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ON ,#-HARMONIC BLOCH SPACE

MIROLJUB JEVTlC AND MIROSLAV PAVLOVlC

(Communicated by Clifford J. Earle)

Abstract. We show that many of the characterizations of analytic Bloch func-

tions also characterize ^-harmonic Bloch functions.

1. INTRODUCTION

The class of analytic Bloch functions on the unit disc and the unit ball B in

C is well known, and it has been studied by many authors ([3], [4], [5], [6],

[8], [13], [14]). In this note ^-harmonic Bloch functions on B are studied.
Our results show that many of the characterizations of analytic Bloch functions

also characterize .#-harmonic Bloch functions. Some other characterizations
of .^-harmonic Bloch functions are given in [9].

To state our main result we need some notation. As in [12], we say that a

function u e C2(B) is ^#-harmonic in B, u e JA, if Au(z) = 0 for every z e

B. The operator A is the invariant Laplacian defined by Au(z) = A(u o cpz)(0),

z e B, where A is the ordinary Laplacian and <pz is the standard automorphism

of B taking 0 to z (see [12]).

For / e CX(B), Df = (df/dzx,..., df/dzn) denotes the complex gra-
dient of /, and Vf = (df/dxx, ... , df/dx2n), zk = x2k_x + ix2k, k =
1,2,...,«, denotes the real gradient of /.

For / € CX(B) let Df(z) = D(fofz)(0), z e B, and V/(z) = V(fotpz)(0),
z e B, be the invariant complex gradient of / and the invariant real gradient

of /, respectively.
If feCx(B) let

|Vr/(z)|2 = 2(\Df(z)\2 - \Rf(z)\2 + \Df(z)\2 - \Rf(z)\2),        zeB,

be the tangential gradient of /.   As usual, F denotes the radial derivative

We say that / e JA is ^-harmonic Bloch function, / € Jí¿% , if ||/1|^> =

supzefi|V/(z)| <oo.

We define the little .^-harmonic Bloch space JiAMo to be the subspace of

JMS for which lim|zM |V/(z)| =0.
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Theorem 1. Let f eJf. Then the following are equivalent:

(1) f is a JA-harmonic Bloch function,

(2) sxxpz^B(A\f\2)xl2<^,

(3) supz€i-.(l-|z|2)I/2|Vr/(z)|<oo,

(4) supz6B(l-|z|2)|V/(z)|<oo_,

(5) supz65(l - \z\2)(\Rf(z)\ + \Rf(z)\) < oo, where R = Z^d/dz]'•

In [14] Theorem 1 was proved for analytic functions. The proof, based

on the Cauchy integral formula, shows that, if / : B i-+ C is analytic and

|V/(z)| grows at most as fast as 1/(1 - |z|2), then the directional derivatives
of / in directions perpendicular to the radial directions grow at most as fast

as 1/(1 -\z\2)xl2. Using the integral representation formulas for derivatives

of ^-harmonic functions obtained in [ 1 ] we show that .^-harmonic functions

also behave twice as well in the complex-tangential directions.

The equivalences of Theorem 1 carry over to the little J(-harmonic Bloch

space as is shown in the following theorem.

Theorem 2. Let f eJA. Then the following statements are equivalent:

(1) feJAâêo,
(2) (À\f\2(z))x'2 = o(l), |z|->l,

(3) |V7-/(z)|=o(l/v/r^R)p |z|-»l.
(4) |V/(z)| = 0(1/(1-|z|)), Izl-.l,
(5) (l-|z|2)(|F/(z)| + |F/(z)|) = 0(l), |z|..l

We omit details.

For / € JA let '

(5/(z)=(|f(z),...,|f(z),|^(z),...,|^(z))
\oz\ dz„ dzx dz„     J

and for any positive integer m we write dmf(z) = (dadßf(z))\a\+\ß\=m and

\dmf(z)\2 = E\a\+\ß\=m \dad^f(z)\2, where

dadPf(z) =-J-£>- ,
dz\\...,dz^dz-x^,...,dY-n^

a and ß are multi-indices.

Our second result is the following theorem which relates the Bloch norm of

an ^-harmonic function with quantities involving integrals of the higher-order

derivative of the function. Even though ||/ \\¿g , f e JA, is not a norm, we refer

to ||/IU as the Bloch norm of the function /. The quantity |/(0)| + \\f\\&
defines a norm on the linear space JA which, equipped with this norm, is a

Banach space.

Theorem 3. Let 0 < p < oo, 0 < r < 1, and m e N. Then for a ^-harmonic

function f the following quantities are equivalent:

(i) 11/lb < oo.
(ii) supz6B(l-|z|)|ö/(z)|<oo.

(iii) supzeB(l-|z|r|ô»/(z)|<oo.

(iv) supzeB /       \dmf(w)\P(l - \w\)mi>-»-x dv(w) < 00 .

For analytic functions Theorem 3 was proved in [6], [13].
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2. Proof of Theorem 1

For a e B and 0 < r < 1 let Er(a) = {z e B : \cpa(z)\ < r). The

measure x defined on B by dx(z) = (1 - |z|2)~"-1 dv(z), where v denotes

the 2n-dimensional Lebesgue measure on B normalized so that v(B) = 1, is
^-invariant (see [12]). In particular, x(Er(a)) = x(rB), a e B, 0 < r < 1.

Any unexplained notation is as in [12].

Lemma 2.1. Let 0 < r < 1. There is a constant C such that if f eJA, then

(a) \TljRf(w)\<C(l-\w\2)-x/2jEriw)\Rf(z)\dx(z), weB,

(b) \TuRf(w)^<C(l-\w\2)-x/2JEr{w)\Rf(z)\dx(z), weB.

As usual, Tjj = Tjd/dzj - Tjd/dzj are tangential derivatives.

Here and elsewhere constants are denoted by C which may indicate a dif-

ferent constant from one occurrence to the next.

Proof, (a) By the formula (1.3) in [1]

r Rf(<pw(pQ)
¡sl-(pS,w)

Rf(w) do(S).. weB, 0 < p < 1.

Multiplying this equality by 2np2n~x(l - p2)~n~xh(p)dp, where A is a ra-

dial function which belongs to C°°(B) with compact support in B such that

JB h(z) dx(z) = 1, and then integrating from 0 to 1 and using the invariance of

the measure x, we get

Rf(w)= I h(<pw(z)) \ Rf(z)dx(z)
JB 1-(<Pw(z),W)

Lh(tpz(w))

-(<pw(z), w)

I - (z, w)
-T——rRf(z)dx(z),

by Theorem 2.2.5 ([12], p. 28).
Denote the components of cpz by tpx(-, z), ... , cp„(-, z). Since these are

holomorphic in B with supz w€B \<pm(z, w)\ = 1, 1 < m < n, we have

\Tutpm(w, z)\ <C(1- M2)"1/'2 , by Lemma 2.3 in [2] (see also [10]).

Note that T¡j(l - (z, w))/(l - \w\2) = 0 (here the operator 7y denotes

differentiation with respect to w).

Now the chain rule gives

\TuRf(w)\ = Í h'(tpz
Jb

(w)) E
Lm=l

<Pm(w, Z)

2\(pz(w)\
Tijtpm(w, z)

1 z, w)

w
Rf(z)dx(z)

<C(1-M2) ■1/2

Jb
(w))\

\l-(z,w)\

1 w
\Rf(z)\dx(z).

By a suitable choice of a function h we obtain

|F7F/(u;)|<C(l-|u>|2r1/2 /      \Rf(z)\dx(z),    for some 0 < r < 1.
JEr{w)

Here, we have used the fact that 11 - (z, w)\ = 1 - \w\2, if z e Er(w).



1388 MIROUUB JEVTIC AND MIROSLAV PAVLOVIC

(b) Since f eJA and Rf = Rf, from the formula for Rf, obtained above,
we get

Rf(w)= [ h(tpz(w))l-{l;Z2}Rf(z)dx(z)
Jb 1 - \w\

and consequently

\TijRf(w)\ < [ \h'(cpw(z))\
Jb

W==l

<Pm(W, Z)

2|«?r(w)|
Ti¡cpm(w, z)

|l-(^^)l
l-\w\2

\Rf(z)\dx(z)

+ ( \h(<pw(z))\ \Tij(l - (w, Z))\^l¡^dx(z) = Ix+I2.
Jb L ~ \w\

Note that here we have used the fact that

(l-(w,z)\

\   l-\w\2  J      1

1

\w
Tij(l - (w, z)).

2A'j

If the operator Ty denotes differentiation with respect to w as above, and

z e Er(w) is written as z = tpw(u) (with u e rB), then it is easily seen that

\Tu(l-(w,z))\ =

Hence

Sw(UjWj -UjWj)

I - (u, w)
<-*-S
- l-ru

2r

1 -r
(l-\w\2)1'2.

h<r^-(l-\w\2)-xf2 Í      \Rf(z)\dx(z)
1 ~ ' Je.(w)Er(w)

In (a) we have proved that the integral /■ is also at most C(l - \w\2)~xl2 x

Ieaw) \Rf(z)\ dx(z). This finishes the proof of Lemma 2.1.

Remark. In [12], p. 52, it is shown that f(w) = jsf(z)h(cpz(w))dx(z), where

A is a radial function which belongs to C°°(B) with compact support in B

such that jB h(z) dx(z) = 1 . Then the argument used in the proof of Lemma

2.1 can be applied to derive the estimate

\Tuf(w)\<C(l-\w\2)-x/2 [      \f(z)\dx(z), weB,   1 < i, j < n.

Proof of Theorem 1. In terms of ordinary differential operators the invariant

Laplacian A is as follows:

À = 4(l-|z|2)t(^-z^)^,
j,k=i '    K

where dik denotes the Kronecker delta; see [12], section 4.1, for details. Using

this form for A and the fact that Af = Af = 0 and d~fldzj = df/dz],
1 < J: < n , we find that

(2.1) Â|/|2(z) = 2(l-|z|2)|Vr/(z)|2.

Also, |V/(z)|2 = 2(|D/(z)|2 + |.D/(z)|2) = (1 - |z|2)|Vr/(z)|2 (see [12]). This
proves the equivalences of (1), (2), and (3).
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An application of the Cauchy-Schwarz inequality shows that

|Vr/(z)|2 > 2(1 - |z|2)(|ö/(z)|2 + |ö/(z)|2) = (1 - |z|2)|V/(z)|2.

Therefore, (3) implies (4).   (We note that quantities |V/(z)|2(l - |z|2) and

\Vrf(z)\2 are not pointwise equivalent if n > 1.   If / is a function that

depends on one variable only, say Zi, then it is not possible to bound |V7-/(z)|2

by C(l-|z|2)|V/(z)|2 because |Vr/(z)|2 = (1 - |z,|2)|V/(z)|2.)
It is easy to see that (4) implies

£sup(l-|z|2)

7=1
z€B &«

< oo   and    V}sup(l - \z\
UzeB ¡h*< 00.

which in turn implies

sup(l-|z|2)|F/(z)| <oo   and    sup(l - |z|2)|F/(z)| < oo.
zeB z£B

It is easy to check that

|z|2|D/(z)|2 = |F/(z)|2 + £|r0/(z)|2.

i<j

Using this, (2.1), and the definition of the tangential gradient we find that

|z|2A|/|2(z) = 4(l-|z|2)

(2.2)

(l-|z|2)(|F/(z)|2 + |F/(z)|2)

+ Y,\Tijf(z)\2 + Y,\Tijf(z)Y
KJ KJ

Hence, by (2.1) and (2.2), to show that (5) implies (3) it is sufficient to show
that

£>p(l - \z\2)l'2[\Tijf(z)\ + \Tijf(z)\] < oo.

An integration by parts shows that

/(*)= / [Rf(tz) + Rf(tz) + f(tz)]dt.
Jo

From this we conclude that it is sufficient to prove that

f WijUJo
(tz)\dt = 0.

1

V^
1 <i < j <n,

zeB,

where u(z) = Rf(z) or Rf(z) or Rf(z) or Rf(z) or f(z).
From

f(z) - f(0) = jf j¡f(tz)dt = £ -t(Rf(tz) + Rf(tz))dt,

we see that f(z) = O(jA^) (in fact, f(z) = ^(log-^)). Thus, u(z) =

°(ï=r) (note that if fsJt, then f eJA and |V/(z)| = |V/(z)|, zeB).

Using this, Lemma 2.1, the estimate obtained in the remark following Lemma
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2.1, the fact that 1 - \w\2 = 1 - \z\2, for w e Er(z), and the invariance of

measure x we find that

[ \Tuu(tz)\dt<C [ \ Í      \u(w)\dx(w)
Jo Jo    [{l - i|Z|) '    JEr(tz)

<c[l     dt     <      c
-    Jo  (l-r|z|)3/2-(l-|z|)i/2-

dt

3. Proof of Theorem 3

Lemma 3.1. Let k >m be positive integers, 0 < p < oo, and 0 < r < 1. There

exists a constant C = C(k, m, p, r, ri) such that if f eJA, then

\dkf(w)\P <C(i-\w\)(m-k)p [      \dm f(z)\p dx(z),    forallweB.
JEr(w)

Proof. Let a and ß be multi-indices. Using the formula (1.3) in [1] again we

find that

F(-\ß\,-\a\,n;r2)da5^f(w)

\l - (w, r{))-|a|(l - (rZ,w))-Mdadl'f(ri)d(T(Z),Ùis
where f(a, b, c; x) denotes the usual hypergeometric function. Multiplying
this equality by 2nr2n~x( 1 -r2)~n~xh(r) dr, where A is a radial function which

belongs to C°°(B) with compact support in B such that

/"f(-|o|,-H,«;|z|2)/t(z)úít(z) = 1
Jb

and then integrating from 0 to 1 and using the invariance of the measure x, we

get

(3.1)

rvm - //(^))(iH«,^g-^(x)t^

=//^(,))(1^7/j^;^r>)^^/(-)^);
by Theorem 2.2.2 ([12], p. 26).

Since
|l-(z,u;)|s l-|w|2,       zeEr(w),

by a suitable choice of a function h we obtain

\da8^f(w)\<C f      \da8^f(z)\dx(z).
JEr(w)

Hence,

\dmf(w)\<C i      \d'"f(z)\dx(z).
JEr(w)

By Lemma 2.4 ([11]) (see also [2]) we find that

\dmf(w)\P<c[      \dmf(z)\"dx(:
Je,(w)
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By differentiating under the integral sign in (3.1), using the formula for <pz(w)

([12]), and arguing as above we conclude that

\Djdadßf(w)\ < —Ç-- [      \da8ßf(z)\ dx(z),       w € B,  1 < j < n,
1 - \w\ JEr(w)

and

\Djdadßf(w)\ < —Ç—r j      \da8ß f(z)\dx(z),        w e B,   1 < j < n,
1   ~\W\   JEr(w)

and so,

\dm+1f(w)\ < t-^-t /      \dmf(z)\dx(z).
1 - \w\ JEr(w)

By an adaptation of the argument given in ([11], Lemma 2.4) we find that

\dm+1f(w)\P < n   Cun\\p Í     \dmfW d<z)-
(X - \W\)f Je,(w)

An induction argument shows that

\9kf(^)\P < 7T-CTftn„\\P s_   / \rtmf(-

(l-\w\)^-^JEr(w)W  n'

Proof of Theorem 3. The equivalence of (i) and (ii) is proved in Theorem 1.

If z € Fr(tü), then 1 - |u;|2 = 1 - |z|2. Hence by Lemma 3.1

(1 - \z\)m\dmf(z)\ <C f     (1 - \w\)\df(w)\dx(w) < C\\fUx(Er(z)),
Jem

by Theorem 1. Since x(Er(z)) = r2n(l - r2)~n , we have that (ii)=^(iii).

Conversely, assuming that da5ßf(0) = 0 we have

Hence,

\dadßf(z)\< Í \^-dadßf(rz)dr\<C f \d^+lßl+lf(rz)\dr.
Jo Idr Jo

\dkf(z)\<C fl\dk+xf(tz)\dt,
Jo

for any positive integer k . The implication (iii)=>(ii) follows at once.

Since x(Er(w)) is bounded by a constant independent of w , we have that

(iii)=Kiv).
Let k > m be a positive integer. Then by Lemma 3.1 we have

(1 - |z|)*'|d*/(z)l' < C I     |f3w/(^)|p(l - \w\)mpdx(w).
JEr(z)

Thus, (iv) implies that supzeB(l - \z\)k\dkf(z)\ < oo.
This finishes the proof of Theorem 3.
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