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Abstract. F. Gesmundo and F. Viani have modeled the growth rates of two-

oxide scales by the system:

dqx Kx      m- X Ki dq2 Kx      K2

dt 2qx m    2q2 dt 2qx      2q2

We provide a complete qualitative analysis of (1.1) by making use of known

results about the general «-dimensional dynamical system:

$ = -£->   p/W>o,     « = i,...,«.
dt % Pj

We show that for m > 1 , the Gesmundo-Viani system admits a unique para-

bolic solution qi(t) = c¡yft, c, > 0. This parabolic solution attracts all other

solutions. Every solution extends uniquely to a solution on [0, +oo), such

that the extended solution is eventually monotonically increasing. Finally, the

trajectory of any solution coincides with a trajectory of the following linear

system:

dqx m-\ K2 K2 dq2     K2 Kx
-j7- =-í<¡i+m^-q2,        -f± = -^qx+m-¿q2.
dt m     2 2 dt        2 2

1. Introduction

A metal oxide is a compound containing oxygen and metal. For instance,

common rust is caused by the oxidation of metal. Certain pure metals can
form different oxides, and oxidation of such metals produces a multilayer oxide
scale on the metal, where the oxide layer containing the highest concentration of

metal is in contact with the surface of the metal, while the oxide layer containing

the highest concentration of oxygen is in contact with the gas or oxygen to which

the surface of the metal is exposed. In the article [2], F. Gesmundo and F. Viani
analysed the parabolic growth of two-layer oxide scales on those metals which
can form two oxides. They obtained the following nonlinear two-dimensional
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dynamical system as a model for the growth of such scales:

dqx Kx     m-l K2
— m-

dt 2qx        m    2q2 '

dq2 Kx      K2

dt 2qx     2q2

Here K, > 0 (¿=1,2) are rate constants, m > 0 is a parameter, and q¡ > 0
is the weight of oxygen contained in oxide i per unit area.

"This system of first-order nonlinear differential equations cannot easily be

solved by standard methods" [2, p. 224]. Nevertheless, in their paper, Ges-

mundo and Viani succeed in using a heuristic argument to show that there exist

positive constants cx, C2 such that q¡(t) = c,v7, i = 1, 2, is a solution of
(1.1 )—such a solution is said to be a parabolic solution. However, they do not
delve further into the analysis of the solutions of (1.1).

In [1], H. C. Akuezur, M. W. Hirsch, and the author of this paper studied

the following generalization of the system (1.1)

at j=i qi

In that paper we establish that under mild algebraic conditions on the constant

matrix A - (a¡j), in the long-run the trajectories of (1.2) are well-behaved in

the sense that every solution q = (qx, ... , q„) : [0, a] -> R2, 0 < a < +oo,

can be extended to a solution on [0, +oo), such that limt^+00p¡(t) = +oo,

i = 1, ... , n . Moreover, the difference between any two solutions is bounded

as a function of /. Finally, if A is irreducible and tridiagonal, then all solutions
are eventually monotone increasing on [0, +oo).

In the present paper, we use the analysis of (1.2) to provide a complete
qualitative analysis of the nonlinear system (1.1) in the case where m is in

the interval (1, +oc) : We show that for m > 1, the system (1.1) admits a

unique parabolic solution q¡(t) = c¡yft, c, > 0, i = 1,2. Every solution

extends uniquely to a solution on [0, +oo), such that the extended solution is
eventually monotonically increasing. The parabolic solution attracts all other

solutions. Finally, the trajectory of any solution coincides with a trajectory of
the following system:

dqx        m - IK2 K2

¡i -i\ dt m     2 2

{ ' ' dq2      K2 Kx
■f-ito + m-fto.

The following notation will be used:

R+ = {(4i,tf2)eR2ki,<72>0},

R++ = {(Qx, q2) £ R2 ki, q2 > 0}.

The following is a detailed description of our analysis of the nonlinear system

(1.1):

Theorem I. Assume that m > 1 in the dynamical system (1.1). Then the follow-

ing statements hold.
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(i) Every solution 0/(1.1) of the form

V = (Pi,P2)-[0,a)->R2++,       0<a<+oo,

extends uniquely to a solution of (I.I) of the form

P=(Pi,P2):[0, +oo)^R2+,

such that

lim Pi(t) = +00,        i'=l,2.

Moreover, the extended solution p is eventually monotone increasing on

[0,+oo).

(ii) Let Po £ R2+, and let p : [0, +00) -* R2+ be the solution 0/(1.1) which

starts at p0 . Let r = (rx, r2) : [0, +oc) -♦ R2 be the solution 0/(1.3) which also

starts at po. Then p and q have the same trajectory in R2 + ; and at any point

on this common trajectory, p and q move in the same direction. Moreover, it is

a saddle point of the system (1.3), and hence (0, 0) is also a saddle point of the

system (1.1).
(iii) There exists a unique parabolic solution of (I A) of the form

q = (4i,?2):[0,+oc)^R2 + ,    q¡(t) = c^t,       a > O, i = 1, 2, t > 0.

Let X and S be defined as follows :

x - li/H+^**)2+** - ? (-*+V*2) ■
mKx

(2X+m=±K2y

Then cx, C2 are g/ve« oy

Cl = Vm^-(^)^2'      C2 = 7-

(iv) 7/ p : [0, +00) -* R2+ « any solution o/(l.l), then the trajectory of p is

asymptotic to the linear trajectory of the parabolic solution of (I.I). This linear

trajectory is given by

rx=Sr2,     (rx,r2)£R2+.

The main result from [ 1 ] which we will use to prove Theorem I is the follow-

ing lemma. (Recall that a real n x n matrix A = (a,j) is irreducible if for each

distinct pair of indices i, j with 1 < i'. ■£ j < n there exists a finite sequence

i = ko, ... , km = j such that akr_x<kr¿0, r = 1,..., m.)

Lemma I. Assume that the n x n matrix A = (ai;) in (1.2) satisfies the condi-

tions :

(i)   detA 5¿ 0 und a¡j > 0, for i ^ j ;
(ii)   A is irreducible;

(iii) for all x = (xx, ... , x„) £Rn+, if x¡ £"=. auXj = 0 for i = I, ... , n,
then x = 0 ;

(iv) every real eigenvalue of A is negative.
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Then every solution of (1.2) of the form

q = (ft',...,fc):[0,a]-»RJ+,        0<a<+oo,

extends uniquely to a solution

q:[0,+oo)^R:+,

and
lim q¡(t) = +00,        i - I, ... , n.

t—»+oo

Moreover, if r(t) - (rx(t), ... , r„(t)) : [0, +oo) -> R^+ is any other solution of

(1.2), then
sup   ||q(0-r(0H<+oo,

0<f<+oo

and hence

Urn ^r = l,        i=l,...,fi.

Finally, if the matrix A is tridiagonal, then every solution q(?) : [0, +oo) —> R!J.+

o/(1.2) is eventually monotone increasing on [0, +oo).

2. Preliminaries

In this section we present the background material which is needed in the

proof of Theorem I.

Lemma 2.1. Let Kx, K2> 0 and m > 1. Define the 2x2 matrix A = (a¡j)

by
I   mKx    m- I K2

A = 2 m    2
mKx _*2

V     2 2
Then A satisfies conditions (i)-(iv) of Lemma I.

Proof. Condition (i) of Lemma I is easily verified. Because ax2,a2x ^ 0,
condition (ii) is immediate. Condition (iii) follows from the fact that ön, Û2i ¥"

0 and detA^O. Finally, (iv) follows from direct calculation.   D

Lemma 2.2. Let p = (px, P2) '■ [0, +00) —> R2+ be the solution 0/(1.1) which

starts at the point po 6 R2+ , and let r = (rx, r2) : [0, +00) —» R2 be the solution

of (1.3) which starts at the same point. Then the trajectory of p is contained in
the trajectory of r. Moreover, the solutions p and q move in the same direction

at any point on the trajectory of p.

Proof. Let e, /, g, h be defined by

2 m      2
Kx .     K2g = -m-,       h=T.

Because p is a solution of (1.1), we have

hpi + gp2dP2=h^ (ff + h_\ I (f_ + f\ =
dpi     Pi " \Pi     P2JI \Pi     P2) ' fPi + ep2
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But rx, r2 also satisfy this differential equation; therefore, because r and p

start at the same point, we see that the trajectory of p is contained in the

trajectory of r.
The second part of the lemma follows from the fact that if s, t £ [0, +00),

with r(s) - p(i), then r(s) = Xj>(t), where X = [pi(t)p2(t)]~x.   □

Lemma 2.3. Let m > 1 in the linear dynamical system (1.3); then the origin is

a saddle point for the system. Let p : [0, +00) —> R2 be the solution of (1.3) that
starts in R++. Let X be the positive root of the characteristic polynomial of the

system (1.3), and let X' be the negative root of this polynomial. Define a and

ß by

There exists constants C\ ^ 0 and C2 such that for ( e [0, +00), p(i) =
(Pi(t), p2(t)), where

Px(t) = a(CxeXt + C2ex't),

p2(t) = (X- ß)C{eXt + (X' - ß)C2e*'>.

Moreover, the trajectory of p is asymptotic to the line

(X-fi)qx=aq2, (qx, q2) £ R2 .

Proof. Standard techniques from the theory of systems of linear differential

equations suffice to establish this lemma.   D

3. Proof of Theorem I

We are now ready to prove Theorem I. By Lemma 2.1, we may apply Lemma

I to the dynamical system (1.1). Condition (i) of Theorem I is then a direct

consequence of this application.

To prove (ii) of Theorem I, let p = (p{, p2) '■ [0, +00) -> R2 + be the solution

of (1.1) which starts at the point p0 £ R2+ , and let r = (rx , r2) : [0, +00) -► R2
be the solution of (1.3) which starts at the same point. By Lemma 2.2, the

trajectory of p is contained in the trajectory of r, and the solutions p, r move

in the same direction at any point on the trajectory of p. By (i) of Theorem I,

we have
lim pi(t) = +00,        i'=l,2.

t—» + 00

Consequently, p and r have the same trajectory. Lemma 2.3 implies that the

origin is a saddle point of (1.3), and hence it is also a saddle point of (1.1).
For the proof of (iii), let p = (px, P2) and q = (fli, q2) be parabolic solutions

of (1.1), where

Pi(t) = aiyft,    o,(i) = 0,Vi, at>0,bt>0, i= 1,2, t > 0.

By Lemma I, we have 1 = lim,_+00p,(/)/fl,(i) = a,/0,, i = 1, 2. Therefore,

p = q. Now let C\, C2 have the values given in (iii) of Theorem I. Then a direct

calculation shows that if q = (qx, q2) : (0, +00) -» R^.+, where q¡(t) = c¡y/t,

i — 1, 2, then q is a solution of (1.1). This proves (iii).

Finally, to prove (iv), let po e R2+, and let p : [0, +00) —» R2+ be the

solution of (1.1) which starts at po.  Let r : [0, +00) —► R2   be the solution
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of (1.3) which starts at po. By (ii), p and r have the same trajectory, and

by Lemma 2.3, the trajectory of r is asymptotic to the line (X — ß)ux = aU2 ,

(ux, u2) £ R^. Therefore, the trajectory of p is asymptotic to the same line.

Because 6 — a/(X - fi), (iv) holds.

Remark. The values ex, c2 given in (iii) are obtained heuristically as follows.

Assume that q¡(t) = c,v7, / = 1, 2, is a parabolic solution of (1.1). Then (by
Lemma 2.2 and Lemma 2.3) the point (cxy/1, c2y/t) is on the line (X - ß)px =

otp2, (Pi, p2) £ R2 . Hence, cx/c2 = a/(X - ß) — ô , i.e., c2 = cx/ô . Because
q¡, i = 1, 2, is a solution of ( 1.1), we have

#!     m-lK2
Cx = m-,

cx        m    C2

Kx     K.2
c2 = -m— + —.

C\       c2

The first equation and c2 = cx/S imply that c\ - mKx - [(m - l)/m]ô .   D
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