomial cr,s £ Z[z2]

of z-degree at most r - 3, such that for z = v~x - v : cr,s(v~s - Vs) =

(v~l - v)vri~s'^ mod(v2r - 1) in Z[v±l]. Furthermore cr,s = crtS+r = -cr,-s

and CrtS(0)s = lmodr.

Proof. One can easily check, using the Euclidean algorithm, that ^rE^-w_r(î_1)

is invertible in Z[(v~l-v)2]/(£^). Let Y}-~o)ßX(v_1 ~v)2i be the unique

polynomial of degree at most r - 3 in variable (v~x - v) representing this

inverse. Then cr<s from Lemma 6 is equal to Y^[=o^2 b'2iz21. For v = 1, so

z = 0, one gets b'0s = 1 mod r.   D

Lemma 7. Let Q(v , z) £ Z[z2][v±l] be a polynomial of z-degree at most r — 3

which satisfies the following two properties:

(a) For z = v~x - v , one has Q(v , z) = (v~x - v)vr(-s~x^ mod(w2r - 1).

(b) Q(vxv2, z)   =   vs2Q(vx, z) + v~sQ(v2, z) + crtSW(vx, v2),   where

W(vx, v2) £ Z[vfx, vfx] and W(vx, v2) = 0mod(t;2r - 1, v2r - 1).

Then Q(v, z) = cr¡sW'(v) for some polynomial W'(v) £ Z[v±x].

Proof. Let Q(v, z) = ^v'c,(z) and W(vx,v2) = ¿Zb¡tjv[v{. By compar-

ing the coeificients of v[vJ2 in the formula (b) one gets: c,(z) = -cr<sbiiS =

-cr¡sb-sj = cr,sbij if i ¿ ±s, cs(z) + c-s(z) = -b-s>sCr,s, and b¡j = 0

if i ^ j, i t¿ -í, and j ^ s; finally bs,s — b-St-s = 0. The polynomial

Q(v, z) is primitive modulo (v2r - 1); therefore, by Lemma 5, Q(v, z) =

c(v~s - vi)mod(u2r - 1). Then by assumption (a) and Lemma 6 one has

c = CrtS. On the other hand c = £,. c_J+2;>(z) = - £V cs+2jr(z) ; therefore,

because s ^ -s mod 2r, the conclusion of Lemma 7 follows.   D
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Now we can deduce the Traczyk-Yokota criteria from Corollary 4 by applying

Lemmas 5-7.
(1) Qd(v , z) satisfies the assumptions of Lemma 7 modulo (r, zr_1), for

s = rot(D) ; therefore, Theorem 1 (b) holds with b2i = b'2is mod r. Namely:

For any link diagram L, PL(v, v~x - v) = 1, so for a knot diagram D,
one has Qd(v , v~x - v) — (v~x - v)v~Ta"^ = (v~x - t>)'i/<î~1)mod(i>2'' -

1). We use the general fact that rot(L) = Tait(L) + com(L) mod 2. Thus
QD(v , z) mod(r, zr~x) satisfies (a) of Lemma 7 for s = rot(D). It also satis-

fies (b), and the proof is by induction on the number of crossings, cr(D) ,ofD.

For D such that lblspec(D) contains only constant functions (e.g., cr(D) = 0),

it follows immediately from Corollary 4. An inductive step also follows imme-

diately from Corollary 4; one has only to observe that if / is not constant, then

Kf has less crossings than D and one can apply to Kf the inductive assumption

(one has to notice that rot(D) = rot(Kf) = kmodr and that cfjJ = cr,s+r) ■

(2) Qd(v , z) satisfies the assumptions of Lemma 5(c) modulo (r, zr~x);

therefore,

QD(v,z) = (v-s-vs)Q'"(v2r, z) + (vs -v-s+2r)(£iv\v2r, z)mod(r, zr~l)

for some Q'"(v , z), Q^lv\v , z) £ Z[v±x, z]. Namely: as in case (1) we per-

form an induction on cr(D), starting from the case when lblspec(D) contains

only constant functions. The crucial observation here is that vsQD(v , z) has

only even powers of v ; therefore, we can perform an inductive step using

Corollary 4. Now

Po(v,z) = :;Fl—¡JvTa"^QD(v,z)

= vTait(D)^v-s+l + v-s+3 + ... + vs-3 + t,i-l)Q"'(t;2r > z)

+ ry+1 + vs+3 + ... + vs+2r-3 + v-s+2r-^Q{iv)^2r > z)) mod(r ^ zr-\y

Therefore, Theorem 1(a) holds and the proof of the Traczyk-Yokota theorem

is complete.

Our method extends to r' -periodic knots. Furthermore, using Jaeger's skein
state model for the Kauffman polynomial, it extends to periodicity criteria

yielded by the Kauffman polynomial. We hope to describe these in the future

paper.
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